
A Routing Solution for a Global, Space-based Wireless Multimedia System

M. Guizani and I. G. Schneller
University of West Florida

11000 University Parkway
Pensacola, FL 32514

Abstract — This paper focuses on the Teledesic satellite
constellation, which is an attempt to provide high speed, multi-
media networking connectivity to any location on the globe.
Since the routers (satellites) are in constant motion, this venture
is unique and leads to a one-of-a-kind data routing scheme. This
concept is still in the design phase, with implementation still a
few years away. However, several large companies and capital
investors have already committed funds to this venture.
Supporters are claiming a full operational capability in roughly
3 years. Our focus in this paper is to develop a routing
algorithm for the Teledesic satellite constellation and to model
its operation in a simulator. The algorithm is conceptually
developed and implemented using a software simulation. Our
results, which indicate this algorithm is a viable solution to the
routing problem, and our implementation details are presented
below.

INTRODUCTION

Teledesic is a limited license company comprised of
Motorola, Boeing, Microsoft, and several other companies
and venture capitalists. Their goal is to build a global,
broadband Internet-in-the-Sky ™ network [1], which is
targeted to begin in 2004. Using satellite technology,
Teledesic is creating the world's first network to provide
worldwide access to telecommunications services such as
multimedia applications, computer networking, and
broadband Internet access from any one point on the Earth to
any other point, fully independent of any ground-based, cable
infrastructure. The current constellation calls for 288
satellites orbiting in a Low Earth Orbit (LEO). The orbits are
polar, meaning they travel over the poles of the Earth. The
logical structure is similar to a mesh network topology.

Teledesic has two main components [2,3]: the space-based
component as described above, and the ground-based
component. The space-based component is the satellite
constellation itself. The satellites act as routers in the
network, moving the data from sender to receiver. The
function of each router can be the gateway to an individual's
network, or as intermediary between several routers. The
ground-based component consists of transceivers either fixed
upon or mobile near the surface, which serve as an interface
point for messages entering and exiting the satellite
constellation. Overall, this entire network is designed to
support millions of simultaneous users. The Teledesic
architecture must have a robust, redundant routing algorithm
if it is to be successful. The algorithm must take into account
several factors that traditional networks have not needed to

address. The first is the extremely dynamic nature of the
routers (satellites) themselves. Because of the orbit, a typical
user will only be in the range of a satellite for about 20
minutes [5]. This means that the algorithm must be able to
hand off to another router, possibly in the middle of a
transaction. Since the orbits are polar, and the Earth is
turning, this solution is not as simple as passing the
transaction to the next satellite in the same plane. Cross-
planar transfers may be needed. Another factor to consider is
identifying which router will service which customer. For
instance, with the current Internet structure, users know that
the router servicing their facility will never move -- the
gateway router will physically be the same. The Teledesic
routing algorithm will need to identify servicing access
points, in addition to the traditional role of routing the
messages. While it is true that today's ground-based routers
must be dynamic and robust as well, Teledesic is bringing
this problem to a new dimension.

TELEDESIC ROUTING: POSSIBLE SOLUTIONS

To analyze Teledesic and pick a specific adaptive algorithm,
consider the following example. If node A sends a message
to node B, which happens to be exactly half-way around the
world, the number of equal length paths, considering nodes
and physical distance, is exactly equal to the number of
planes the satellite constellation uses. To put the example
differently, consider the number of equal length lines
between the North and South poles -- infinite. If we limit the
paths to lines of longitude only, there are 360 paths (one for
each degree) from source to destination, with not one taking
the same path, yet all are the same length. If one router is
busy, the algorithm should take into account other equal
length paths. Following this logic, it makes sense for each
router to also consider its own internal characteristics to make
a routing decision. For these reasons, the chosen algorithm
must be a distributed, adaptive routing algorithm [4].

The Teledesic architecture requires the analysis of several
characteristics that have never been a factor in conventional
routing algorithms. The first is making the bridge from
logical to physical addresses. In today's Internet, all devices
are assigned an IP address, which is a logical number. With
the proper routing configurations, two devices can be located
halfway across the world from each other, yet have logical
numbers that are practically neighbors. Teledesic routers, on
the other hand, only have connectivity to a certain physical

location on the Earth at any one time; therefore, we propose
the use of physical addresses. An address corresponding to
latitude and longitude would meet this requirement. Each
ground station must have one such physical address. If the
fidelity of the address were carried out to the tenths of a
second (degree:minute:second:tenths), the possibility of
several ground stations in the same "address space" would be
likely. A solution would be to assign an identifying network
number to each station in that space. An advantage to this
addressing scheme is that anyone could very easily determine
their address without going through a controlling authority
(InterNIC) to obtain their address. With GPS technologies,
mobile ground stations could automatically and quickly
update their address whenever needed [4].

Another factor, moving routers, adds significant difficulty to
the routing problem. Since the constellation is a low earth
orbit (LEO), the satellites are constantly moving in reference
to a single location on the Earth. This means that the satellite
used to route traffic at the beginning of a transmission may
soon move out of range of either ground station. The routing
algorithm chosen must handle the possibility that gateway
routers will change any number of times during a
communication session. Fortunately, the physics to calculate
the location of celestial objects based on time is quick, easy
and widely available. The challenge is to handle the changes
within a communication without having to reset the session
every time a satellite moves out of ground station range [4].

PROBLEM SOLUTION

Consider the case where ground station (GS) A needs to
communicate with GS B. A may determine that its default
gateway is Satellite 1. Using a DNS concept, the user will
obtain the lat/long pair and unique number of the destination.
Also using the destination lat/long pair, our algorithm will
determine which satellite is the destination gateway (satellite
2). This process solves the external routing problem. The
second problem is the internal routing problem, which will
determine a route from router (satellite) 1 to router 2. At this
point the message can be successfully delivered to the
destination [4] .

Ground station addresses

All ground stations will have an address based on their
physical location. The address will be in the format
Degrees:Minutes:Seconds. By carrying the address out to the
tenths of a second, we are allowing one unique address for
every 100' square location on the Earth. In addition to the
geographic location, a unique number will be assigned to
each ground station. This number could be adequately
represented with 10 bits, ensuring a maximum of 1024 unique
nodes within an area as it is only necessary to identify unique
users in each "cell" which is approximately 100' X 100' [4].

Satellite Node Addresses

Each satellite will need a unique identifier. A 2-Byte
identifier will provide more than enough unique addresses for
the constellation, which currently calls for 288 satellites [3].
This number will be used to identify the sender's and the
recipient's gateway. This number will also be used for
internal routing within the satellite constellation. [4]

Domain Name Servers

Obviously, a domain naming system will need to be
implemented. It would be unrealistic for a user to need to
remember lat/long coordinates to use an address. Traditional,
land-line, ground based servers would service user's name
requests. However, in this case, a lat/long coordinate and
unique identification number is returned instead of an IP
address. Also, as part of the registration process for mobile
users, their DNS entry would be dynamically input and
updated as necessary. [4]

Function to calculate satellite positioning given time

Given the current time, a ground station knowing its lat/long
coordinates will be able to calculate which satellite will be
the optimal gateway to use for transmission. Also, the
ground station, knowing the destination lat/long pair, will be
able to calculate the destination's gateway. [4]

Determining Local Gateway

Taking the router calculation concept a step further, a static
routing table can be built at each ground station, if it is non-
mobile. Each entry in the routing table will consist of three
numbers: start time, end time and satellite number.

For example, if the current time is 1135, the default gateway
would be 61. At this point, one may ask, why do we need to
number the default gateway? Why not just send the message
and let any satellite in range receive and route it? The
message must be addressed to a particular satellite because at
any one time, two or more satellites will be within
transmission range. Numbering the gateway will remove any
ambiguity to which the servicing router will be. If multiple
routers are used, multiple copies of the same message will be
sent, wasting bandwidth and processing time and convoluting
the acknowledgement process. Since the orbital
characteristics of the satellite constellation will remain
constant, the default gateway routing table for the ground
station will remain constant. When a ground station is set up,
the local routing table can be built once, and then updated
only when necessary. Of course a mobile station could
perform these calculations dynamically at the beginning of
each transmission with minimal additional overhead.

Handoff Time

Using the proposed routing table solution, a ground station
will also know the exact time the current gateway's footprint
will leave the ground station's transmission range. This is
critical for ensuring an efficient means exists for the
destination to reply to the sender. Consider again, the
situation where GS A is just sent a message to GS B. If the
handoff time is within the timeout period of the current time,
B will recalculate a new gateway for A . When A receives the
reply, it will notice that it's handoff time has already expired.
Therefore, before sending another message back to B, it will
update its handoff field. Before B releases the message, it
updates B's own handoff time, using it's own static routing
table. After one cycle of send and receive, both fields will be
filled. [4]

Internal Routing

Internal routing is concerned with routing a message within
the satellite constellation. One favorable characteristic of this
satellite constellation is that in reference to itself, it is static.
That is, the nodes within its network never move in relation
to each other. This is the exact opposite of the case found in
the external routing problem. Using this characteristic, the
satellite constellation can be represented by a directed graph.
The medium is a K-band transmission in outer space, and
transmission time between nodes is roughly constant [5].
This leaves the graph as having a distance (or cost) of one for
each link. Thus, a shortest path algorithm using node count
as the metric will determine the internal route. The time
consuming calculations of determining which gateways to
use are left to the ground stations. Furthermore, some
method of making a choice based on network health should
also be implemented. A simple solution would be for a router
to include in the header a number indicating it's congestion
level. When the next router in the chain receives the
message, it will note the congestion level and number of the
sending router and update an internal table to reflect the
situation. [4]

IMPLEMENTATION

This section outlines the operational details and results of
implementing the pseudocode in the previous chapter into a
working simulation. The main application is the simulator
itself. The simulator creates an independent thread for each
satellite in the system. This concept is repeated for each
ground station in the simulation also. The application waits a
tenth of a second between each instantiation to allow for
deconfliction of system resources during startup. The rest of
the simulation is simply a loop that runs for a user-defined set
of time. Until time expires, a random message is generated
and sent to a ground station, which calculates its gateway
router using a random number. Since each thread is handling
all the routing decisions and actions on their own, the only

other function needed by the main application is to provide a
global structure used to simulate locations of messages.

To simulate the sending of processes from satellite to
satellite, or from ground station to ground station, two global
linked lists are used, one for the satellite and one for the
ground station. This list’s relationship with the satellite
threads is shown in Figure 1. Each object will be able to
write to the queue of the corresponding recipient of a
message. For instance, if satellite 4 receives a message to
route to satellite 50, it may calculate the next satellite in the
path is 5. Therefore, to simulate sending that message from 4
to 5, satellite 4 will place another node in satellite 5’s queue

Figure 1. Simulator Architecture

and remove that same node from its own queue. A separate
queue will be maintained for each ground station. When a
satellite thread is created in the main program, the first thing
the newly created thread does is complete a power on setup
of the routing table. Initially, all paths have a cost of “one.”
This is due to the characteristic of the satellites not changing
neighbors throughout their orbits. During the exchange of
messages, the satellite is responsible for noting the
congestion level in the field of the message it receives. If this
level has changed, the satellite will change its internal routing
table. This data structure was chosen to be implemented
separately for each satellite. For this reason, each satellite
may have a different routing table in a congested network.
Given a unique satellite number, or node, the function
GetNeighbors calculates a node's four neighbors. The
calculation is trivial if the node in question is in the middle of
the graph. The left, right, up and down neighbors are simply
as shown in Figure 2.

However, if the selected node resides on a boundary node,
then the calculation changes. The neighbors for a bordering
side node are shown in Figure 3. Note that in this case, the
neighbor isn’t simply the first or last node in the same row of
the graph. The neighbors are chosen in the manner shown
because of the characteristics of “unwrapping” the satellite
constellation from a three-dimensional circular object
representing the Earth. The neighbors for a bordering node
on the top or bottom row of the graph are shown in Figure 4.

Since Teledesic calls for 288 satellites, we implemented a 12
X 24 node graph in our simulator.

Figure 2. Trivial Neighbor Solution

Figure 3. Side Border Neighbor Solution

Figure 4. Top/Bottom Border Neighbor Solution

Each satellite node, after startup, runs in a loop constantly
searching its row in the linked list for messages. If its
"numMessages" field is greater than zero, then the node
removes the first message from the queue and recalculates a
destination router. If the message structure contained a
changed congestion level, then the node will update its own
routing table at that point.

IMPLEMENTATION RESULTS

 Test cases of the simulation implementation have been
successful in proving that the algorithm proposed in this
study will route a message from ground station to ground

station via a network of mobile routing satellites. This
section will describe the data collected in addition to an
analysis of the results. A total of 126 test cases were created
and run, resulting in over 40,600 messages simulated being
delivered. In all cases, 10 ground stations were simulated,
along with 288 satellite nodes. The following data was
collected during each test case:
§ Message Density: The speed at which the simulation

generated messages for delivery. The number roughly
translates to the number of milliseconds to wait in
between sending the next message. Therefore, a higher
number results in a slower delivery rate.

§ Ground Sleep: The amount of time in milliseconds that a
ground station and satellite router will pause if it
determines that it's queue is empty before searching it
again.

§ Congestion Routing (on or off): Indicates whether
congestion routing was turned on or not during that
particular test run.

§ Total Messages Delivered: The total number of
messages successfully delivered during the test case.

§ Total Messages Created: The total number of messages
generated by the simulation of that particular test case.

§ Average Delivery Time: The average time in seconds that
each message needed from creation at the source ground
node until delivery at the destination ground node.

§ Average Hops: The average number of routing decisions
needed for each delivered message during the simulation.

§ Number of Handoffs: The number of times a destination
gateway satellite moved out of range during the
execution of the simulation.

From the collected data, several data items could then be
calculated for each test case:
§ Percent Delivered: [Number of Messages Delivered]

divided over [Number of Messages Created]
§ Time per Hop: [Average Delivery Time] divided over

[Average Hops per Message]
§ Handoffs per Message: [Number of Handoffs] divided

over [Number of Messages Delivered]
We present three testing phases in the remainder of this
section.

Phase I: Determine a Baseline. The first phase of testing was
designed to find an ideal set of parameters for [Ground Sleep]
and [Message Density]. The goal was to find a pair that
would generate a large number of messages, without tying up
the computer's resources to the point of causing many missed
messages. With a broad range of values for ground sleep, the
experiments showed that by setting message density to 1000
(1 new message created approximately every 1 second)
provided the most stable testing environment, which averaged
just over a 91% delivery rate. For the purposes of future test
cases, a value of 200 was chosen for a [Ground Sleep]. By
setting [Ground Sleep] to 200 and [Message Density] to

1000, tests resulted in an overall average successful delivery
rate of 97%.

Phase II: Evaluation of Success of the Algorithm. The
second phase of the testing process was to generate and
analyze a group of test cases and evaluate whether or not the
algorithm in this thesis performed in a manner expected
based on various simulation parameters. Figure 5 shows a
summary of the results of 58 separate test cases, each
simulating the delivery of a random number of messages

Figure 5. Test Case Summary

(minimum: 100, maximum: 1500). In each test, the
simulation was set with the [Message Density] parameter to
1000, simulating approximately 1 message every second.
Each message was randomly set to consist of between 1 and
10 packets. The legend on the right shows the [Ground
Sleep] values. Three main characteristics of each test case
are shown for each varying value of [Ground Sleep].

As the [Ground Sleep] time is lengthened, we would expect
the characteristics listed below:
§ Time per Hop: increases by a constant rate (with the

exception of the last case). We attribute this anomaly
due to errors caused by resource constraints in the testing
machine. By setting the [Ground Sleep] to a high value,
router queues fill up quickly, exhausting the memory
allocated to each thread, causing it to fail and lose its
currently stored messages. To avoid this, we suggest that
a machine with a large amount of memory (at least 512
MB) is chosen. If this solution is not feasible, then a
choice for [Ground Sleep] must be chosen so as to not
allow the queues to grow too large. For the computer in
our simulation, setting [Ground Sleep] equal to 1000 was
too large, but values between 100 and 400 allowed the
simulation to work correctly.

§ Handoffs per Message: Increases by a constant rate,
which is consistent with a longer [ground sleep] time.

§ Percent Delivered: Fairly constant, with the exception of
having a ground sleep of 1000, which simulates the

routing thread blocking for 1 second if the queue is
empty.

This data supports a stable, consistent and correct simulation
of the proposed satellite routing model. A second supporting
test is shown in Figure 6, which also demonstrated a
consistent operating simulation.

Figure 6. Average Hops Summary

Since the satellite constellation is a 12 by 24 node directed
graph, the maximum number of hops needed to transit the
internal network can be calculated by adding together half of
the maximum x value and the maximum y values: .5(12) +
.5(24) = 6+12 = 18. With a large number of test cases, one
could expect to see an average of 9 hops per test case. Also,
the average number of hops should be relatively constant. In
fact, an analysis of the data shows this is true, with an
approximate value of just under 10 for average number of
hops. This observation is shown in Figure 6, with the single
straight horizontal line representing the average trend.

Phase III: Congestion Routing. The third and last phase of
the data analysis evaluated the congestion routing portion of
the algorithm. Several tests were run with congestion routing
on and off, with all other parameters of the simulation being
the same. Two sets of test cases were run:
• Set 1: [Message Density]=1000 and [Ground Sleep]=200
• Set 2: [Message Density]=250 and [Ground Sleep]=150

In both cases, all of the results are almost identical for all
characteristics collected or calculated for the simulation.
This is probably due to the complexities that arose in trying
to start the simulation with heavily preloaded router queues.
The system used to run the simulation would fault whenever
a substantial load was applied prior to starting the simulation.
However, it is important to note, that with or without
congestion routing turned on, the simulation successfully
routed messages to their intended recipient. This is an
important conclusion since one should reasonably be
concerned if using congestion routing on a low-load network

would inappropriately degrade performance due to the extra

calculations involved. In this implementation, the answer is
that turning congestion routing on has no negative impact on
performance even in a low-load system. Figure 7 shows the
results of executing both sets of congestion routing test cases.

CONCLUSION

The complexities that arise from the Teledesic concept of
networking have spawned a unique and complex problem
space to routing high-speed multimedia network operations.
To solve this problem, a routing algorithm that uses physical
addresses instead of logical addresses can be used, which is a
divergence from normal routing operations today. Our tested
algorithm breaks away from the traditional logical addressing
concept and solves the physical routing problem. Our ideas
were tested successfully via a software-based simulator,
which indicated high-speed multimedia application data can
be efficiently and reliably be routed using our algorithm.

REFERENCES

[1] Gilder, George, "Ethersphere," Simon & Schuster, 1996.

[2] Khare, Rohit, Reflections on the Teledesic Security
Architecture, CalTech University, 28 March 97.

[3] Motta, Mary, Teledesic to Roll Out Plan for Battered
ICO, www.space.com, 7 Oct 2000.

[4] Schneller, Guizani and Murray, A Routing Solution for a
Global, Space-based Multimedia System, IEEE
GLOBECOM 2001, 3 Nov 2001.

[5] Teledesic Technology Overview, www.teledesic.com,
2000, Teledesic, LLC.

Figure 7. Congestion Routing Summary

	Home:
	Top:

