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Fast Algorithm for Observability Analysis of Power System State Estimation Networks
Summary

This report proposes the development of a fast algorithm that determines the observability of a power system state estimation network. It has the capability of identifying the unobservable areas in the system network. The algorithm does not require any floating-point calculations for checking the observability of the network. It does not require the existence of a spanning tree and matrix transformation or any sort of combinatorial calculations to identify the availability of any unobservable area. It requires the establishment of a symbolic integer–jacobian matrix and the implementation of simple logic. Some preliminary results are presented in this proposal.
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I. Introduction

In order to process any power system state estimator reliably, it is necessary to identify beforehand if there are any unobservable (isolated) islands. Identification of such islands provides information of which locations in the system network need more measurement meters. Knowing the type and location of the measurements, it is possible then to improve the measurement set reliability by adding other measurements that transform the existing critical measurements to redundant ones. The measurement redundancy is a desire because it may guarantee the network observability even when some measurements are lost. This will improve the reliability of state estimation process, and consequently simplify the detection and identification process which follow the state estimation itself  [1-5]. Redundant measurements are also necessary in order to identify gross errors in the state estimation process, because some gross errors (like these on critical measurements) are undetectable by the usual bad data detection routines [6-14]. 

The concept of identifying the isolated islands in state estimation sense is strongly related to network observability theory. Consequently the methods of identify these islands, which have been developed until now, are based in theories on observability analysis. However, the computational requirements and low processing velocity for many of these methods have limitations on real time applications. The computational requirements by many of these methods are based on combinatorial processes, triangular factorization of the gain matrix, or reduction of the measurement Jacobian matrix [15-31].
In this report, the development of a fast algorithm for observability analysis is proposed. It has the capability of identifying the unobservable areas in the system network. The algorithm does not require any floating-point calculations for checking the observability of the network. It does not require the existence of a spanning tree and matrix transformation or any sort of combinatorial calculations to identify the availability of any unobservable area. It requires the establishment of a symbolic integer–jacobian matrix and the implementation of simple logic. Some preliminary results are presented in this proposal.
II. Assumptions & Definitions for Observability Analysis

2.1.  Assumptions

It is assumed that the power (flow and injection) measurements are available in pairs of real and reactive measurements. In this case it is sufficient to test the rank of the real power measurements only.

2.2.  Definitions

IH Matrix: This matrix is a symbolic one that contains non-zero elements only. The size of IH matrix is nxm, where n is the number of busses including the slack bus and m is the number of real power (flows and injections) measurements. If the row of the IH matrix is associated with a power-flow measurement Tij, then we assign number "1" to column "i" and number "-1" to column "j" to indicate that this flow meter could be used to connect bus "i" with bus "j". If the row of the IH matrix is associated with a power-injection measurement Pi and that bus "i" is connected to "k" busses, then we assign number "k" to column "i" and number "-1" to every column associated with the "k" busses connected to bus "i" to indicate that this injection meter could be used to connect bus "i" with any of the of the "k" busses around bus "i" but not all the "k" busses.

Island: it is a group of one or more connected-busses. If there are more than one bus in the island, then these busses are connected together within themselves by means of power-flow measurements, but they can not be connected to any other island by any other power-flow measurement. This means that every power-flow measurement will belong to one of the identified island (s), but not every bus is connected by a power-flow measurement. 

III.  Observability Analysis

This section provide a sufficient condition that identify the existence of and isolated (unobservable) island. Other sufficient conditions could exist. Such conditions along with the necessary condition will be studied to identify any isolated island.

Sufficient Condition: If there exist any column, in the IH matrix, with zero non-zero elements, say k1 columns, then the network is not observable and the rank of the IH matrix is (n-1)-k1.

Proof of the Sufficient Condition:
If  there exist any bus that can not be conneceted by any power-flow and/or power-injection measurement, then it will appear in the IH matrix as a column with zero non-zero elements. If there are k1 of such busses, then there will be k1 columns in the IH matrix each with zero non-zero elements. Consequently, if k1 is greater than zero, the system is not observable and the rank of the IH matrix is reduced by k1, i.e., it becomes (n-1)-k1. This rank is not the final value because this is a sufficient condition.





             






End of the proof

IV.  Preliminary Results

Example 1:

Consider this 6-bus network with 6 power-flows and 2 bus-injections and bus 6 as the slack bus.



The corresponding IH matrix is

IH =  
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The number of non-zero elements in every column of the IH matrix is calculated. Since column 6 has zero non-zero elements, the rank of the system, is 4 with bus 6 (the slack bus) as unobservable one. 

Example 2:

Consider this 8-bus network with 5 power-flows and 2 bus-injections and bus 8 as the slack bus.           




The corresponding IH matrix is

IH = 
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The number of non-zero elements in every column of the IH matrix is calculated. Since column 8 has zero non-zero elements, the rank of the system (according to the sufficient condition) is 6 with bus 8 (the slack bus) as unobservable one. If, however, we count the number of islands in this example, there are four islands: g1 = [1, 2, 3, 4] , g2 = [6, 7] , g3 = [5], and g4 = [8]. Out of these four islands, g1 and g2 are identified by the power-flow measurements. Therefore, we need at least three measurement meters to connect these four islands. By inspecting the available measurements, we have either P1 or P2 that can connect island g1 with island g3. Consequently, islands g2 and g4 are unobservable ones, and the actual rank of the system network becomes 5 and not 6. This proof the fact that we have to come up with other sufficient and necessary conditions to identify all isolated islands.

Example 3:

Consider this 6-bus network with 3 power-flows and 1 bus-injections and bus 6 as the slack bus.

 



The corresponding IH matrix is

IH = 
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The number of non-zero elements in every column of the IH matrix is calculated. Since there are no columns with zero non-zero elements, the rank of the system (according to the sufficient condition) is 5. If, however, we count the number of islands in this example, there are three islands: g1 = [1, 2] , g2 = [4, 5, 6] , and g3 = [3] two of which are due to the power-flow measurements. Consequently, we need at least two measurement meters to connect these three islands. By inspecting the available measurements, P2 is the only power-injection measurement available to connect island g1 with island g2. Consequently, the system network is not observable with rank of 4 and island g3 as an unobservable island. The detection of such unobservable island requires further investigation of other sufficient and necessary conditions.

V.  Conclusions

This report has proposed a fast algorithm that checks the observability of power system state estimation networks. It can identify the unobservable areas in the network. The method requires the establishment of a symbolic integer–jacobian matrix and the implementation of simple logic. The algorithm has been tested successfully on several examples using a sufficient condition. Further investigation of other sufficient and necessary conditions will be conducted to identify all isolated islands in the system network,
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