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ABSTRACT 
 
Heat and mass transfer characteristics of the self-similar boundary layer flows induced by continuous 
surfaces stretched with rapidly decreasing power law velocities 1m,xU m

w −<∝ are considered for 

mixed convection flow. The effect of various governing parameters, such as Prandtl number Pr, 
temperature exponent n, dimensionless injection/suction velocity fw,, and the mixed convection 
parameter λ = Gr/Re2 are studied.  These parameters have great effects on velocity and temperature 
profiles, heat transfer coefficient, and skin friction coefficient at the moving surface.  Results show that 
similarity solutions exist only where the condition n = 2m –1 is satisfied.  Critical values of λ, Nu/Re0.5 
and Cf Re0.5 are obtained for predominate natural convection for different Prandtl numbers at m = -2 
and n = -5.  Results also show that the effect of buoyancy is remarkable for weak than for strong 
suction.  Furthermore, for fw < -3.5 as Pr increases Nu/Re0.5 increases and for -2.9 ≥ fw ≥ -3.5 there 
are critical Prandtl numbers for which as Pr increases Nu/Re0.5 increases.  Finally, critical values of 
λ, Cf Re0.5  are also obtained for predominate natural convection.   
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 الملخص

تم دراسة انتقال الحرارة والكتلة في الطبقة الجدارية الناتجة بواسطة سطح مستمر السحب بسرعة تناقصية طبقاً لقانون 

راسة تأثير العوامل المختلفة مثل رقم تم د.   في حالة انتقال الحرارة المختلط١–أقل من m حيث  Um∝ xm القوى 

 Gr/Re2  λ = عديمة الوحدات ومعامل الحمل المختلطfw وسرعة الحقن أو الشفط n وأس درجة الحرارة Prبراندل 
هذه العوامل لها تأثير كبير على توزيع السرعة ودرجات الحرارة ومعامل انتقال الحرارة .  التي تتحكم في هذه الدراسة

  تم .  n = 2m - 1وقد بينت النتائج أن طريقة الحلول المتماثلة موجودة في حالة. حتكاك على السطحو معا مل الا

   في حالة ظهور تأثير الحمل الطبيعي لقيم براندل المختلفة,λ    Nu Re-0.5, Cf Re0.5الحصول على القيم الحرجة لـ
 الطفو ملحوظ في حالة الشفط الضعيف عنه في حالة كما أوضحت النتائج أيضاً أن تأثير. m = - 2, n = -5في حالة 

 يوجد fw > -3.5  ولكن لـ fw < -3.5 في حالة Pr  يزداد كلما زاد Nu Re-0.5كما بينت النتائج أن  . الشفط القوي

وأخيراً تم إيجاد قيم حرجة . Nu Re-0.5 م براندل التي عندها إذا زاد رقم براندل يزداد ـة لرقـم حرجـاك قيـهن

 .             التي عندها يكون تأثير الحمل الطبيعي سائداً,Cf Re0.5,  λلـ

 



Vol. 5.  592 Mohamed E. Ali 

 

List of symbols 
 
C constant 
Cfx local skin friction coefficient 
f dimensionless stream function 
Gr Grashof number [=gβ(Tw - T∞) x3 / ν2] 
k thermal conductivity 
m velocity exponent parameter 
n temperature exponent parameter 
Nu Nusselt number [=hx/k] 
Pr Prandtl number [ν/α] 
Re Reynolds number [Uox(m+1)/ν] 
T temperature 
u velocity component in x-direction 
Uo constant 
v velocity component in y-direction 
x coordinate in direction of surface motion 
y coordinate in direction normal to surface motion 
 
Greek symbols 
α thermal diffusivity 
η dimensionless similarity variable 

 [ ( ) ( )[ ] yx2/U1m 2
1m

2/1
o

−

ν−= ] 

θ dimensionless temperature [=(T-T∞)/(Tw - T∞)] 
ν kinematics viscosity 
 
Subscripts 
w condition at the surface 
∞ condition at the ambient medium 
 

1.  INTRODUCTION 

Continuous surfaces moving through a quiescent fluid medium are encountered in several 
industrial-manufacturing processes.  Such processes are hot rolling, wire drawing, metal and 
polymer extrusion, crystal growing, continuous casting, glass fiber and paper production, 
drawing of plastic films, etc. [Altan et al., 1979], [Fisher 1976], and [Tadmor and 
Klein,1988].  Both the kinematics of stretching and the heat transfer during such processes 
have a decisive influence on the quality of the final products.  
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Following the pioneering work of Sakiadis (1961), a rapidly increasing number of papers 
investigating different aspects of this problem have been published. For a list of the key 
references of a vast literature concerning this subject one should refer to the recent papers by 
Ali (2000, 1996, 1995, 1994), and by Ali and Al-Yousef (1998, 1997).  The great majority of 
the theoretical investigations in this field describe the heat and mass flow in the vicinity of the 
continuous stretching surface with the aid of similarity solutions of the two-dimensional 
boundary layer equations.  The kinematics’ driving conditions of the real processes have been 
modeled in most cases by different power-law variations of the stretching velocity 

( ) m
ow xUxU ⋅= . The stretching surface is considered either as an impermeable [Sakiadis 

(1961), Ali (1994), Magyari and Keller (1999a, b), Tsou et al (1967), Crane (1970), Vleggaar 
(1977), Soundalgekar and Murty (1980), Grubka and Bobba (1985)] or as a permeable surface 
[Ali (1996, 1995), Ali and Al-Yousef (2001, 1998, 1997), Al-Sanea and Ali (2000), Erickson 
and Fox (1966), Gupta and Gupta (1977), Chen and Char (1988), and Elbashbeshy (1998)] 
with a lateral mass flux of velocity ( ) ( )  xcxV m

w
2/1−⋅=  where 0<c  corresponds to the suction 

and 0>c  to the injection of the fluid. As shown by Banks (1983), in the range 
2/11 −≤<− m  of the stretching exponent the flow boundary value problem (and thus also 

the heat transfer problem) does not admit similarity solutions if the wall is impermeable 
( 0=c ). Recently it has been shown by Magyari and keller (2000a, b) that if 0<c , the 
similarity solution also persists for 2/1−=m . The proof has been given by deducing the 
corresponding exact solution in an implicit analytic form. 
 
The rapidly decreasing stretching velocities 1−<m  should be relevant for several industrial 
manufacturing processes as e.g. the drawing of plastic films from a viscous molten mass. In 
this case the film just issuing from the slot ( x =small) is hot and thus rapidly stretching. For 
increasing x  however, it hardens in the colder ambient progressively and, as a consequence, 
the local stretching velocity m

w xU ∝  decreases rapidly. This case has been investigated 

recently by Magyari et al (2001) and it was obtained that, for m < -1 the boundary layer 
equations admit self-similar solutions only if a lateral suction applied and the dimensionless 
suction velocity fw < 0 must be strong enough.  It was also found that the flow problem admits 
a non-denumerable infinity of solutions corresponding to the values of the dimensionless skin 
friction at the surface for a finite interval.  The paper includes several examples which 
illustrate the dependence of the heat and fluid flows induced by surfaces stretching with 
rapidly decreasing velocities on the physical parameters fw, m, n, and Pr. 
 
The aim of the present paper is to extend the work of Magyari et al (2001) when the buoyancy 
force exists and the surface is moving vertically upward with a power law velocity for m = -2, 
pr = 0.1, 1, and 5 and for fw = -3, -5, -7, and –10.  
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The mathematical formulation of the problem is presented in section (2), followed by the 
analytical solutions in section (3).  Numerical solution procedure is presented in section (4) 
and results and discussion are reported in (5) and finally conclusions are given in section (6). 

2. MATHEMATICAL ANALYSIS 

Consider the steady two dimensional motions of mixed convection boundary layer flow from 
a vertically moving upward surface with suction or injection at the surface.  For 
incompressible viscous fluid environment with constant properties using Boussinesq 
approximation, the equations governing this convective flow are  
     

   
∂
∂

∂
∂

u
x

v
y

+ = 0     (1) 

   ( )u u
x

v u
y

g T T u
y

∂
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∂
∂

β ν
∂
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+ = − +∞
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y
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∂

∂
+ =

2

2      (3) 

subject to the following boundary conditions: 
 

   
∞=∞=

==∞=
T),x(T),x(T)0,x(T

)x(v)0,x(v,0),x(u),x(U)0,x(u

w

ww  (4) 

 

Figure 1.  Schematic of the induced boundary layers close to a rapidly decreasing vertical surface 
moving with rapidly decreasing velocity. 
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The x coordinate is measured along the moving upward surface from the point where the 
surface originates, and the y coordinate is measured normal to it, as shown schematically in 
Fig. 1.  u and v are the x and y components of the velocity field, respectively and vw(x) 
represents the lateral injection/suction velocity of the ambient fluid. Equations (1-3) admit 
similarity solutions only if the stretching velocity Uw(x) and the temperature difference 

∞− T)x(Tw as functions of the wall coordinate x are either of the power law type or of the 

exponential form.  In the present paper the power law type is used for the case of m < -1 of the 
rapidly decreasing power law velocities when the buoyancy force exists.  This range of the 
stretching velocities should be relevant for the drawing of plastic films from a viscous molten 
mass (see Magyari et al (2001) for the case of no buoyancy force).  The usual similarity 
solutions arise when 
 
  )(xCT)y,x(T),(fxU)y,x(u nm

o ηθ=−η′= ∞    (5)  

  ( ) ( )[ ] yx2/U1m 2
1m

2/1
o

−

ν−=η      (6) 

 

  
( )





 η′η

+
−

+η





−
ν+

=
−

)(f
1m
1m)(fx

2
U)1m

)y,x(v 2
1m2/1

o   (7) 

Where ′f and θ are the dimensionless velocity and temperature respectively, and η is the 
similarity variable.  Substitution in the governing equations gives rise to the following two-
point boundary-value problem 
 

   0
1m

2f
1m

m2fff 2 =θλ
+

−′
+

+′′−′′′     (8) 

 

   0f
1m

n2fPr =





 θ′

+
−θ′−θ ′′      (9) 

The last term in Eq. (8) is due to the buoyancy force and λ = Gr / Re2 which serves as the 
buoyancy parameter, when λ = 0 the governing equations reduce to the forced convection 
limit given by Magyari et al (2001) for m < -1. However, when λ → ∞  free convection should 
be dominated.  Equations (8-9) are subject to the boundary conditions: 
 
   0)(f,f)0(f,1)0(f w →∞′==′      (10) 

    θ θ( ) , ( )0 1 0= ∞ →      (11) 
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In driving the second of the boundary conditions given by Eq. (10) the horizontal injection or 
suction speed vw  must be a function of the distance (for m ≠ 1) from the leading edge.  
Consequently, v w  for m < -1 is given by: 

   
( ) ( ) )0(fx

2
U1m

)x(v 2/1m
2/1

o
w

+−







 ν−
=    (12) 

The quantity f(0) = fw will be referred to as the dimensionless suction/injection velocity.  
Therefore, fw = 0 corresponds to an impermeable surface, fw < 0 to suction and fw > 0 to 
lateral injection of the fluid through a permeable surface. 
         
Expressions for the local skin friction coefficient, the local Reynolds and Nusselt numbers are 
given by: 
 

( ) ( ) ( )0fx
U

v1m2
C 2/1m

2/1

o
fx ′′⋅⋅







 −
= −      (13) 

     

( ) ( ) ( )0x
v2

U1m
Nu       ,x

v
U

eR 2/1m
2/1

o
x

m1o
x θ′⋅⋅







 −
−== −−−   (14) 

so that the dimensionless quantities 

( )0
2

1m
eR

Nu
2/1

x

x θ′⋅






 −
−=      (15) 

( )[ ] ( ) 0f1m2      ReC 2/1
xfx ′′⋅−=⋅     (16) 

becomes independent of the surface coordinate x  and for m = -2 or for m =2 the above 

quantities reduce to 

  )0(f2ReC),0(
2
1

Re
Nu

xfx
x

x ′′=θ′−=    (17) 

 

It should be mentioned that the above analysis are valid for flows in which the Reynolds 
number is relatively large and in which there is no significant areas of reversed flow since the 
boundary layer approximations are used. 
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3. NUMERICAL SOLUTION PROCEDURE 

The coupled non linear ordinary differential equations (8) and (9) are solved numerically by 
using the fourth order Runge-Kutta method.  Solutions of the differential Eqs. (8) and (9) 
subject to the boundary conditions (10, 11) were obtained for increasing values of λ at each 
constant fw.  At each new fw we start from a known solution of the equations with λ = 0, 
(Magyari et al (2001)) where ′′f (0) and ′θ (0) are known.  For a given value of λ the values 
of ′′f (0)  and  ′θ (0)  were estimated and the differential equations (8) and (9) were integrated 
using Runge-Kutta method until the boundary conditions at infinity ′f and( ) ( )η θ η  decay 
exponentially to zero.  If the boundary conditions at infinity are not satisfied then the 
numerical routine uses a half interval method to calculate corrections to the estimated values 
of ′′f (0) and ′θ (0).  These processes are repeated iteratively until exponentially decaying 
solutions in ′f and θ  were obtained. The value of η∞ was chosen as large as possible 
depending upon the Prandtl number and the dimensionless suction/injection velocity fw, 
without causing numerical oscillations in the values of θ′ and,f .  The procedure was 
repeated for negative λ .  The maximum and minimum λ  were obtained for different values 
of fw where the numerical solutions became more difficult to obtain as λ approached 
λ λmax minor  for the corresponding fw.  It should be mentioned that beyond these values of 
λ the computation is difficult to obtain and unstable where the boundary layer assumptions 
are not valid and one should use another method of solution.  

4. RESULTS AND DISCUSSION 

Equations (8) and (9) were solved numerically, as described in section 3, for m = -2, 
fw = -3, -5, -7, -10, Pr = 0.1, 1.0, 5, and for temperature exponent n = -5.  It should be 
mentioned that, n = 2m –1 is the necessary and sufficient condition for the existence of the 
similarity solutions of power law type and for m = -2 gives n = -5.  Samples of the resulting 
velocity and temperature profiles for Pr = 1, fw = -3, and for λ = -1, -0.1, 0, 0.1 are presented 
in Fig. 2 and Fig. 3 respectively.  It can be seen from Fig. 2  that for λ < 0, as λ decreases the 
velocity gradient at the surface decreases and this tends to reduce the shear stress at the 
surface as we will see in Fig. 6.  However, for λ > o as λ increases the slope at the surface 
increases and hence the shear stress at the surface increases.  It worth mentioning that, more 
solutions for large values of λ can be obtained but with low accuracy and they have been 

rejected. 
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Figure 2. Samples of similarity velocity profiles for Pr = 1, fw = -3, m = -2, n = -5, and for various 
values of λ, λ > 0 (solid) and λ < 0 (dashed). 
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Figure 3.  Temperature profiles for Pr = 1, fw = -3, m = -2, n = -5, and for various values of λ, 
λ > 0 (solid) and λ < 0 (dashed). 
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Figure 3 shows the temperature profiles for the same parameters as in Fig. 2.  In this figure it 
is clear that as λ increases the temperature gradient increases and for λ > 0 the slope is always 

positive therefore according to Eq. (15) the dimensionless quantity xx Re/Nu always 

decreases.  Physically this is because the heat flows always into the surface despite the surface 
temperature’s continual excess over the ambient temperature.  This is a consequence of a fluid 
particle heated to nearly the surface temperature being convected downstream to a place at 
which surface temperature is lower.  Then, since the fluid particle is warmer than the surface, 
heat flows into the surface.  Such situation results in negative heat transfer coefficients and 
means only that the temperature gradient at the surface is no longer proportional to 

∞−TTw (see Burmeister (1983) for similar type of flows).  However, for λ < 0 the temperature 

gradient is positive up to λ ≈ -0.185 where the slope is almost zero ( xx Re/Nu  = 0.00018) 

and for λ < -0.185, the slope at the surface is always negative and the heat is always 
transferred from the surface to the ambient medium. 
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Figure 4.  Local Nux Rex
-0.5 distribution for the entire mixed convection at n = -5, m = -2, and for 

Pr = 1.  Dashed lines present the locus separating the natural convection dominant region on the right 
and forced convection region on the left. 
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Table 1.  Critical values of λ, Nux Rex
-0.5, and Cfx Rex

0.5 for predominate natural convection at different 
values of Pr and fw for m = -2 and n = -5 for λ > 0.  Stars mean that Cfx Rex

0.5
 has the same value 

corresponding to the same fw at Pr = 0.1. 

 Pr = 0.1 Pr = 1 Pr = 5 

fw λ 5.0
xx ReNu −  λ CfxRex

0.5 λ 5.0
xx ReNu − λ CfxRex

0.5 λ Cfx Rex
0.5 

-3 .00065 -0.14905 0.003 -2.4012 0.0052 -.54757 .028 * 0.4 * 

-5 .0127 0.18794 0.038 -5.9818 1.8 2.51402 .42 * 2.5 * 

-7 .070 0.37152 0.09 -8.9318 12.6 4.13137 1.0 * 5.4 * 

-10 .33 0.60816 0.25 -13.002 65 6.32232 2.4 * 12 * 
 

 
 

Table 2.  Critical values of λ, Nux Rex
-0.5, and Cfx Rex

0.5 for predominate natural convection at different 
values of Pr and fw for m = -2 and n = -5 for λ < 0. 

 Pr = 1.0 Pr = 5 

fw λ 5.0
xx ReNu −  λ CfxRex

0.5 λ 5.0
xx ReNu −  λ CfxRex

0.5 

-3 -.006 -0.49249 -0.03 -2.64395 -9.2 7.9896 -0.4 * 

-5 -2.65 2.78267 -0.45 -6.62949 ---- ------- -2.5 * 

-7 -10 4.573863 -1.0 -9.82948 ---- -------- -5.4 * 

-10 ----- ---------- -2.35 -14.48543 ---- -------- -12.0 * 
  
 
Similar profiles are obtained fw = -5, -7, and –10.  However, as the dimensionless 
suction/injection velocity fw decreases (strong suction) the heat is always transferred from the 
surface to the ambient medium for λ ≤ 0.  Figure 4 shows the effect of strong suction where fw 
change from –3, to -10 for both negative and positive λ for Pr = 1, m = -2, and n = -5.  As we 
see from the figure that as the suction increases the heat transfer to the medium increases and 
the effect of λ is remarkable for low suction only and as suction increases it sustains the 
buoyancy effects.  A 5% increase or decrease has been taken from the value Nux Rex

-0.5 at 
λ = 0 for both λ < 0 and λ > 0 respectively, to show the effect of predominate natural 
convection.  Therefore, the dashed lines connected the squares and diamonds present the locus 
of these points for negative or positive λ respectively.  The coordinates of these points, which 
we call them the critical values, are tabulated in Table 1 for various values of Pr and fw for 
λ > 0 and in Table 2 for λ < 0.  It should be mentioned that cells marked by dashed in Table 2 
mean there are no solutions could be obtained with reasonable accuracies satisfying the 
boundary conditions at infinity.  Furthermore in Fig. 4, the region on the left of the dashed 
lines presents predominate forced convection and the region on the right presents predominate 
natural convection. 
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An intensive study has been made on the effect of Prandtl number on the heat transfer from 
the surface when the dimensionless suction velocity fw is used as a parameter.  Figure 5 shows 
these results where 5.0

xx ReNu − decrease as Pr increase up to a critical value, which depends 
upon fw and as fw decreases (strong suction) these critical values of Pr decrease.  However, 
beyond these critical Prandtl numbers as Pr increases 5.0

xx ReNu −  increases for any value of fw.  
Dashed line on Fig. 5 connecting the critical Prandtl number designated by squares.  These 
critical values of Prandtl numbers and 5.0

xx ReNu −  are given in Table 3.  The following third 
order polynomial is used to fit the data of Table 3 with a maximum deviation between the 
numerical data points and the correlation of 1.11%.  The polynomial coefficient A, B, C, and 
D are 0.0278, -0.296, -0.1708, and –1.1243, respectively. 
                                                 

5.3f9.2,PrDPrCPrBAReNu w
325.0

xx −≥≥−+++=−     (18) 

 
Table 3.  Critical values of Pr and 5.0

xx ReNu −  for λ = 0, where profiles of fw in figure 5 have 
minimums designated by squares and connected by a dashed line. 

fw -2.9 -3.0 -3.05 -3.1 -3.2 -3.3 -3.5 

Pr 0.95 0.7 0.6 0.55 0.4 0.3 0.1 
5.0

xx ReNu −  -1.20491 -0.62328 -0.45927 -0.340 -0.18219 -0.0893 -0.00968 
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Figure 5.  The effect of Prandtl number on 5.0

xx ReNu − for different values of the dimensionless suction 

velocity fw, dashed line connecting critical coordinates of Pr- 5.0
xx ReNu − are designated by squares. 
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Therefore, for fw < -3.5 as Pr increases, the 5.0
xx ReNu −  increases but, for -2.9 ≥ fw ≥ -3.5 one 

has to define the critical Prandtl number corresponding to each fw.  It should be mentioned 
that, the flow problem  for λ = 0 does not admit solutions for fw > -2.75 [see Magyari et al 
(2001)].  In spite that, Fig. 5 is constructed for λ = 0 but the critical values are still valid for 
λ ≠ 0.  
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Figure 6. Shear stress profiles for different values of fw and for  Pr = 1.  Dashed lines connecting the 
squares and diamonds are for λ < 0 and > 0, respectively for predominate natural convection. 

 
 
Figure 6 shows the dimensionless shear stress profiles at the surface for various values of fw  
and for positive or negative λ for m = -2, n = -5 and for Pr = 1.  Five percent increase or 
decrease in 5.0

xfx ReC distributions at λ = 0 has been applied for λ  > 0 and λ < 0 respectively.  
Dashed lines connecting squares and diamonds are the locus of these 5%, where on the right 
of these lines natural convection dominates and on the left forced convection dominates.  
Coordinates of squares and diamonds symbols, which we call them critical values of λ and 

5.0
xfx ReC , are given in Table 1 and 2 for positive and negative λ and for various values of Pr 

and fw.  In Table 1 and 2 stars mean that 5.0
xfx ReC has the same value corresponding to the 

same fw at Pr = 0.1 and Pr = 1 respectively.  In other words that, the dimensionless shear stress 
at the surface is independent of Prandtl number and the effect of Pr is only to sustain the effect 
of buoyancy.  Furthermore, no solutions with reasonable accuracies to satisfy the boundary 
conditions at infinity for Pr = 0.1 are obtained therefore, results for Pr = 0.1 is not in the 
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content of Table 2.  It is clear from Fig. 6 that as the dimensionless suction velocity fw 
decreases (strong suction) the dimensionless shear stress decreases, since the velocity profiles 
get steeper at the surface.  Moreover, the dimensionless shear stress increases for positive 
increasing values of λ and decreasing for negative decreasing values of λ. 
  

5. CONCLUSIONS 

Mixed convection effect on a vertically moving surface stretched with rapidly decreasing 
velocity has reported for three Prandtl numbers of 0.1, 1, and 5 and for different values of the 
dimensionless suction velocity fw at the surface.  Similarity solutions were obtained for 
m = -2, and n = -5, where m and n are the exponent of the power law velocity and temperature 
respectively. 
 
Numerical computation where performed for both λ > 0 and λ < 0.  The results show that, for 
λ < 0: the dimensionless quantity at the surface 5.0

xx ReNu −  increases as λ decreases however, 

the dimensionless shear 5.0
xfx ReC decreases as λ decreases.  For λ > 0: 5.0

xx ReNu − decreases as 

λ increases but 5.0
xfx ReC increases as λ increases.  Furthermore, as the dimensionless suction 

velocity fw decreases (strong suction) the quantity 5.0
xx ReNu − increases but 5.0

xfx ReC  
decreases. 
 
Critical values of 5.0

xx ReNu − , 5.0
xfx ReC , and λ are obtained for predominate natural 

convection and tabulated for various values of fw and Pr in Table 1 and 2.  Moreover, critical 
values of 5.0

xx ReNu − and Pr, where profiles of fw have minimums, are obtained to distinguish 

the behavior of 5.0
xx ReNu −  with Pr for –2.9≥ fw ≥ -3.5.  These critical values are tabulated in 

Table 3 and presented in a fitting polynomial form by Eq. (18). 
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