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Figure 1: Sample Application of the Travelling Salesman Problem. Thetravelling
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cities across the globe. Created by Dan Ignat and Justin Turner, March 1998.
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Glossary of Terms

Crossover - The combining of two individuals to form athird with combined traits from
both parents

Epoch - A period of time during which a popul ation evolves without outside influence

Fitness - A measure of the quality of an individual

Genetic Algorithm - A problem solving approach that mimics evolution by treating
solutions as individuals and combining them to form new solutions

Genetic Algorithmswith Punctuated Equilibra - An extension of genetic agorithms
where individuals are grouped into populations, which evolve separately and
occasionally exchange individuals.

Genotype - The hidden, inner representation of an individual’s traits

Hypercube - An n-dimensional cube consisting of 2" nodes, where each nodeis
connected to n other nodes.

Individual - A solution to the problem being analyzed, which can be combined with
other individuals to generate new ones

Interconnection Matrix - An array that describes the interconnections between
populations in a GAPE run.

Legion - A system that can link several computer of various architecturesinto a
distributed network, and can execute parallel programs on them

Mentat Programming Language - A language for writing parallel programs for the
Legion system

Minimum Spanning Tree - The graph with the smallest total length that traverses all
points and has no cycles

Mutation - A random change in one element of an individua

NP-Complete - A set of problems that have been shown to be very difficult to solve
exactly for large instances

Phenotype - The physical manifestation of a genotype

Population - Anisolated set of individuals that evolve over time

Reduction - Choosing the individuals that will survive to the next generation based on
fitness

Selection - Choosing the individuals that will mate based on fitness

Traveling Salesman Problem - The problem of finding the shortest roundtrip distance

through a set of points



Abstract

This paper describes the creation of aparallel implementation of a genetic
algorithms with punctuated equilibria (GAPE) application for the travelling salesman
problem (TSP). It also investigates two aspects of GAPE by using the results from the
software. These aspects are the relationship between the number of populations used and
the solution quality over time, and the relationship between the number of generations per
epoch and the solution quality over time. The analysis of these variables is meant to shed
light on their role in GAPE agorithmsin general.

We believe that a parallel implementation of GAPE run over alarge network will
provide a significant speedup over sequential implementations. Further, we feel that the
results described within indicate that the number of populations have relatively little
effect on the solution quality of GAPE, especially for small problem sizes, and that
isolating populations for extended periods of time produces better long-term results than

those obtained with frequent communication.



1.0 Introduction

Genetic Algorithms with Punctuated Equilibria (GAPE) is a nontraditional way of
solving problems that are too complex to be solved exactly in a reasonable amount of
time. Due to the distinct populations that are the defining characteristic of GAPE
algorithms, GAPE software lendsitself very well to parallelization. This paper describes
the implementation of a parallel GAPE algorithm, and investigates two aspects of GAPE
using the results of the software. The results should be extendable to GAPE algorithms

in general.

1.1 Travelling Salesman Problem

In its simplest form, the Travelling Salesman Problem (TSP) is the following:
Given a set of n cities, what is the shortest path that a salesman can take in which he
visits each city once and returnsto his original starting point? This problem has awide
array of applications. These include any problems where one wishes to find the route
through a set of points that has the minimum possible distance. Some problems that the
TSP applies to include oil exploration, computer chip design, telephone line routing, and
protein modeling [17]. The frontispieceillustrates a possible TSP application. It shows a
set of paths traversing various cities across the globe. Minimizing the distance of these
paths might be important for delivery routes or telephone line connections.

This seemingly simple problem has been studied for over two centuries by
mathematicians, but the efficiency of the solutions developed is still not satisfactory for
many modern applications. The reason behind this relies on the concept of NP-

compl eteness.



1.2 NP-Completeness

NP-complete is the name that scientists have given to a set of problemsthat is
very difficult to solve precisely. The concept divides problems into two classes: those
whose solution is a polynomial-time al gorithm, and those whose best-known al gorithms
are nonpolynomial. Polynomial-time problems are those for which thetimeto arrive at a
solution is related to the size of the problem by a polynomial. For instance, the minimum
time required to multiply two random square matrices of numbers together is directly
proportional to the square of the size of the matrix. This means that if a computer took
four seconds to multiply two matrices of size 10x10 together, it might take 16 seconds to
multiply two matrices of size 20x20 together and about a minute to multiply a 40x40
matrix.

On the other hand, nonpolynomial-time algorithms are those for which the
solution cannot be related to the size of the problem by a polynomial. For instance, the
rel ationship may be on the order of 2" or n" where n isthe size of the problem. Asa
result, the time necessary to solve a problem tends to increase dramatically with the
problem size. If aproblem of size 100 takes a minute to solve, a problem of size 200
might take a day, and a problem of size 300 might take alifetime. Problemsthat fall into
thislatter class are termed "NP-complete” by computer scientists. They include the
travelling salesman problem, to which this project is being applied.

It is often infeasible to solve large instances of NP-complete problems exactly.
Sinceit is potentially impractical to find the best solution to the travelling salesman
problem when large numbers of cities are involved, researchers have looked to other

methods. These include techniques that do not attempt to find the best solution to agiven



problem, but instead find an approximate solution. Ideadly, this solution will be very
close to the optimal solution in quality, but can be found in asmall fraction of the time
that it would take to find the best solution. One method that is commonly used for NP-

complete problems is genetic algorithms, which is the topic of this paper.

1.3 Genetic Algorithms

Genetic algorithms are a method of solving problems based on sexual
reproduction and genetics. In sexual reproduction, two individuals contribute traits that
combine to form anew individual, who carries those traits from both parents onto the
next generation. Sometimes the offspring is better suited to its environment than its
parents, and sometimes it isworse suited. The better the individual, the greater chance it
has of surviving to mate with other individuals and thus contribute its genetic material to
the next generation [19].

Similarly, with genetic algorithms, a population of individuals evolves over time.
However, the individuals in this case are solutions to the problem at hand. The algorithm
begins with a pool of random solutions. Each solution istreated like an individual, and
combines with other solutions to produce new ones. Some of these solutions will be
superior to their parents, and others will be inferior.

The chance a solution has to reproduce is determined by itsfitness, whichisa
function of how good the solution is. Over time, good solutions combine to produce
better and better solutions and, ideally, an answer that is close to the optimal oneis

produced in arelatively short period of time.



1.4 GAPE

In nature, mating is also influenced by the location of individuals. For instance, a
cockroach in England has a much higher probability of mating with another English
cockroach than with onein China. Biologists often discuss this concept in terms of
populations, which are isolated groups of individuals evolving separately and adapting to
their particular environments. Over time, if there are not major environmental changes,
evolution within a population reaches equilibrium, where relatively little overall change
occurs. Occasionaly, some geological incident will occur, allowing individuals from
populations to intermingle. When this intermingling happens, new genetic materia is
introduced, resulting in asurge in evolution. Paleontologists refer to this as the theory of
punctuated equilibria[8].

A variation on genetic algorithms called genetic algorithms with punctuated
equilibria (GAPE) has been developed based on thistheory. The agorithm’s solutions
are partitioned into several populations that are isolated from each other. These
populations are allowed to evolve separately, gradually moving towards a stasis. After a
set amount of time referred to as an epoch has elapsed, the populations exchange some
solutions, resulting in a burst of evolution.

An interconnection matrix governs communication between populations. The
matrix defines the populations to which each population sends individual s after the end of
each epoch. At one extreme, an interconnection matrix with no connections would be
equivalent to all populations evolving separately with no interaction. At the other
extreme, amatrix with al connections filled would be similar to atraditional genetic

algorithm with one population.
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Thereisavariety of popular interconnection matrices, including grids and
toruses. For all experiments contained within this document, we used a structure called a
hypercube. A hypercubeis, in effect, a cube of n dimensions. Its most notable property
isthat each of the 2" nodes, which are populationsin this case, has exactly n nodes
connected to it. Asillustrated in figure 2, a hypercube of one dimension would be aline.
Each of the two nodes thus has one connection. A hypercube of two dimensions would
be a square, with each of the four nodes having two connections. A hypercube of three

dimensions would be acube. A hypercube of four dimensions can be visualized as two



cubes, with each node on the first cube connected to the corresponding node on the
second cube.

The software described within this report applies GAPE to the travelling salesman
problem. In this case, the individuals will be actual tours, since they are solutions to the
problem. The method by which individuals reproduce is somewhat complicated and will

be explained in detail within.

1.5 Literature Review

The concepts of modern genetic algorithms were first developed by John Holland
in the 1960s. His goal was to develop the theory and procedures necessary for the
creation of general progams and machines with unlimited capability to adapt to arbitrary
environments [15]. Before him, a handful of biologists had introduced concepts related
to those involved in modern genetic algorithms. Among them were N.A. Barricelli and
A.S. Fraser, who were attempting to understand natural phenomena[8].

Srinivas and Patnaik provided afairly comprehensive analysis of the basic
characteristics and issues surrounding the development of GAs[16]. Some of the issues
that they discussed were influentia in the formulation of the genetic algorithms with
punctuated equilibria (GAPE) method.

GAPE is asomewhat new concept, developed by Cohoon, Hedge, Martin, and
Richardsin 1987 [1]. They defined the algorithm and the characteristics which
differentiated it from the sequential GA as an alternative to traditional genetic algorithms
at the University of Virginiain April of 1991.

It was originally applied to the Floorplan Design Problem [2], which isan

important step in the VLSI design cycle. It involves arranging a given set of modulesin



the plane to minimize the weighted sum of area and wirelength measures [5]. The GAPE
results exceeded those of the simulated annealing method, which is a more widely
accepted form of search, in both average cost and optimal solution. GAPE has the
potential for successin many other aspects and iswell thought of in the field, although it
has not enjoyed the popularity that other methods have [6].

The next application of GAPE was VLSI routing [3]. On this example, GAPE
once again outperformed the traditional sequential implementations. Similar results were
obtained for other problem instances, including the VLSI channel and switchbox routing
problems, which used a parallel implementation over a distributed network of
workstations[11]. Some research has also been done to understand why some
evolutionary algorithms succeed when applied to the VLSI field and why others fail [12].

In 1997, Riccardo Poli introduced the concept of Parallel Distributed Genetic
Programming, whereby he produced a new form of genetic programming with a high
degree of paralelism. Hisanaysisindicated that parallelism provided significantly
increased performance, which suggests that GAPE might also perform quite well over
multiple processors, asit is highly paralelizable [7].

In February of 1996, William Niebel applied the GAPE method to the travelling
salesman problem on asingle processor. During his testing, he found that the method
performed well, on average coming within 1% of the known best solution while the

standard GA solution only came within 2% [9].

1.6 Rationale and Scope

My partner Daniel Ignat and | have expanded on the work done by William

Niebel in 1996. We have rewritten the genetic algorithm code to run over aLegion



system. This allows the softwareto run in parallel over several computers. If alarge
network of computersis used, this should result in a significant speedup over the single
processor algorithm, especially for runs with large numbers of populations.

In addition, we have analyzed the GAPE agorithm as applied to the Travelling
Salesman Problem in two respects. The first objective was to examine the effects of
varying the total number of populations while keeping the number of individuals and
migration rates constant. Thisinvolveslooking at the effect of spreading the individuals
among a number of populations on the quality of the final solution and the speed at which
agood solution is obtained. The second aspect we looked at was the effect of varying the
number of generations per epoch, while holding the total number of generations constant.
This highlights the effect of |etting popul ations evolve on their own to reach local
minima, as opposed to having frequent communication to bring in higher quality
individuals from outside.

Two objectives that were proposed were not completed in time to be included in
thisreport. These were the effects of varying interconnection matrix of populations, thus
changing which populations are allowed to intermingle with which others, and the effects
of varying the fitness function among different populations, thus putting different
selective pressures on different populations. These will be included in alater version of

this document.

1.7 Overview of Remainder of Report

The body of this report will first explain the implementation of the paralel GAPE
software. It will then relate our hypotheses pertaining to the effectiveness of paralelizing

the GAPE agorithm and to the results from testing. Next, the data collected from the



experimental software runswill be presented, along with an analysis of this data, and an
interpretation of the data relative to the project’s objectives. Finally, some

recommendations for future research will be presented.



2.0 Methodology

This section contains a description of the methods we used to carry out the software
development and to obtain the results. The work performed on this thesis consisted of
writing the software to distribute GAPE across a Legion system, and analyzing two major
variables of the GAPE method: the number of populations and the number of

generations per epoch.

2.1 Parallel Objects and Legion

The analyses to be performed in this research project would require a
cumbersome amount of time using existing GAPE software. Therefore, the first major
research task was the development of a parallel equivalent of the sequential GAPE
implementation written by William Niebel. To do so, we chose to use the Legion system,
which is an object-based software package designed to allow distributed computing.

The Legion system allows the programmer to define objects as Mentat classes,
which indicates that they are to be distributed across the network. Asaresult, member
functions of several instances of that class can do their work in paralel, with
interruptions occurring only when data needs to be given to another process, or received
from another process. Therefore, a significant speedup can result if many objects are able
to run independently for extended periods of time.

There are a'so magjor drawbacks to running objectsin parallel. Thereisalarge
overhead when parallel objects are created, due to the fact that an entire new process
needs to be created on another machine, and al the information that allows it to

communicate with other processes must be established. Additionally, memory references



outside a given class are generally costly, since they require the process to communicate
over the network. If large packets of data are transferred from one parallel object to
another, the slowdown can be very costly. Thisis because datafrom all arrays and
pointers must be extracted, packaged, and sent over the network due to the digoint
memory spaces of the computers on the network.

Asaresult of these factors, we decided to use the population class as our only
distributed class. This choice was made because each population spends the vast
majority of its time evolving, which requires no communication between popul ations.
Communication is only necessary at the end of each epoch, when individuals are

exchanged.

2.2 Software Implementation

William Niebel wrote a sequential version of GAPE for the travelling salesman
problemin 1996. Inwriting a parallel version of the algorithm, we were able to reuse
the majority of Niebel’s low-level algorithms. However, major modifications were made
to the way in which objects are handled and to the high level execution of the software.
These aspects, along with the basic theory behind the software, will be described below.

A more detailed description of the software isincluded as Appendix A.

2.2.1 Instantiation

After completing some preliminary initialization, the software begins by creating
the various population instances. Each population receives its own process and is moved
to one of the computers on the Legion network. We allow the Legion system to manage

which computer each processis sent to. Legionisin adevelopmental stage and at this



point randomly chooses a computer to send each process to, so the code would run faster
if we were to force an equal number of populations to go to each machine. However,
when Legion is completed, it will decide where to send processes more intelligently; and
therefore, we have allowed the system to control process distribution with the hopes that
thiswill be the best decision in the long term.

Next, asignal is sent to each of the populations from the main process telling
them to begin the evolution process. After this point, the only communication between

processes will occur between epochs.

2.2.2 Evolution and Niebel's Algorithms

During an epoch, each popul ation evolves without influence from the other
populations. Each generation consists of selection for mating, reproduction, reduction,
and mutation. In order to understand these processes, one must first understand the

underlying representation of individuals as implemented by Mr. Niebel.

2.2.2.1 Niebel’s Algorithms

As stated earlier, an individual in the case of the travelling salesman problemisa
tour of the city. Itsfitnessistherefore related to the length of the tour, with alower tour
length resulting in better fitness. The immediate problem with this implementation of an
individual isthat there is not an obvious way to cross two tours, since atour issimply a
list of the citiesin aparticular order. One could try to place the citiesin alocation that is
near to the average of itslocation in the two parents, but this would result in many cities
wishing to be placed near to the middle, and thus would probably not retain the

characteristics of its parents.



In order to remedy this, the software represents the genotype of individuals by
problem maps. A genotype is an underlying representation, as opposed to a phenotype
which is the manifestation of the genotype. For example, in genetics, a genotype might
be a string of a certain four amino acidsin an allele, and the phenotype might be brown
eyes. Different genotypes are generated by actually "perturbing” the cities on the map, or
shifting them slightly based on the standard deviation of the population. This allows for
an easy implementation of crossover.

Another benefit of the perturbed map representation is that a perturbed map may
trangdlate into atour that would be very difficult to find using a normal tour representation
because it is not similar to other good tours. This could be very beneficial because the
optimal tour for amap is often not one that is easily generated through crossover.

When two perturbed maps reproduce, each city in their offspring will be the
average of the locations of the same city in the two parents. Thus, the offspring will be a
blend of its parents, which iswhat isdesired. The offspring is then perturbed so that the
citiesdo not all converge on the center. Figure 3 part (a) shows aplot of a51 city map.

Part (d) shows a perturbed version of the map.

Now that we have a genotype that is easy to mate, we must have away to
trandate it into a phenotype, or atour. Thisis done by using a minimum spanning tree
(MST) as an intermediate structure. A spanning tree is a connected graph without cycles
that touches all vertices of the map. In other words, it isaset of edges connected all

cities in the map without creating any loops. When the sum of the edges of a spanning
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Figure 3: Changing from Genotype to Phenotype
Created by Dan Ignat and Justin Turner, March 1998.




tree has the smallest possible distance, it isaminimum spanning tree. Thereisan
efficient algorithm that finds an MST for a set of points, which is explained in the
function Individual::mstify() in appendix A. Figure 3 part (b) shows the minimum
spanning tree generated from the 51 city map. Part (€) shows the MST generated from
the perturbed version.

Finally, a phenotype (tour) must be developed from the intermediate MST
structure. The algorithm Niebel employsto do thisis also described in detail in
Appendix A. Figure 3 part (c) shows the tour generated from the original problem map.

Part (f) shows the tour generated from the perturbed map.

2.2.2.2 Selection

During any given generation, a popul ation goes through the processes of selection
for mating, reproduction, reduction, and mutation. Selection involves picking individuals
that will be used for mating. The selection is arandom process weighted by the fitness of
theindividual. Thus, individuals whose tours have a short length will have a greater

probability of being selected to mate.

2.2.2.3 Reproduction

Once two individuals are selected, they mate to form athird individual which is
added to the population. The new individual’s city coordinates are generated by
averaging the coordinates of each of the citiesin both parents and then perturbing them.

Thisresultsin an offspring that shares traits from both parents.



2.2.2.4 Reduction

After reproduction there is a surplus of individuals due to the new individuals that
were generated. Thus, some must be eliminated in order to return the population to its
original size. Individuals are selected for survival based on their fitnessin a manner

similar to the selection for mating.

2.2.2.5 Mutation

Finally, random individuals are mutated. Mutation involves changing the location
of arandom city in the selected individual, guaranteeing that there are no individual s that
cannot be seen.

These five stages are performed during each generation of every population.
Since none of the steps involve communication with other populations, the entire
evolution step isrunin parallel. The main process waits for al of the population

processes to signal that they are complete before moving on to the migration stage.

2.2.3 Migration

The migration stage involves transferring individual s between populations as
governed by the interconnection matrix. A signal to each population that needs to send
individuals by the main process, and the populations respond by packaging an array of
the individuals and sending them to the main process. The main process then reroutes the
package to the population that is to receive the individual s, without unpackaging them.

No reduction is done until all individuals have been transferred. Thisallowsall of
the transfers to be done in parallel, since it does not matter in which order the individuals

are received at a given population.



The main process waits until al exchanges have completed, and then sends a
signal to each population to recalculate the total fitness, which is necessary to do the
reduction. It then sendsasignal to each population to reduce to the origina number of
individuals as explained in the previous section. It then sendsasignal for each
population to print its current best individual to afile. Since all of these are done
independently of other populations, they can al be executed in parallel. All of the
processes append to the same file. Asaresult, since the results will comein out of order
due to the parall€elization, the populations must write an integer identifying themselves
each time they writeto afile. The data can be sorted into a more usable order after the
program has finished executing.

These steps of evolution, migration, and reduction are carried out for each epoch
until the program has completed. The results are then sorted out and compiled by helper
programs. It should be easy to modify this software to test several aspects of genetic

algorithms.

2.3 Testing

Two major aspects of GAPE were analyzed using the software. First, we
analyzed the effect of varying the number of populations on the quality of results
produced. We ran a series of tests on the 51 city map displayed in figure 3. The number
of epochs was 16 and the number of generations per epoch was 50 for all runs. We
varied the number of populations from 2 to 64 by powers of two, keeping the total
number of individuals constant. In other words, the number of populations multiplied by
the individuals per population remained the same. We also kept the percentage of a

population migrating as constant as possible while still maintaining the hypercube



structure. The following table shows all six runs. Each run was executed five times to

ensure consistency.

Number of Populations

Number of Migrants

Individuals per Population

2
4

8
16
32
64

576
144
48
18
7
3

1280
640
320
160

80
40

Table 1: Varying the Number of Populations

A second aspect of gape that was tested was the effect of varying the number of

generations per epoch on the solution quality. The number of populations was kept

constant at 8, the base population was held at 320, and the number of migrants was held

at 48 for al runs. The number of epochs was varied from 1 to 512 by powers of 2, and

the total number of generations was held constant at 512. In other words, the product of

the number of epochs and number of generations was held constant. The following table

shows all 10 runs. Each run was executed five times to ensure consistency.



Number of Epochs | Number of Generations
1 512
2 256
4 128
8 64
16 32
32 16
64 8

128 4
256 2
512 1

Table 2: Varying the Generations per Epoch

Finally, we looked at the execution time of the parallel version of GAPE in
comparison to the sequential version. We timed the two most time consuming portions

of the program, the evolution with an epoch and the communication between popul ations,

and compared the results.

2.4 Equipment
The equipment used in this project was the stonesoup UNIX cluster. It consists of
four networked PCs running the Redhat Linux operating system. Future computation and

testing will be performed on alarger network allowing further distribution of objects.



3.0 Hypotheses

We hypothesize that small and large numbers of populations may gener ate better
solutions at first, but that the best quality solutions will be generated by more moderate
numbers of populations. Further, we feel that runs with few generations per epoch will
performwell at first, but that those with moderate numbers of generations per epoch will
produce the best solutionsin the end. Finally, we feel that the parallelization of the code

will produce a moderate speedup running over a four computer network.

3.1 Varying the Number of Populations

Thefirst set of testsinvolved varying the number of populations while keeping the
total number of individuals constant, and keeping the influx of individuals at a set
percentage of the population size. At the one extreme, if there were only one population,
we would have atraditional genetic algorithm. In this case, we would expect the best
individuals to take over the population relatively quickly, and thus for the best solution to
be better at than GAPE runs with more populations at the beginning of the run. However,
we would anticipate that the GAPE runs, due to their superior diversity, would win out in
the end and find the better solution.

At the other extreme, if there were alarge number of populations with very few
individuals in them, there would be very little diversity within the populations. We
would expect that the populations would have more difficulty reaching local minimaand
that good solutions from other populations could easily take over a population and

severely decrease diversity. Although small populations might have the effect of



generating better solutionsin the short term, we feel that it will hurt the final solution
quality.

Therefore, in the case of varying the number of populations, we expect that the runs
with very small numbers of populations will perform best at the beginning, and that the
runs with moderate amounts of populations will run the poorest at the start. However, by
the end of the run, we feel that the runs with moderate amounts of populations will have

generated the best solutions.

3.2 Varying the Generations per Epoch

The second set of tests involved varying the number of generations per epoch
while keeping population size, migrants, and total number of generations constant. When
there was only one epoch, the run was the equivalent of several one-population GAs
running concurrently. We would expect that, even though the results will show the best
individual out of all the populations, the separate small GAs will not generate as good
results as the GAPE a gorithms with moderate number of generations per epoch.

On the other hand, when there is one generation per epoch, there would be
communication after every generation. We would expect that the constant
communication would allow good individuals to take over many populations, and thus
limit diversity. Thiswould cause good tours to be generated at first, but would end up
being harmful in the long run. The constant communication would also inhibit
populations from moving towards local minima.

Therefore, in the case of varying the number of generations per epoch, we expect
that the runs with very few generations per epoch will generate good results at the

beginning of the run, but will not end up with the best solution. We expect the runs with



very few epochs to perform poorly throughout. Finally, we expect the runswith a

moderate number of generations per epoch to produce the best solutions.

3.3 Parallelizing the Code

We expect that paralellizing the code will produce a substantial speedup for the
evolution portion of the code. Thisis because there is no communication necessary
between epochs, and therefore the code should be able to run completely in parallel. We
expect that the time to complete the rest of the program will increase dightly, and that al
function calls will take somewhat longer due to the added overhead of the Legion system.
Finally, we feel that the communication portion of the code will take significantly longer
because it now has to send data across a network. Overall, we feel that there will be a
moderate speedup even though we are only running on a network of four computers, and

that there will be a significant speedup once the new Legion network isinstalled.



4.0 Results

The experiment with various numbers of populations resulted in very similar results
for all numbers of populations. The experiment involving various numbers of
generations per epoch showed that those with a large number of epochs did very well at
the beginning, but ended up finding wor se solutions than those with small numbers of
epochs. The parallel code was shown to run in approximately the same time on a four

computer network, but with a significant speedup on the evolution.

4.1 Variable Number of Populations

Figure 4 shows the results from the experiments involving a variable number of
populations. In these experiments, the number of total individuals was held constant.
Thus, as the number of populations increases, the number of individuals per population
decreases. All other variables were also held constant, including the percentage of the
population that isimmigrated at any given epoch.

The results show that the larger number of populations find the best solutions, but
the difference between them is very dlight. Please note that the y axis represents the tour
length, and thus lower values are preferable. The optimal length for this map is known to

be 426.

4.2 Variable Number of Generations per Epoch

Figure 5 shows the results from the experiments involving a variable number of

generations per epoch. In these experiments, the total number of generations was held



constant, so that as the number of generations per epoch increases, the number of epochs
decreases. All other variables were held constant.

Figure 5b shows that there is a clear difference at the beginning of the
experiments. The runs with the greatest numbers of epochs, 128 and 256, perform
significantly better than the rest of the runs. Figure 5c, however, illustrates that thereis a
swap, and that the epochs with the least number of epochs end up finding the best

solutions in the end.

4.3 Timing of Parallel and Sequential Code

We timed the two most significant portions of the parallel and sequential code
against each other on the Appnet cluster of the Department of Computer Science, namely
the evolution and the migration. In the original sequential version, amost all of the time
was taken up in the evolution stage. We found that the parallel code, when running on a
network of four computers, produced a speedup of 2.1 on the evolution portion.
However, the migration ended up taking significantly longer than the original, and the

code ended up running in approximately the same time.
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5.0 Conclusions

The results explained within this paper indicate that a parallel implementation of
GAPE is only somewnhat helpful with the current version of Legion, but that it has the
potential to produce a very high speedup as Legion improves and better networks are
installed. Varying the number of populations had little effect, but this may be because of
the small number of citiesin the probleminstance. The results obtained from varying the
number of generations per epoch seemto indicate that intermingling should be done
infrequently in order to preserve diversity and allow populations to seek out local

minima.

5.1 Summary

Genetic Algorithms with Punctuated Equilibria provide a means of generating
approximate solutions to problems. This can be valuable because there are many
problems for which a perfect solution cannot be found in a reasonable amount of time
once the problem instance grows to alarge size.

One aspect of GAPE that is highly appealing isthat it is paralelizable, due to the
fact that its populations run independently of each other for extended periods of time.
Using a network of four computers, a speedup of 2.1 was obtained on the evolution,
which is the most time consuming aspect of the sequential version. The slow downin
communication speed canceled out the benefit of this, but some reasons why this
happened will be explained below.

The results from the test in which the number of populations varied showed no
noticeable correlation between the number of populations and solution quality. The

results from the experiment where the generations per epoch varied, however, showed a



clear pattern of the runs with the largest number of epochs starting off best, and the runs

with the smallest number of populations producing the best final results.

5.2 Interpretation

Using a network of four computers, we obtained a speedup of 2.1 on the evolution
portion of the software. The maximum we could have theoretically obtained was 4, if the
processes were distributed perfectly and there were no overhead. The major reason that
the speedup islow isthat Legion has not yet implemented an algorithm for distributing
processes among computers. At present, it randomly selects the computer to which to
send each process. Asaresult, we have some processes finishing evolution much faster
than others.

The other major problem with the parallel code was the communication speed,
which is partialy due to abug in the Legion system. During communication, when
immigrants are transferred from one population to another, the system does not recognize
the direct transfer from population to population and instead sends the individuals
through the main process, doubling the time it takes. As Legion improves, and as larger
networks are set up, we predict that the performance of this parallel implementation will
improve dramatically, especially for runs with large numbers of populations.

The results from varying the number of populations showed no correlation
between the number of populations and solution quality. We believe, however, that this
may change for amap of alarger size. The problem we seeisthat the runs are al getting
very close to the optimal solution, and thus there is not much room to distinguish between

them. Further tests will be done to determine whether this assessment is accurate.



The results from varying the number of generations per epoch show that the
populations with large numbers of epochs, and thus small numbers of generations, do
very well at the beginning of the run. These results are what we expected, because the
massive amount of communication causes the best individuals to get spread out over
many of the populations, which causes the algorithm to find their local minimavery
quickly. However, the communication also lessens the diversity of the populations
significantly. This resultsin them performing poorly in the long run. The results show
that the populations with 512 and 256 epochs clearly start off best, end up among the
worst, while the runs with long epochs start out mediocre but end up finding the best
solutions. These findings indicate that it isimportant to let populations evolve and reach

their loca minima.

5.3 Recommendations

The work that will be done in the immediate future on this project includes
analyzing the effects of modifying the interconnection matrix and rerunning the tests
contained within this document using problem maps of alarger sizeto try to obtain better
defined results.

Several other aspects of GAPE might be interesting to test. These include
experimenting with interconnection matrices that are well-suited to a parallel distribution.
For instance, having popul ations communicate mainly with other populations which are
on the same computer as them, or are close by, might produce better results. Other
possible tests include modifying the mutation rate and varying the fitness function across

populations.
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Appendix A: Annotated Reference Manual

cl ass Runparns

voi d Runparns: :read()

» Reads and processes the parameter file specified as the second argument in the
executable’s command line

» Stores constants specified in parameter file into the class’ member variables

char *Runparns:: opt Tour Fi | eNane()
» Returns a string containing the name of the file describing the “best” published tour
for the current TSP instance

char *Runpar ns: : mapFi | eNanme()
» Returns a string containing the name of the file describing the map of the current TSP
instance

char *Runparns::connecti onFil eNane()
» Returns a string containing the name of the file describing the interconnection
topology matrix for the current GAPE run

cl ass Net

Net : : Net ()
» Allocates and initializes an array of populations

Net:: ~Net ()
» Deallocates the array of populations

void Net::read()
» Reads interconnection topology matrix file into an array and verifies its integrity

void Net::run()
» For each epoch
» If in epoch O
» callsPopul ati on:: show() on each population
» Else
» callsPopul ati on: : sel f Source() on each population
» exchanges individuals between populations based on interconnection array
» callsPopul ation::recal cFi tness() on each population (required by
migration)
» callsPopul ati on: : reduce() on each population
» callsPopul ation: :recal cFi tness() on each population once again



» cdlsPopul ati on:: show() oneach population
» CalsPopul ati on: : newEpoch() on each population

stateful nmentat class Popul ation

Popul ati on: : Popul ati on()

Opens various output files for parallel writing across all Population instances
Creates alocal copy of the TSP instance

Allocates and initializes an array of individuals

Initializes member variables with values from parameters

CallsPopul ati on: : recal cFi t ness() onitself

YVVVVY

I nt Popul ation: :sel ect Tovat e()
» Randomly selects afirst parent using prowess as a weight

i nt Popul ation: : sel ect ToMvat e2()
» Randomly selects a second parent using prowess as a weight and making sure not to
duplicate first parent

i nt Popul ation: : sel ect ToSurvi ve()
» Randomly selects an individual to survive using longevity as aweight

i nt Popul ation::reproduce()
» Reproducesindividuals
» Selects parents
» Generates offspring
» Keeps count on offspring improving over neither parent, one parent, or both
parents

I nt Popul ation::nutate()
» Mutatesindividuals
» Selects mutant
» Cadlsl ndi vi dual : : nut at e() on mutant individual
» Cadlsl ndi vi dual : : devel op() onmutant individual
» Keeps count on mutants improving, worsening, or remaining the same

I nt Popul ation:: newGen()
» Processes anew generation
» CadlsPopul ation::sel fSource() onitself
» If Popul ation::total Prowess >0
» cdlsPopul ation::reproduce() onitsef
» calsPopul ation::recal cFitness() onitsalf
» If the population has swelled beyond its maximum size
» cdlsPopul ation::reduce() onitsef
» calsPopul ation::recal cFitness() onitsalf



I nt Popul ation:: newEpoch()
» Processes anew epoch
» For each generation
» calsPopul ation:: newGen() onitself
» cdlsPopul ation::show() onitself

i nt Popul ation::reduce()

» UsesPopul ation: : sel ect ToSur vi ve() toselect individualsfor survival
into the next generation

» Rearranges array of individuals so that the scattered survivors are al at the beginning

i nt Popul ation: : sel f Source()
» Marksall individuals in the base population as being carried over from the previous
generation, as opposed to being the result of crossover, mutation, or migration

i nt Popul ation::recal cFitness()
» Calculates various population statistics
» Calculates fitness and longevity for each individual

I ndi vi dual Array Popul ati on: : sendEmm grant s()
» Returns an array of individuals selected from the population to be emmigrants

i nt Popul ation::receivel nm grants()

» Takesan array of individuals (immigrants) as a parameter
» Addstheimmigrants to the populations array of individuals
» Cadlsl ndi vi dual : : devel op() on eachimmigrant

I nt Popul ation::show()
» Printsout various population statistics

cl ass | ndi vi dual

I ndi vi dual : : I ndi vi dual ()
» Initializes various member variables
» Cadlsl ndividual ::reset() onitself

voi d I ndividual::reset()
» Resets the individual’'sap
» Callsl ndi vi dual : : devel op() onitself

voi d I ndividual::scatter()

» CallsC ty::scatter() oneach of the cities on the individuatap

» Setsitssource tol NI Tl AL (i.e., individual is not the result of crossover, mutation,
or migration)



voi d | ndividual::nutate()

» CdlsCity::nmutate() onarandom city on the individuabsp
» Sets itssour ce to MUTATI ON

» Callsl ndi vi dual : : devel op() on itself

» Creates graph of and prints the mutation vector

voi d I ndividual::nstify()
» Creates amst (the intermediate structure used in the conversion from genotype to
phenotype) from the individualisap

voi d | ndividual ::opt2()

» Creates aour from the individual’svst (the intermediate structure used in the
conversion from genotype to phenotype)

For each vertex in the individualsst , create a list of vertices connected to it

Start withor i gi n city and traverse first edge of mst

From each new node visited, traverse the untraversed edge at greatest clockwise

angle relative to the previously traversed edge

If current node is a leaf or no untraversed edges remain, backtrack to previous

node

Thet our is constructed by connecting each newly visited node and then

connecting the last node back to trd gi n

YV VYV VVYYVY

voi d | ndividual :: devel op()

» Callsl ndi vi dual : : nstify() on itself

» Sets theori gi n of the individual'smap to the first leaf

» Callsl ndi vi dual : : opt 2() on itself

» Sets itobj ect i ve to the length of the newly-generatedur

voi d | ndividual :: xover ()

» CallsCity::xover () on each city in the individualisap
» Sets itssour ce to XOVER

» Callsl ndi vi dual : : devel op() onitself

» Creates graph of and prints the crossover vectors

class G tySet

double CitySet::floatDi stance()
» Returns the distance between two cities passed as parameters

int CtySet::distance()
» Returns the distance between two cities passed as parameters rounded off to the
nearest integer



void CitySet::add()
» Addsto itself the city whose characteristics are passed as parameters

int CitySet::|abel ()
» Returnsthe label of the city passed as a parameter

void CitySet::read()

» Readsintheorigina TSP map from afile
» Readsin preamble, which contains information about the rest of the map file
» Readsin the city coordinates

» Calculates standard deviation of inter-city distances

class Gty

void City::perturb()
» Perturbsitsx andy coordinates using the St dDev passed as a parameter

void City::scatter()
» CalsCity::perturb() withcity_scatter St dDev

void City::nmutate()
» CalsCity::perturb() withcity_nutati onSt dDev

void City::xover()
» Setsitsx andy coordinates based on the corresponding means of the x and y

coordinates of the two cities passed in as parameters, and then offset using
city_xover St dDev

cl ass Tour

voi d Tour::reset ()
» Resets member variables

int Tour::visited()
» Returns whether or not the city passed in as a parameter has been visited

void Tour::visit()
» Viditsthe city passed in as a parameter and adds it to the tour

int Tour::findQbjective()
» Returnsthe length of the tour

voi d Tour: :read()
> Readsin atour from afile



» Readsin preamble, which contains information about the rest of the tour file
» Readsinthecitiesand visitseach one asitisreadin

cl ass EdgeSet

EdgeSet : : EdgeSet ()
» CalsEdgeSet: :reset () onthe EdgeSet

voi d EdgeSet::reset()
» Reinitializes member variables

voi d EdgeSet: : add()
» Addsthe edge passed in as a parameter to the Edge Set

Edge EdgeSet::renove()
» Returns the edge specified by the parameter
» Swaps the edge specified by the parameter with the last edge in the EdgeSet in
order to keep it around for later display

I nt EdgeSet::firstLeaf()
» Returnsthefirst vertex of degree 1 (i.e., the first leaf)

voi d EdgeSet::iterator()
» Reinitidizestheiterator of the Edge Set

» FillsEdgeSet : : sequence[ ] with randomly ordered vertices from the
EdgeSet

» ReinitiadizesEdgeSet : : sequencer

i nt EdgeSet: : next Edge()
» Returns the next edge from the iterator

cl ass EdgeNode

voi d EdgeNode: : refresh()

» Setsthe vertices of EdgeNode: : edge to the two cities passed in as parameters

» SetsEdgeNode: : cost to the distance between the two cities passed in as
parameters

cl ass EdgeQueue

EdgeQueue: : EdgeQueue()
» Creates an EdgeNode for each edge from one city to any other city and adds it to
EdgeQueue: : edgenodes



» HeapifiesEdgeQueue: : edgenodes

voi d EdgeQueue: : heapi fy()
» Recursively converts EdgeQueue: : edgenodes into a heap sorted by cost

Edge EdgeQueue: :renove()
» Returns an Edge removed from EdgeQueue: : edgenodes and reheapifies the
rest of the heap

cl ass Edge

cl ass I nci dent Node

I nci dent Node *1 nci dent Node: : checkout ()

» Returnsthefirst removed | nci dent Node from the linked list pointed to by
I nci dent Node: : first

voi d | nci dent Node: : checki n()
» Addsthel nci dent Node passed in as a parameter to the top of the linked list
pointed to by | nci dent Node: : first

cl ass Range

cl ass St dDev

void StdDev: : | oad()
» SetsSt dDev: : x and St dDev: : y to the two parameters passed in, respectively

class VertexPartition

void VertexPartition::VertexPartition()

» SetsVertexPartition::nVertices totheparameter passedin

» FillsVertexPartition::sets[] withnumbersfromO to
VertexPartition::nVertices - 1 (i.e,eachvertex belongsonly toitsown
set in the partition at first)

» SetsVertexPartition::kardtoVertexPartition::nVertices

int VertexPartition::card()
» ReturnsVertexPartition:: kard

Int VertexPartition::setContaining()



» Returns the number of the set which contains the vertex passed in as a parameter

void VertexPartition::conbine()
» Combinesthefirst vertex set passed in as a parameter and the second vertex set
passed in as a parameter
» Replaces all occurrences of thefirst vertex set passed in as a parameter in
VertexPartition::set[] withthesecond vertex set passed in asa
parameter
» DecrementsVertexPartition::kard

cl ass I ndividual Array

I ndi vi dual Array: : I ndividual Array()
» Setsl ndividual Array::lengthto0

i nt 1 ndividual Array: : add()
» Addsthel ndi vi dual passedin asaparameter tothel ndi vi dual Array

cl ass GapeString

GapeString: : GapeString()
» Copiesthe string passed in as a parameter to GapeStri ng: : string

char *GapeString::getString()
» ReturnsGapeString::string



