
Parallel Strategies for Stochastic Evolution

Sadiq M. Sait, Khawar S. Khan, Mustafa I. Ali
Computer Engineering Department

King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
{sadiq,khawar,mustafa}@ccse.kfupm.edu.sa

Abstract

The paper discusses the parallelization of Stochastic
Evolution metaheuristic, identifying effective paralleliza-
tion for a distributed parallel environment. Multiobjective
VLSI cell placement is used as an optimization problem. A
comprehensive set of parallelization approaches are tested
and an effective strategy is identified in terms of two un-
derlying factors: workload division and the effect of paral-
lelization on metaheuristic’s search intelligence. The strate-
gies are compared with parallelization of another similar
evolutionary metaheuristic called Simulated Evolution. The
role of the two mentioned underlying factors is discussed in
parallelization of stochastic evolution, the parallelized ver-
sion of which has not been presented before.

1. Introduction

Evolutionary metaheuristics are being increasingly ap-
plied to a variety of combinatorial optimization problems,
especially with vast multi-modal search spaces, which can-
not be efficiently navigated by deterministic algorithms.
Stochastic evolution (StocE) [6] and Simulated Evolution
(SimE) [5] are evolutionary iterative search algorithms,
similar to other well known iterative non-deterministic
heuristics such as Simulated Annealing (SA), Genetic Algo-
rithms (GA) and Tabu Search (TS) [8]. The two algorithms
are inspired by the alleged behavior of biological processes,
however, they differ fundamentally in how the principles of
evolution are applied. Both algorithms have demonstrated
improvements in runtime and solution quality over the more
established heuristics when applied to the same problem in-
stance [9].

Parallelization of metaheuristics aims to solve complex
problems and traverse larger search spaces in a reasonable
amount of time [4, 2]. However, when parallelizing meta-
heuristics, not only speed-ups are important but also the
maximum achievable qualities. Therefore, to achieve any
benefit from parallelization requires not only a proper par-

titioning of the problem for a uniform distribution of com-
putationally intensive tasks, but more importantly, a thor-
ough and intelligent traversal of a complex search space for
achieving good quality solutions. The tractability of the for-
mer issue is largely dependent on parallelization of both the
cost computation and perturbation functions while for the
latter issue the interaction of parallelization strategy with
the intelligence of the heuristic must be considered, as it
directly affects the final solution quality obtainable, and in-
directly the runtime due to its effect on algorithm’s con-
vergence. Parallelization of metaheuristics is an actively
researched topic [4, 2]. However, unlike other heuristics,
parallelization of StocE has not been studied before. In this
work, parallel algorithms for StocE are presented, consider-
ing a spectrum of parallel models [4]. The approaches are
also compared with parallel SimE due to the similarities in
both heuristics [7]. VLSI cell placement is used as an opti-
mization problem and the goal is to achieve scalable speed-
ups using a low-cost cluster computing environment. The
best parallel strategies for both SimE and StocE are com-
pared with respect to the effectiveness of parallelization in
terms of workload division and the effect of parallelization
on metaheuristic’s intelligence.

This paper is organized as follows: Section 2 briefly dis-
cusses the optimization problem and costs functions. This
is followed by a description of StocE and SimE algorithms
in Section 3 and the sequential algorithms’ runtime analy-
ses in Section 4. Section 5 presents the proposed parallel
strategies, experimental results and comparison. Section 6
concludes the paper.

2. Optimization Problem and Cost Functions

This paper addresses the problem of VLSI standard cell
placement with the objectives of minimizing wirelength,
power consumption, and timing performance (delay), while
considering the layout width as a constraint. The intercon-
nect wirelength of each net in the circuit is estimated us-
ing Steiner tree and then total wirelength is computed by
adding the individual estimates, i.e., Costwire =

∑
i∈M li,

Seventh International Conference on Intelligent Systems Design and Applications

0-7695-2976-3/07 $25.00 © 2007 IEEE
DOI 10.1109/ISDA.2007.71

813

Seventh International Conference on Intelligent Systems Design and Applications

0-7695-2976-3/07 $25.00 © 2007 IEEE
DOI 10.1109/ISDA.2007.71

813

where li is the wirelength estimation for net i and M de-
notes total number of nets in circuit. The power consump-
tion pi of a net i in a circuit is calculated as pi � li · Si,
where, Si is the switching probability of net i. The cost
function for estimate of total power consumption in the cir-
cuit is Costpower =

∑
i∈M pi =

∑
i∈M (li · Si). The

delay cost is determined by the delay along the longest
path in a circuit. The delay cost is determined by the de-
lay along the longest path in a circuit. The delay Tπ of a
path π consisting of nets {v1, v2, ..., vk}, is expressed as
Tπ =

∑k−1
i=1 (CDi + IDi), where CDi is the switching

delay of the cell driving net vi and IDi is the interconnect
delay of net vi. The delay cost function can be written as
Costdelay = max{Tπ}. Width cost is the maximum of all
the row widths in the layout. Formally, width constraint is
expressed as Width−wavg ≤ α×wavg , where α is a con-
stant and wavg is the minimum possible layout width. Fi-
nally, to integrate these multiple conflicting objectives into
a scalar cost function, fuzzy logic is used in this work [9].
The resulting quality measure for a solution s is denoted as
µ(s) and is a value between 0 and 1, with 1 representing an
optimal solution.

3. Evolutionary Metaheuristics

3.1. Stochastic Evolution (StocE)

The StocE algorithm seeks to find a suitable location
S(m) for each movable element m ∈ M , which eventu-
ally leads to a lower cost of the whole state S ∈ Ω, where
Ω is the state space. A general outline of the StocE algo-
rithm is given in Figure 1. The inputs to the StocE algorithm
are, an initial state (solution) S0, an initial value p0 of the
control parameter p, and a stopping criterion parameter R.
Throughout the search, S holds the current state (solution),
while BestS holds the best state. If the algorithm gener-
ates a worse state, a uniformly distributed random num-
ber in the range [−p, 0] is drawn. The new uphill state is
accepted if the magnitude of the loss is greater than the
random number, otherwise the current state is maintained.
Therefore, p is a function of the average magnitude of the
uphill moves that the algorithm will tolerate. The parameter
R represents the expected number of iterations the StocE al-
gorithm needs until an improvement in the cost with respect
to the best solution seen so far takes place, that is, until
CurCost≤BestCost. If R is too small, the algorithm will
not have enough time to improve the initial solution, and
if R is too large, the algorithm may waste too much time
during the later generations. Experimental studies indicate
that a value of R between 10 and 20 gives good results [6].
Finally, the variable ρ is a counter used to decide when to
stop the search. ρ is initialized to zero, and R−ρ is equal to
the number of remaining generations before the algorithm

AlgorithmStocE(S0, p0, R);
Begin

BestS= S = S0;
BestCost= CurCost= Cost(S);
p = p0;
ρ = 0;
Repeat

PrevCost= CurCost;
S = PERTURB(S, p);

/* perform a search in the neighborhood of s */
CurCost= Cost(S);
UPDATE(p, PrevCost, CurCost);

/* update p if needed */
If (CurCost< BestCost) Then

BestS=S;
BestCost= CurCost;
ρ = ρ − R;

/* Reward the search with R more generations */
Else

ρ = ρ + 1;
EndIf

Until ρ > R
Return (BestS);

End

Figure 1. The StocE algorithm.

stops.

After initialization, the algorithm enters a Repeat loop
Until the counter ρ exceeds R. Inside the Repeat body,
the cost of the current state is first calculated and stored in
PrevCost. Then, the PERTURB function (Figure 2) is in-
voked to make a compound move from the current state S.
PERTURB scans the set of movable elements M accord-
ing to some apriori ordering and attempts to move every
m ∈ M to a new location l ∈ L. For each trial move,
a new state S′ is generated, which is a unique function
S′ : M → L such that S′(m) �= S(m) for some mov-
able object m ∈ M . To evaluate the move, the gain func-
tion Gain(m) = Cost(S) − Cost(S′) is calculated. If the
calculated gain is greater than some randomly generated in-
teger number in the range [−p, 0], the move is accepted and
S′ replaces S as the current state, assuming a minimiza-
tion problem. Since the random number is ≤ 0, moves
with positive gains are always accepted. After scanning all
the movable elements m ∈ M , the MAKE STATE routine
makes sure that the final state satisfies the state constraints.
If the state constraints are not satisfied then MAKE STATE
reverses the fewest number of latest moves until the state
constraints are satisfied. This procedure is required when
perturbation moves that violate the state constraints are ac-
cepted.

The new state generated by PERTURB is returned to
the main procedure as the current state, and its cost is as-
signed to the variable CurCost. Then the routine UPDATE
is invoked to compare the previous cost (PrevCost) to the
current cost (CurCost). If PrevCost= CurCost, there is
a good chance that the algorithm has reached a local mini-
mum and therefore, p is increased by pincr to tolerate larger
uphill moves, thus giving the search the possibility of es-
caping from local minima. Otherwise, p is reset to its initial

814814

FUNCTION PERTURB(S, p);
Begin

ForEach (m ∈ M) Do
/* according to some apriori ordering */

S′ = MOV E(S, m);
Gain(m) = Cost(S) − Cost(S′);
If (Gain(m) > RANDINT (−p, 0)) Then

S = S′

EndIf
EndFor;
S =MAKE STATE(S);

/* make sure S satisfies constraints */
Return (S)

End

Figure 2. The PERTURB function.

value p0.
At the end of the loop, the cost of the current state S is

compared with the cost of the best state BestS. If S has a
lower cost, then the algorithm keeps S as the best solution
(BestS) and decrements R by ρ, thereby rewarding itself
by increasing the number of iterations (allowing the search
to live R generations more). This allows a more detailed
investigation of the neighborhood of the newly found best
solution. If S, however, has a higher cost, ρ is incremented,
which is an indication of no improvements.

3.2. Simulated Evolution (SimE)

The structure of the SimE algorithm is shown in Fig-
ure 3. SimE assumes that there exists a solution Φ of a
set M of n (movable) elements or modules. The algorithm
starts from an initial assignment Φinitial, and then, follow-
ing an evolution-based approach, it seeks to reach better as-
signments from one generation to the next by perturbing
some ill-suited components while retaining the remaining
ones. A cost function Cost associates with each assign-
ment of movable element mi a cost Ci. The cost Ci is used
to compute the goodness (fitness) gi of an element mi, for
each mi ∈ M . The goodness measure must be strongly re-
lated to the target objective of the given problem. Hence in
SimE approach, the quality of a solution can be measured
as the quality of all its constituent elements.

The algorithm has one main loop consisting of three ba-
sic steps, Evaluation, Selection, and Allocation. The three
steps are executed in sequence until the solution average
goodness reaches a maximum value, or no noticeable im-
provement to the solution fitness is observed after a number
of iterations.

The Evaluation step consists of evaluating the goodness
gi of each element mi of the solution Φ. The goodness
measure must be a single number expressible in the range
[0, 1]. It is generally defined as gi = Oi

Ci
, where Oi is

an estimate of the optimal cost of element mi, and Ci is
the actual cost of mi in its current location. Since three
objectives are being optimized, a multiobjective goodness
measure developed in [9] is used.

ALGORITHM Simulated Evolution(B, Φinitial)
NOTATION
B: Bias Value. Φ: Complete solution.
mi: Module i. gi: Goodness of mi.
ALLOCATE(mi, Φi): Allocates mi in partial solution Φi

Begin
INITIALIZATION;
Repeat

EVALUATION:
ForEach mi ∈ Φ evaluate gi;

SELECTION:
ForEach mi ∈ Φ DO

begin
IF Random > Min(gi + B, 1)
THEN

begin
S = S ∪ mi; Remove mi from Φ

end
end

Sort the elements of S
ALLOCATION:

ForEach mi ∈ S DO
begin

ALLOCATE(mi, Φi)
end

Until Stopping Condition is satisfied
Return Best solution.
End (Simulated Evolution)

Figure 3. The SimE algorithm.

The second step of the SimE algorithm is Selection. Se-
lection takes as input the solution Φ together with the es-
timated goodness of each element, and a bias value B to
compensate for non-ideal nature of the calculated goodness
values. It partitions Φ into two disjoint sets; a selection set
S and a partial solution Φp of the remaining elements of
the solution Φ. Each element in the solution is considered
separately from all other elements. The probability of as-
signing an element mi to the set S is based on its goodness
gi. The selection operator has a non-deterministic nature,
i.e, an individual with a high goodness (close to one) still
has a non-zero probability of being assigned to the selec-
tion set S. It is this element of non-determinism that gives
SimE the capability of escaping local minima. In this work,
a biasless selection function developed in [9] has been used.

Allocation is the SimE operator that has the most impor-
tant impact on the quality of solution. Allocation takes as
input the set S and the partial solution Φp and generates a
new complete solution Φ′ with the elements of set S mu-
tated according to an allocation function Allocation [8].
The goal of Allocation is to favor improvements over the
previous generation, without being too greedy. A variety
of heuristics can be used in this step [5]. In this work, the
‘sorted individual best fit method’ [9] has been used.

4. Sequential Algorithms’ Analyses

Prior to formulating parallelization strategies, the pro-
filing of sequential algorithms is presented to identify the
time intensive routines and performance bottlenecks, thus
serving as a basis to engineer effective parallel approaches.
The profiling was done using the GNU ‘gprof’ utility. For

815815

sequential StocE, the percentage of time taken by problem-
specific cost computations versus all remaining functions is
documented in columns 4 and 5 of Table 1. The profiling
results clearly demonstrate that more than 90% of time is
spent in the cost function calculations of wirelength, power
and delay, thereby identifying where the computational ef-
fort is concentrated. For the sequential SimE, on average
98.85% of time was spent in the allocation function alone.
Thus, it is obvious that for the given problem instance with
the ‘sorted individual best-fit’ method, allocation routine
heavily influences the runtime of SimE algorithm.

Table 1. Sequential algorithms’ runtime pro-
file.

StocE SimeE
Circuit # of # of Cost Others Allocation Others

Cells Rows Functions Function
s1494 661 11 93.1 6.8 97.6 2.3
s3330 1961 17 92.9 7.1 99.3 0.6
s5378 2993 22 93.4 6.6 99.2 0.7
s9234 5844 22 92.9 7.1 99.3 0.4

5. Parallel Algorithms and Experiments

Given the StocE profiling results, an intuitive approach is
to parallelize the cost functions to achieve a low level paral-
lelization. However, due to the nature of data dependencies
involved, this strategy is not suited to a coarse grained par-
allel environment, where node-to-node communications are
high. This was confirmed by the results obtained when this
strategy was applied to parallelize SimE for the same prob-
lem [7].

Cooperative parallel searches is another parallelization
approach that can be attempted, where parallel threads each
running a complete StocE/SimE process cooperate with
each other (by exchanging good solutions) to quickly con-
verge. Parallel search aims to achieve speed-up by enhanc-
ing the search behavior rather than workload division. This
type of parallelization has reportedly worked well with SA
(Asynchronous Multiple Markov Chains) [3]. A similar ap-
proach was applied to parallelize StocE but very limited
speedups, if any, were obtained (the results are not pre-
sented due to space constraint). The reason is that each
StocE thread performs a compound move that optimizes
the solution to a large extent without any cooperation. Fur-
thermore, the self-rewarding criteria of StocE, triggered on
finding good solutions, relaxes the termination criteria (Sec-
tion 3.1). Due to this, each processor keeps attempting to
further improve the solution by itself without cooperation
from other processors. The net effect is no noticeable ben-
efit from cooperative parallel searches. It should be noted
that similarly poor results were obtained for SimE with this
strategy [7].

A third kind of parallelization is one that divides the so-
lution into independent domains, each to be operated in par-

Figure 4. Rows Division

Algorithm Parallel StocE Master Process
Notation
(* CurS is the current solution. *)
(* Φs is the partition selected to work upon. *)

Begin
Read User Input Parameters()
Read Input Files
Construct Initial Placement
Repeat

ParFor
Slave Process(CurS)
(* Broadcast Cur Placement. *)

EndParFor
S = PERTURB(S, p);
/* perform a search in the restricted neighborhood of s */
(* For each slave process. *)
ParFor

Receive Partial Solutions
EndParFor
Make Complete Solution
CurCost= Cost(S);
UPDATE(p, PrevCost, CurCost);
/* update p if needed */
If (CurCost< BestCost) Then

BestS=S;
BestCost= CurCost;
ρ = ρ − R;
/* Reward the search with R more generations */

Else
ρ = ρ + 1;

EndIf
Until ρ > R

Return (Best Solution)
End. (*Master Process*)

Figure 5. Outline of master process for rows
division parallel StocE.

allel [4]. This strategy seems attractive as it distributes the
total cost calculations among the processors. It attempts
reduction in workload by assigning a non-overlapping sub-
set of rows to each processor and thus it is termed as rows
division strategy. A similar parallelization approach was re-
ported for SimE [5]. In this approach, every node is re-
sponsible for perturbing cells only within its assigned sub-
set of rows in the overall solution. Two different row allo-
cation patterns are alternated between the successive itera-
tions. This ensures that a cell has the freedom to move to
any place in the solution. Figure 4 shows the allocation pat-
tern of twelve rows among three processors. The left and
right patterns show the distributions in odd and even num-
bered iterations, respectively.

For the domain decomposition parallel SimE, the ele-

816816

Algorithm Parallel StocE Slave Process(CurS, Φs)
Notation
(* CurS is the current solution. *)
(* Φsis the partition caculated by the slave s to work upon. *)
(* mi is module i in Φs. *)

Begin
Read User Input Parameters()
Read Input Files
Construct Initial Placement
Repeat
Receive Placement

S = PERTURB(S, p);
/* perform a search in the restricted neighborhood of s */

Send Partial Solution
Until Fitness Value not achieved

End. (*Slave Pocess*)

Figure 6. Outline of slave process for rows di-
vision parallel StocE.

ments are partitioned row wise among the m processors.
A processor s, 1 ≤ s ≤ m would be assigned a subset Φs

of the solution Φ. Then, each processor s will evaluate the
goodness of each element in Φs and run the Selection step
to partition Φs into a selection subset Ss and a partial so-
lution of remaining cells Φp

s (See the serial algorithm in
Figure 3 for comparison). Figures 5 and 6 show the par-
allel StocE algorithms for the master and slave processes,
respectively, for the rows division approach. Each proces-
sor starts with the same initial solution and calls the PER-
TURB function on its allocated subset of non-overlapping
rows. The placement generated by a node is termed as a
partial solution. These are sent to the master, which com-
bines all the partial placements to generate a new complete
solution. The master then evaluates this new solution and
depending on the new cost, either increments rho or decre-
ments it by R. This new solution is then again broadcasted
to all slaves. This process continues till the target fitness
value is achieved or termination criteria is met. It should be
noted that the search behavior of the parallel algorithm will
differ from the serial algorithm owing to this partitioning.

The parallel programs were written in C using the MPI li-
brary (MPICH 1.2.5). A dedicated cluster of eight 2.8 GHz
Pentium 4 machines, with 512MB of RAM, connected with
100 Mbps Ethernet, running Fedora Core Linux was used.
Only the large ISCAS-89 benchmarks circuits are used to be
able to observe gain from parallelization. Due to space con-
straints, results for four benchmark circuits are presented.
Up to 5 processors are used as no significant gains are ob-
served beyond this number due to the size of benchmarks.
The results of rows division strategy for StocE and SimE are
given in Table 2 and Table 3, respectively. The µ(s) values
represent the highest solution quality achieved by sequen-
tial algorithm. Due to the relatively small size of benchmark
s1494, no gains are observed beyond 2 processors. In case
of parallel SimE, since there is a degradation in the high-
est µ(s) values achieved with increase in processors, the
highest µ(s) achieved and the corresponding time is given
for different processor counts in Table 3. Also, the row la-

beled ’Common’ gives the time to achieve the common low-
est quality. As can be seen, for parallel StocE the domain
decomposition approach delivers significant runtime reduc-
tions while achieving the target sequential qualities, espe-
cially for larger circuits. On the other hand, a domain de-
composition parallel SimE implementation achieves lower
than highest achievable sequential solution qualities along
with a degradation in maximum solution qualities achiev-
able with increase in processors.

Table 2. Results of rows division parallel
StocE.

Circuit µ(s) Serial Runtimes for parallel StocE
Name Time p=2 p=3 p=4 p=5
s1494 0.6 60 49 55 112 -
s3330 0.7 1087 355 214 190 186
s5378 0.65 1047 495 365 311 305
s9234 0.65 2140 1261 917 704 616

Table 3. Results for SimE Rows Division
Strategy.

Circuit Sequential Runtimes for parallel SimE
p=2 p=3 p=4 p=5

s1494 µ(s) 0.54 0.54 0.54 0.54 0.54
Time 368 111 52 62 179

Common 368 111 52 62 179
s3330 µ(s) 0.7 0.68 0.68 0.63 0.54

Time 23695 30342 20533 13194 6644
Common 1900 5632 3776 10634 6644

s5378 µ(s) 0.7 0.67 0.64 0.62 0.6
Time 44701 76650 43803 20253 18493

Common 2750 4691 5573 9846 18493
s9234 µ(s) 0.67 0.61 0.61 0.59 0.55

Time 125311 152424 71751 61864 39250
Common 5774 19498 13000 14000 39250

Figure 7 depicts a comparison between parallel StocE
and SimE implementations using the s9234 ISCAS-89
benchmark. The focus is on the speed-ups for the best fit-
ness values achieved by the two algorithms. The speed-up is
defined as follows [1]: Let t1 denote the worst case running
time of the fastest known sequential algorithm for the prob-
lem, and let tp denote the the worst case running time of the
parallel algorithm using p processors. Then, the speedup
provided by the parallel algorithm is given by S(1, p) = t1

tp
.

The speedups have been calculated using the best sequen-
tial time available, which is that of sequential StocE. As can
be seen in Figure 7, StocE rows division outperforms the
SimE rows division by achieving the target solution qual-
ity of 0.65 in 616 seconds with 5 processors, while SimE
achieves a far lesser quality of 0.55 in 39250 seconds with
the same number of processors.

The results obtained with parallel StocE and SimE us-
ing domain decomposition strategy can be analyzed from
the aspects of algorithm’s intelligence and workload divi-
sion. A parallel strategy may effect the metaheuristic’s ‘de-
cision variables’, as in case of domain decomposition, and

817817

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Number of Processors

T
im

e
(s

ec
)

Time Reduction Trend (s9234)

StocE (Fixed Row−Division, 0.65)
SimE (Fixed Row−Division, 0.55)

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

Number of Processors

S
pe

ed
up

Speedup Trend (s9234)

StocE (Fixed Row−Division, 0.65)
SimE (Fixed Row−Division, 0.55)

Figure 7. StocE vs SimE. The left and right
figures show the average run-times trend and
average speedup, respectively.

this change can either constrain the search or enhance it. In
this respect, if a parallel strategy constrains or at best main-
tains the sequential algorithm’s search behavior, the only
way to achieve any speed-up is through effective workload
division. In case of strategies that enhance the search behav-
ior, speed-ups are possible without workload division, while
workload division can lead to further speed-ups in this case.

In case of domain decomposition based parallel StocE
and SimE, there is a significant workload division by di-
viding the solution among multiple processors because of
the parallelization of the perturbation functions in both the
cases. However, the consequence of dividing the solution is
that each processor only has a limited freedom of cell move-
ment, which reduces even further with increasing number
of processors on a given number of total rows. This af-
fects the optimum cell movement, making it more difficult
for cells to reach their optimal locations in the same num-
ber of iterations as the sequential algorithm. Also, some
error in optimum cell position determination is introduced
as each processor considers the cells outside its partition as
not changing positions. Owing to the largely stochastic na-
ture of PERTURB operation, the solution distribution does
not negatively effect the algorithm’s intelligence. However,
in case of SimE, the Selection and Allocation of elements
is more of a deterministic process rather than stochastic as
it is determined by the goodness values of each element.
In SimE, the parallelization of Selection and Allocation op-
erators constrains the algorithm’s intelligence, resulting in
lower than sequential algorithm solution qualities with par-
allelization and a degradation of qualities with increasing
the subdivisions (using more processors).

6. Conclusions

This paper discussed parallelization of Stochastic
Evolution applied to a multiobjective VLSI cell placement
optimization problem. A comprehensive set of parallel
models were considered and the strategies were compared
with parallel Simulated Evolution applied to the same
optimization problem. It was found that a low-level
parallelization was not applicable because of the structure
of optimization cost functions. Also, a parallel search
strategy was not found useful for StocE parallelization
because of nature of StocE heuristic. The best results
were obtained with a domain decomposition approach
using rows division, and furthermore, these results far
exceeded the best results obtained using a similar parallel
SimE approach. The strategy was compared based on two
underlying principles of workload division and interaction
of parallelization strategy with a heuristic’s search intelli-
gence, discussing why parallel StocE achieved an effective
parallelization compared to parallel SimE for the same
optimization problem.

Acknowledgments: The authors would like to thank
King Fahd University of Petroleum & Minerals, Saudi
Arabia, for support under project code # COE/CELL
PLACE/263.

7. References

[1] S. G. Akl. Parallel Computation: Models and Methods.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1997.

[2] E. Alba. Parallel Metaheuristics: A New Class of Algorithms.
Wiley-Interscience, 2005.

[3] J. A. Chandy, S. Kim, B. Ramkumar, S. Parkes, and P. Baner-
jee. An Evaluation of Parallel Simulated Annealing Strategies
with Application to Standard Cell Placement. IEEE Trans on
CAD of IC Systems, 16(4):398 – 410, 1997.

[4] T. G. Crainic and M. Toulouse. Handbook of Metaheuris-
tics, volume 57, chapter Parallel Strategies for Metaheuristics,
pages 465 – 514. Kluwer Academic Publishers, 2003.

[5] R. M. Kling and P. Banerjee. ESP: Placement by Simulated
Evolution. IEEE Trans on CAD, 8(3):245–256, 1989.

[6] Y. G. Saab and V. B. Rao. Combinatorial Optimization by
Stochastic Evolution. IEEE Trans on CAD of IC Systems,
10(4):525 – 535, 1991.

[7] S. M. Sait, M. I. Ali, and A. M. Zaidi. Evaluating Parallel
Simulated Evolution Strategies for VLSI Cell Placement. In
20th Intl Parallel and Distributed Processing Sym, 2006.

[8] S. M. Sait and H. Youssef. Iterative Computer Algorithms
with Applications in Engineering: Solving Combinatorial
Optimization Problems. IEEE Computer Society Press, 1999.

[9] S. M. Sait, H. Youssef, J. A. Khan, and A. El-Maleh. Fuzzi-
fied Iterative Algorithms for Performance Driven Low Power
VLSI Placement. In ICCD ’01: Proceedings of the Intl Conf
on Computer Design: VLSI in Computers & Processors, p
484, 2001.

818818

