
 1

AGILE METHODS – CMMI-SW: LINKING THE TWO EXTREMES

Dr. Ghazi I. Alkhatib
Qatar College of Technology

Doha, Qatar

ABSTRACT

The article explores the possible link between agile methods and CMMI-SW. Major issues
incited from such link are: documentation, communication, user involvement, and application
types. Interrelationships among these issues are highlighted as well, such as the relationship
among the first there issues. Then three strategies for such link are proposed: separatism,
integration (hybrid/concurrent, front-end, and back-end), and re-engineering of both methods.
Even though current research on the integration of the two focuses on the hybrid approach,
this article advocates the concurrent approach, and provides a framework for continuous
CMMI-SW improvement towards agility. It is hoped that the research of this paper will
encourage the Gulf nations to seek certification and establish local training and certification
centers to face globalization challenge in the area of software development.

INTRODUCTION TO AGILE METHEDS AND CMMI-SW

Agile methods (AM) simply threw out old software development life cycle (SDLC) concepts
associated with the waterfall model, such as milestones, deliverables, blue prints, road maps,
as well as CASE terminologies, such as front-end, back-end, and re-engineering. It then
capitalized on newer concepts, which were evolving during the last decade, such as client-led
design, client-centered design, participatory design, joint application design, rapid application
development, and the different SDLC models, such as prototyping, incremental, and
evolutionary. AM eliminated lines of demarcation between traditional SDLC phases through
the use of releases and iterations, see (Beck, 1999) for example. AM efforts were culminated
by the agile manifesto as shown in Figure 1.

 Figure 1. The Agile Manifesto

Capability Maturity Model Integration Software (CMMI-SW) evolved from the multiple
models of CMM as a single reference model to make it easier for organization to follow
model requirements. Most of previous research was done on the link between AM and CMM

 2

family of models, while this research used the new CMMI. CMMI has two representations:
staged and continuous. The first representation resembles the previous CMM by starting the
discussions on the five stages, and to assist organizations who currently use CMM to migrate
to CMMI. The continuous representation is developed to bridge CMMI-SW to ISO/IEC TR
15504. This latter approach is critical because it highlights efforts of two major organizations
to get closer in their efforts to improve software processes (Kitson, 1999). CMMI is based on
moving organizations from one level to a next one and gradually improving software
processes. However, an article indicated that ISO may shift emphasis from certification to
continuous improvement (Special Report.., 2002). This relationship between CMMI and ISO
is critical, because if both move to continuous improvement with less emphasis on
certification and levels, organizations will be more encouraged to try newer methods such as
AMs. (Since this article deals only with CMMI-SW, CMMI and CMMI-SW are used
interchangeably)

Figure 2, as adapted from CMMI-SW continuous model and changed according to the theme
of this article, demonstrates model components and their interactions (Capability Maturity …,
2002). The broken lines in Figure 2 represent 4 types of interaction among model
components, of which the first three are described in the CMMI-SW document, whereas the

last one is proposed by this article. These
interactions are explained as follow:

1 This is the intra-process areas
interactions, which computationally
permits a maximum of 625 interactions
(25X25). Some of these interactions,
however, may not be feasible or
applicable.

 This interaction is the intersection
between generic practices belonging to
the five generic goals, which actually
represent the five capability levels, and
the 25 process areas, allowing for 400
interactions (17X25). All these
interactions are explained in the CMMI-
SW continuous representation model.

 This interaction relates the list of
specific practices, belonging to each
specific goal, of one or more of the five
generic goals (or capability levels),
permitting a huge number of interactions.
This is the case because practices vary

from one process area to another, practices vary from one specific goal to another, and sub
practices vary from one specific practice to another.

 This interaction is proposed by this article and will be discussed later in the section
dealing with strategies for the link between CMMI and AM, where vertical interaction among
capability levels is proposed.

2

3

4?

Has

Specific
Goals

Generic
Practices

Generic
Goals

Process 2 Process 1 Process 4

Specific
Practices

Capability
Levels CL

Sub
Practices

 Interactions
n = 5, 8, 6, and 6

Process
Areas (n)

3

4?

CL1

CL5

2

Process 3

Figure 2. CMMI model components and their
interactions (numbered 1, 2, 3, and 4?)

1

 3

Following this introduction, subsequent sections present discussions on issues raise by the
debate over the link between AM and CMMI-SW, and linking strategies.

SOME ISSUES RAISED BY THE CURRENT DEBATE

After comparing agile methods, an article highlighted the need to discuss the issues raised by
AM rather than develop new methods, in order to identify common characteristics of AM and
their applications (Abrahamsson, P., et. al., 2002). This approach is deemed appropriate to
the theme of this paper as well. The following sections present some of these issues and their
implications on the link between CMMI and AM, and in the process raise some disputed
issues that necessitate further research.

To Document of not to document

The issue of documentation is not new. For example, “Nobody reads documentation” was
the title of an article appeared in 1991 (Rettig). Then an extreme (AM style) question will be:
do we really need any documentation at all during software development and use? To assist
in the analysis, we could distinguish between two different types of documentation:
embedded in SDLC activities, and configuration management (CM). For the purpose of our
discussion, these two types are referenced as DT1 and DT2, respectively.

In the 70s and 80s, DT1 was the most critical one
since developing software without some form of
blue prints or roadmap for requirements was
considered a recipe for failure. During the 90s,
however, IS developers started to deal with
different types of IS, where requirements could
not be captured at the front-end or they are
changing dynamically over time. Here where
agile method started to surface justifiably, with
shifting emphasis from documentation to strong
involvement of end-users. CMMI, on the other

hand, continued to stress heavy documentation of both types. Figure 4 shows further
classification of DT1 corresponding to SDLC phases, and the position of documentation
types in relationship to IS professionals and end-users roles in documentation generation and
use. The Figure also implies that end-user role would be heavier and diminishing during the
front-end activities (until coding) and lighter and increasing during back-end activities
(subsequent to coding). IS role, on the other hand, will be increasing steadily over the SDLC
activities, and diminishing lightly after delivery of the system and the start of long term
operation and maintenance. The continuous lines (labeled 1) denote the current emphasis of
documentation links, where users mainly are associated with DT2. The dotted lines (labeled
2) indicate the desired new link between users and DT1. The desired link implies that SDLC
documentation should be understood by users, though to lesser degree than IS counterparts.

To avoid documentation bloat, which AMs are cautioning from, Software Engineers (SEs)
could follow the principles of just-in-time knowledge delivery (Cole, et. al. 1997) and
documentation minimalism (Orr, 2003), where users and IS professionals can access relevant
system information without spending too much time sifting through hundreds of pages or
many screens and clicks. Furthermore, the above classification should assist SEs in targeting
different types of documentation for reduction, improvement, or elimination, depending on
several aspects of the project. To give the example of enterprise resource planning (ERP)

CM (DT2)

Anlysis

Coding

Manual

Maintnanc

Design

Figure 4. Relationship of documentation types to
user and IS professional roles in documentation

End-users Role

IS Professionals Role

SDLC /or Iterations (DT1)

1
2

 4

User Role

 SDLC (Phases, Releases, or Iterations)

IS Role

First
Phase

 Minor
Releases

Major
Iteration

 Minor
Releases

Figure 5. Dynamic User and IS Roles in Software
Development

implementation projects, detailed database and user interface (UI) designs are not performed
since these are dictated by the ERP system.

To involve or not to involve users

The preceding discussions bring in the issue of user involvement of all levels in SDLC. Lack
of user involvement and lack of executive support
are ranked third and fifth among project
termination sources (Boehm, 2000a). SEs should
arrive at an adequate level of user involvement
throughout the SDLC, as well as assign
corresponding appropriate roles for participating
users. CMMI stresses this point in the statement
“identify stakeholders and check with top
management.” (Capability Maturity …, 2002).
AMs require that knowledgeable end-users
actually be part of the development team. The

roles may be performed dynamically depending on the stage of software development, as
Figure 5 demonstrates.

To communicate or not to communicate

The communication issue stems from the fact that a communicate gap exists between users
and IS professionals, since user’s real world and IS computer world are represented
differently. Bridging the gap requires end-users to be computer and IS literate and IS
professionals to be business literate. For example, among the top 10 topics with the greatest
knowledge gap- where importance most exceeds current knowledge, numbers 1, 3, and 5 are
purely management-related topics (Lethbridge, 2000). The top 10 topics include other semi-
management topics as well. On the other side, many researches are conducted on user
participation, but whether such participation leads to effective communication needs further
research. AMs stress continuous involvement of end-users in SDLC, while CMMI
recommends planned user involvement. The importance of communication during SDLC and
IS use is based on a simple premise: if two people communicate using the same normal
language may develop misunderstandings, how about many people communicating through
computer languages, and charts such as data flow diagrams, entity-relationship diagrams,
screens, class hierarchies, and state charts. An adequate level of IS-user communication is
definitely needed to correctly model and satisfy user requirements. Finally, both intra-team
and inter-team communication should also be maintained. The following section presents a
simple framework to illustrate the relationship among the three previous issues.

Relationship among documentation, user involvement, and communication

Figure 6 illustrates the relationship between the there issues. Current practices of the
relationship among them are as follow:

- AMs use strong user involvement as a mean for communication.

- CMMI uses heavy documentation as a mean for communication.

 5

What actually is needed is shown in the middle of chart by the block arrows: a link between
user involvement and documentation, where users should
understand and/or actually involved in developing
documentation in cooperation with IS professionals. We
could start doing that in some form in DT2 type of
documentation and move gradually into DT1
documentation as well. A candidate DT2 documentation
may be the creation of the knowledge management base
for lesson learned. DT1 candidate may be
process/workflow description using charting tools. To
rectify this approach, users may need to be trained on
these concepts and methodologies. The equilibrium point
is in the middle of the circle (the happy face), where a
balance among the three issues is achieved.

Application type

The literature identifies emerging set of application types: commercial of-the-shelve software
(COTS), I Will Know When I see It (IWKWISI), and rapid change that dictate different
requirement modeling techniques (Boehm, 2000). While this classification is appropriate,
this article presents a different perspective. During the 70s and 80s, most developed
applications were transaction processing systems, where requirements are very much
standard across organizations, such as accounting, marketing, production, and human
resources systems. These are referred to as horizontal systems. Once systems moved to
satisfy requirements of higher management levels, two new types of systems emerged:
middle-management systems, such as decision support, expert (DSS), data warehousing
(DW), data mining (DM), multidimensional databases (MDB), and knowledge management
(KM); and top-management systems, such as executive support systems (EIS), strategic IS
(SIS), business intelligence (BI), and competitive intelligent systems (CIS). In this paper,
these systems are referred to as vertical systems, and their requirements are not as
standardized as horizontal systems.

At the same time, these vertical systems spread throughout the organization horizontally in
their respective levels, such as developing DW applications for different functional areas in
the business. In addition, browser-based internet applications also evolved, such as e-
commerce, collaborative commerce, supply chain management (SCM), mobile commerce,
and web services (WS). One major characteristic of these latter types of systems is
concerned with the user base: it is interminable, dynamically changing over time, and resides
outside the organization’s boundaries.

Figure 6. Relationships among the three issues

User

Involve-
ment

Comm-
unica-
tion

Docu-
mentation

A
gi

le

C
M

M
I

CMMI/
Agile

 6

Legacy/ERP Systems

KM
DM

MDB
DW

DSS/ES
Customers Suppliers

SIS
CIS
BI
EIS

Internet

Figure 7. Types of information systems in
relationship to management levels, external

parties, and CMMI/AM applicability

PT/WS

AM

CMMI

To map application type to development approaches, we
may need a new maturity model, a modified Nolan
model perhaps, that shows where an organization
currently staged: developing integrated enterprise
systems to support its basic IS architecture, re-
engineering existing legacy systems or integrating them
through enterprise integration architecture, moving
upwards through management levels, or moving
outwards to multi-platform multi-party applications
integration, such as B-to-C, B-to-B, SCM, portals (PT),
and WS. It seems natural that the first type of
applications, CMMI approach is more suitable than AM,
while the reverse holds true for the latter ones. These
applications are shown in Figure 7 in relationships to the
levels of management. As IS moves vertically and

outwardly, the risks and consequences resulting from unsatisfied users, both internal and
external, increase. One study reported successful adaptation of agile method in two internet-
based application development cases (Ambler, 2002). Finally, Boehm (2002) projected that
AM perhaps will be used in medical and air traffic control systems. Whether these systems
are low or high risk should be also the subject of further analysis.

STRATEGIES FOR THE LINK

All current research on the link between CMM and AM list CMM areas and map AM
principles to them Paulk (2001), for example, relates Extreme Programming (XP) principles
to each of the CMM maturity levels requirements. The study concluded that CMM and XP
are in many respects complementary. Another research analyzed the relationship between
compatibility of agile principles capabilities and process areas and generic goals of CMMI-
SW. The article concluded that there is an acceptable level of compatibility, even though not
high, and predicted that new methods will evolve in the future (Turner, 2002). The study,
however, failed to analyze the mapping of AM to the interaction between process areas and
generic goals. It is obvious that process areas (PA) related to “engineering” has the most
links to AM principles. Not surprisingly, the same process is the only one with specific and
sub- practices associated with CL2 and CL3. In reality advocating the approach “you can
have the cake and eat it,” current researches on such link escape the difficult issues that will
lead to join of disjoin CMMI and AM. Orr (2003) is about the only article that puts these
issues up front. The dialogue between Demarco and Boehm (Demarco, 2002) discussed
some of these issues, particularity the fact that CMMI mentions the agility process late in the
CL5. In the previous section, this article references CMMI and raised issues without going in
detail into the mechanics of AM and CMMI. Based on these discussions, this section
presents three recommended strategies for the link, as demonstrated in Figure 8.

 7

Separatism strategy

If each party insists on strictly adhering to its principles without any compromise on middle
grounds, then this strategy is appropriate and straight
forward.

Use of CMMI is deemed appropriate in the following
cases:

-Department of Defense contractors

-External strategic outsourcing of large projects

-In-house large projects for low level transaction
processing system, such as implementing an integrated

ERP solution.

AMs methods, on the other hand, are suitable for:

-In-house development for small projects and e-business applications

-Development of management support systems

Integration strategy

In the next level, agile methodologies may be used in support of CMMI processes.

Front-end: This approach suggests the use of AM before implementing the system with
CMMI approach. AMs are formally used to identify risk and contract boundaries. This
strategy is implied in Boehm’s article (2002). Agile team(s) will visit the site for conducting
initial interviews and overall system requirements. Once an initial assessment is completed
to top-management satisfaction, the CMMI teams finalize the contract and prepare it for
signing, and then start executing the contract.

Hybrid/concurrent: Most of the research is on the link between extreme programming, as
the first agile method and the most common one, and CMM. One study mapped CMM
process areas to XP practices and concluded that XP and CMM in many respect
complimentary (Paulk, 2001). One major source of problems when applying this hybrid
approach (i.e. embedding AM in CMMI) is human resource assignment to different
modules/components in the same project. Agile Methods require different experiences and
personalities than CMMI-based methods. This may create a software development human
divide similar to the digital divide between agilests and non-agilests. With the current state
of the link between AM and CMMI, maintaining organization effectiveness may necessitate
the use of concurrent rather than hybrid approach until IS professionals bridge the big gap
between the two. The concurrent approach identifies certain modules of a project or
complete projects, and then construct appropriate teams accordingly that will employ either
AMs or CMMI.

Back-end: Once a system is developed using CMMI approach, AM could be employed to
carry on maintenance activities (Poole, 2001). Rajlich (2000) proposes the use of versioning
model to control software development by employing a planed major releases and minor
updates, similar to system software releases such as MS Windows. IS professional may use

CMMI/
Agile

Agile

CMMI

Agile

a

CMMI/
Agile

Front-end
Agile

Back-end
Agile

Hybrid/Concurrent
c

b

Figure 8. Agile - CMMI linking strategies
b. Separatism Strategy
c. Re-engineering Strategy
d. Integration strategies

CMMI

 8

AM for minor releases and CMMI for major releases. Also it may be applied to software
patches and minor updates, such as those associated with ERP solutions. Another related
area is the study of maintenance activities in ISD using AMs. For example, if a new feature is
introduced at iteration number 10, what would the rippling effect on previous nine iterations,
if any? The rippling pattern will be even harder to trace if some iterations were conducted
concurrently.

Re-engineering strategy

The article by Orr (2003) is the only one who addressed the issue of reengineering AM and
CMM (or CMMI for the purpose of this paper). This approach is a long-range plan to
effectuate major changes in both AM and CMMI, but perhaps more so in the latter one. It
requires a tremendous effort and time, and in both human and cost. For the advancement of
software development in the long run, however, it should be done.

Re-engineering CMMI: Orr suggested the following areas for reengineering CMM. Each
area is followed by discussions as related to themes of this paper.

- CMM must become less document-centered. As mentioned earlier, balancing the tri-issue
factor is very critical for successful completions of software projects.

- CMM must emphasize collaboration. One way of accomplishing this task is through team
and software component integration throughout SDLC activities.

- CMM must stress speed as well as quality. Determining factors for balancing speed and
quality could include risk, application type, and sourcing decision.

In addition to these three issues, CMMI should distinguish between the guidelines for product
manufacturing and software generation. The title of the manual includes the following
statement “Improving processes for better products.” Also, the manual states that “product or
services” may apply to software as well as hardware products
[FM102.HDA104.HDB102.T103]. Furthermore, when common terminologies are defined
the word “product” is defined but not “software”:

The manual was made general so it can be applied to different product types. In the process,
the emphasis on, and particulars of, software as the product lost concentration. With software
development being human-intensive, project management techniques are different as well as
the body of knowledge for software developers. The last issue applies mainly to CL 4 and 5,
where quantitative measurements and continuous improvement are discussed. It is a
commonly accepted principle that physical process are easier to measure using statistical
control packages, and corrective actions for improvement are easier to implement, such as
modifying machine set-ups. SEs need to differentiate between software systems that manage
and control physical product processes and software systems that are used as performance
measurement for software product processes. More research is needed in the area of software
quality and metrics in relationship to the scale of measurements (ratio, ordinal, etc.), and the
statistical reliability of the generated statistics, when used as the basis for software process
continuous improvement.

Re-engineering agile methods: Orr suggests that attention must be paid to some basic
management issues:

 9

- Plan at the beginning to build a system’s architecture that can be used to break the whole of
large projects into a series of small iterations that can be integrated at the end or in stages to
form a larger whole. There is no pre-determined formula that will apply to all projects and to
all organizations. Regardless of the development methodology employed, large projects
should be divided into smaller modules with time table presented graphically using tools such
as PERT. If this could not be accomplished, software project may experience budget and
time overruns, as well as unsatisfied users.

- Give up its revulsion against the use of tools. For example, some tools are introducing
upgrades that will facilitate and speed-up agile development, such as Borland development
tools (Krill, 2002).

- Generate more design artifacts and documentation beyond code. As mentioned in the
discussion on the tri-issues factor: each organization must arrive at a balance between the
three issues.

A framework for CMMI continuous improvement (CI) towards agility

This section is based on the less drastic continuous improvement approach rather than the
reengineering approach. The word “agile” and “innovation” are mentioned in CMMI under
GP5.1. [GP125.N101]. Does this imply that after building an elephant, start trimming it to a
horse? Why organizations have to wait until level 5 to capitalize on the agility process? Can
the whole organization become agile? Then, CMMI states at the beginning of the manual
that achieving CL 4 and 5 would be the exception rather than the norm.
[FM121.HDA104.T105]

It seems that ISD may never construct “empowered workforce” or reap “a cycle of continual
improvement” at Capability Level 4 and 5. Will software development ever becomes “…
stable for an extended period of time” for IT infrastructure and IS architecture that are
characterized by dynamic and continual change? Later the manual links between GL3, 4 and
5 with five advance process areas. This link coupled with the previous statements practically
cancels most of the intersections between the advanced process areas and CL4 and 5 generic
goals. Based on the discussions thus far, and aside from reengineering it, CMMI-SW future
may take one of three alternatives:

- Cancel CL4 and 5 and related process areas, which leaves us with 13 generic goals and
about 20 process areas bringing the total number of interactions down to 260 from the current
400. The model becomes more manageable and easier to implement and follow-up.

- Maintain status quo and let organizations chase the ignis fatuus; achieving CL4 and 5.

- Keep CL4 and 5 and allow the agility process to be instituted at CL1. This approach is
based on the basic philosophy behind the continuous model of CMMI. Rather than using a
strict level-based practices, this article suggest the use of gradual phase-in of required
practices of higher levels at lower levels and gradual phase-out of undesired lower level
practices when moving to higher levels. This will apply mainly to agile processing,
quantitative measures, and continuous process improvements associated with advanced
process areas. For example, it is impractical to expect that organizations will become
suddenly proficient in using quantitative measures in managing the IS function at CL4. They
need to use some form of measurements and software metrics and establish data collection
mechanisms. The same will apply to continuous improvement (CI) goals, where

 10

 Optimizing

Quant itatively Managed

 Defined

 Managed

Performed

Basic Advanced

Process Management

Project Management

Su
pp

or
t Processes

En
gi

ne
er

in
g

C
M

M
I C

ap
ab

ili
ty

 L
ev

el
s

Figure 10. CMMI Capability levels interactions
 for continuous process improvement

organizations need to start such practices at lower CLs but perfecting the practice, both its
depth and breadth, as it moves to a higher level. The objective is to move organizations to
agility and CI in vertical chunks rather than targeting the whole organization horizontally.
Figure 10 presents pictorially this scenario that allows vertical interaction between capability
levels, as also initially introduced in Figure 2 - interaction “4?” The enclosed irregular shape
in the middle of the CLs hierarchy represents an organization that applied limited agile
methods and CI and certified at CL2. The objective of CMMI CI strategy is not to transfer
the whole organization to agility and continuous improvements; it is to encourage
organizations to perpetually rethink their software development strategies.

CONCLUSIONS

This article presented suggestions and guidelines for establishing the link between CMMI and
agile methods. Before the two become compatible, several research issues still need to be
addressed and resolved. CMMI should address the issue of agility at all levels, rather than
have organizations incorporate limited use of AM in CL2. Currently, separatism, front-end,
back-end, and concurrent linking strategies are recommended. A hybrid strategy for the link
could be delayed unit some form of reengineering of both methods is achieved. The Link
between the two sides – CMMI and AM- should address two areas: the use of CMMI and
AM in large projects and contracted projects. Meanwhile, organization could employ
suggested mechanisms to have both methods more adoptable and innovative. This in the
long run may stimulate efforts to reengineer these methods. Furthermore, it is hoped that this
article highlighted critical issues and proposed recommendations that will promote further
research on this subject. This research should be issue-focused, particularly human factors
issue, and the applicability of methods, rather than the detailed mechanism of these methods.
For researches who advocated the embedded approach, more detail analysis on how agile
methods could be used in CMMI, particularly the intersection between the “Engineering”
process area and the Generic Goal “Managed.”

Finally, research such as this paper should encourage IT organization the Gulf and the in the
Middle East in general to seek certification and to establish local training and certification
centers that provide certification to IT department.

 11

REFERENCES

Ambler, S. (2002). Lessons Learned in Agility From Internet-Based Development. IEEE
Software, 19:2, pp. 66-73.

Beck, Kent (1999). Embracing Change with Extreme Programming. Computer, 32:10, pp.
70-73.

Boehm, B. (2002). Get Ready for Agile Methods, with Care. Computer, 35:1, pp. 64-69.

Boehm, B. (2000a). Project Termination Doesn’t Equal Project Failure. Computer, 33:9, pp.
99- 103.

Boehm, B. (2000b). Requirements that Handle IKIWISI, COTS, and Rapid Change.
Computer, 33:7, pp. 99-103.

Capability Maturity Model® Integration (CMMISM), Version 1.1 CMMISM for Software
Engineering (2002). (CMMI-SW, V1.1) Continuous Representation CMU/SEI-2002-TR-028
ESC-TR-2002-028 CMMI August.

Cole, K., Fischer, O., and Saltzman, P. (1997). Just-in-time Knowledge Delivery.
Communication of the ACM, 40:7, pp. 49-53.

DeMarco, T., and Boehm, B. (2002). The Agile Methods Fray. Computer, 35:6, pp 90-92.

Kitson, D. (1999) “The Impact of ISO/IEC TR 15504 on the Capability Maturity Model®
(CMM®) Integration Effort,” Vol. 1, Iss. 1 PILOT, August 1999,
http://www.spiceworld.com.

Krill, P. (2002). Borland Eyes Agile Development with Upgraded Tools. Inforworld.com.
November 4, 6:06 am PT
Lethbridge, T. (2000). What Knowledge Is Important to a Software Professional? Computer,
33:5, pp. 44-50.

Orr, K. (2003). CMM Versus Agile Development: Religious Wars and Software
Development. 3:7, http:// www.cutter.com/project/index.html.

Paulk, M. (2001). Extreme Programming form CMM Perspective. Paper for XP Universe,
and later published in IEEE Software, November-December, 2001, pp. 19-26.

Poole, C. and Hulsman, J. W. (2001). Using Extreme Programming in a Maintenance
Environment. IEEE Software, 18:6, November-December, pp. 56-61.

Rajlich, V. and Bennett, K. (2000). A Staged Model for the Software Life Cycle. Computer,
33:7, pp. 66-71.

Special Report: Continual Improvement and the Consistent Pair. (2002). ISO Management
Systems, November-December, pp. 27-38.

Rettig, M. (1991). Nobody Reads Documentation. Communications of the ACM., 34:7, pp.
19-24.

 12

Turner, R., and Jain, A. (2002). Agile meets CMMI: Culture clash or common cause? Lecture
Notes on Computer Science, Electronic Edition, pp. 153-165. available through
www.informatik.com.

	TOC:
	Search:
	Author Index:
	Top:

