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Abstract: In this paper, the design of optimized fuzzy variable-structure controllers for a Field-Oriented 
Induction Motor (FOIM) is presented. An optimized Proportional-Integral (PI) is first found using an 
optimization procedure known as Neuro-Genetic Algorithm (NGA). Further, two types of fuzzy controllers, 
namely, the Split Fuzzy (SF) and the Full Fuzzy (FF) are presented and whose structures are obtained using 
Adaptive Neuro-Fuzzy Inference System (ANFIS). The later uses the data generated from the optimized PI-
controlled FOIM. Comparison between PI, SF and FF is made for parameter variation, load disturbance, and 
motor speed regulation and tracking. Finally, an improved Concept-based Fuzzy variable-structure controller 
(CF) for speed control is proposed and its robustness is demonstrated through load disturbance and command 
speed tracking.  
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1. Introduction  
 
Induction motors (IM) represent the workhorse of 
the industrial drive systems. They are less costly, 
more rugged, and more reliable than DC motors.  
 
The problems related to the induction motor are:  

1. Stator and rotor parameters variation during 
motor operation 

2. Difficulty in measuring the rotor time 
constant because of the temperature effect 

3. Saturation effect on the rotor inductance 
and on the decoupling process between the 
rotor flux and torque 

4. Nonlinear behavior and time-varying 
dynamics  

 
Because of these problems, classical control design 
could not be done properly especially when 
parameter variation and load disturbance occur [1]. 
To reduce the nonlinear coupling, field-oriented 
technique is usually used. The later is based on the 
decoupling between the torque and rotor flux. FOIM 
is known to fasten the transient response. Two well-
known methods used are: Direct and Indirect [2]. 
The former requires the knowledge of the module 
and the position of rotor flux. For this purpose, 
sensors with Hall effect or a dynamic model can be 
used. In the later (used here), only the position of 
rotor flux should be known.  
 
In general, a high performance motor drive system is 
characterized by [3]: 
• Fast step tracking response without overshoot 
• Minimum speed dip and restore time, due to a 

step load change  

• Achievement of zero steady-state error in the 
command tracking and load regulation  

However, if regulation characteristics with small 
speed dip and short restore time following a step 
load change is required, relatively large overshoot, 
and short settling time in the speed tracking may 
result. So, to improve the system performance, the 
controller must be robust against speed variation and 
external perturbation. 
 
Conventional PI controller has been widely used in 
industrial applications due to its simple control 
algorithm and easy implementation. However, It is 
difficult and complex to design a high performance 
PI-controller IM drive system [3] because of system 
parameter variation and load disturbance change. 
 
In this respect, fuzzy logic control [4,5] represents 
an attractive approach since it is a: 
1. Linguistic controller, i.e., no need for a precise 

and accurate   
2. Flexible nonlinear controller, i.e., can 

overcome nonlinearities  
3. Robust controller, i.e., insensitive to parameter 

variation  
 
This paper presents the design steps of an optimized 
fuzzy variable-structure controller [6,7] for a field-
oriented control of an induction motor as follows:   
1. An optimization procedure for the PI-controller 

gains, known as NGA, is used. NGA is based on 
the combination of Artificial Neural Network 
(ANN) with the Genetic Algorithm (GA).  

2. A data history of the motor speed and rotor flux 
is used to train 2 types of fuzzy controllers: split 
(SF) and full (FF) fuzzy controllers. In SF, a 



fuzzy block replaces each part of the PI whereas 
in FF, a fuzzy block replaces the whole PI. 

3. An improved variable-structure concept-based 
fuzzy controller (CF) for motor speed is 
proposed. The idea is to change the controller 
structure depending on the error between the 
desired and actual speed. To improve robustness, 
a filter (one-time constant) is added.  

 
Simulation tests were carried out using MATLAB-
SIMULINK. The effectiveness is demonstrated 
through comparison with the optimal PI under 
diverse tests, namely, parameter variation, load 
disturbance, and regulation and tracking of the 
motor speed. 
 
2. System Model  

 
Figure 1 shows the circuit diagram of a Field- 
Oriented control of an Induction Motor (FOIM). The 
state space model of an induction machine using 
current model is given [2] by 
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For field-oriented, the speed of the synchronously 
reference frame ωsyn and the rotor flux φr are: 
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The system parameter values are given in Table A. 
 

 
Figure 1 Induction motor circuit 

 
3. Neuro-Genetic Algorithm (NGA) 

 
The PI gains are optimized using the Neuro-Genetic 
Algorithm (NGA) where a combination between 
Artificial Neural Network (ANN) and Genetic 

Algorithm (GA) is used. The goal is to minimize a 
cost function represented by the error between the 
desired and actual variables to be controlled. NGA 
was found to save a lot of computational time since it  
avoids the simulation of the system for each value of 
the gains as needed by GA.. The steps, illustrated in 
Figure 2, are as follows:   
1. Determine the search interval (trial-&-error, 

stability criterion, etc.) for the controller gain K.  
2. Compute the cost function J for several values of 

K in the search interval. 
3. Use ANN to interpolate between these cost 

function values 
4. Operate GA only on ANN output.  

 
Figure 2 Neuro-Genetic Algorithm 

 
4. Adaptive Neuro-Fuzzy 
Inference  
    System (ANFIS) 

 
Fuzzy logic system (FLS) is based on the theory of 
fuzzy sets and uses linguistic variables that are 
words rather than numbers. This allows for human 
tolerance and data imprecision. In FLS, input 
variables are transformed into fuzzy sets 
(fuzzification) using membership functions, and 
processed by a collection of (if-then) fuzzy rules to 
get the output. These rules form fuzzy inference 
engine (FIS). 
 
There are two well-known types of FIS: Mamdani 
[8] and Sugeno [4]. The main difference is at the 
output level where Sugeno uses a constant or linear 
output membership functions rather than a 
distributed fuzzy set used by Mamdani. Because it is 
a more compact and computationally efficient than 
Mamdani, Sugeno system lends itself to the use of 
adaptive techniques for constructing fuzzy models. 
These adaptive techniques can be used to customize 
the membership functions so that the fuzzy system 
can model best the data. 
 
The Adaptive Neuro-Fuzzy Inference System 
(ANFIS) constructs a fuzzy inference system based 
on given input/output data sets. The membership 
function parameters are tuned (adjusted) using either 
a backpropagation algorithm alone, or in 
combination with a least-squares type of method. 
 
5. Test Results  
 

5.1 Proportional-Integral Control  
 



To achieve the steady-state values of the motor 
speed ωm and the rotor flux φr, a Proportional plus 
Integral (PI) controller is used for a Field-Oriented 
Induction Motor (FOIM).  
 
Optimum values for the PI gains are obtained using 
superimposed technique discussed in [ 9] as follows: 
1. Vary Ki1 while Kp1=Kp2=Ki2=0 (use Ids=0.6.580 

[A] in the φr -loop to achieve nominal flux of 1.7 
[Wb]) to get Ki1opt 

2. Vary Ki2 while Kp1=Kp2=Ki1=0 (use Iqs=0.3925 
[A] in the ωm – loop to achieve nominal speed of 
157.1 [rad/sec]) to get Ki2opt  

3. Vary Kp1 while Ki1= Ki1opt, Kp2=0, Ki2= Ki2opt to 
get Kp1opt 

4. Vary Kp2 while Ki1= Ki1opt ,  Kp1=Kp1opt, Ki2= Ki2opt  
to get Kp2opt 

 
NGA is used to determine the optimum gain values 
that are: Kp1=0.2, Ki1=0.08, Kp2=0.1, and Ki2=15. 
 
5.2 Fuzzy Logic Control  
 
Using the optimum PI controller gains found 
previously, training data for ANFIS are generated 
using the input-output pairs as shown in Table 1. For 
each fuzzy controller, a history block is used. For the 
Split Fuzzy (SF), 2 blocks are generated for each PI 
controller. For the Full Fuzzy (FF), one block is 
generated for each PI controller. The design steps 
are:  
1. Run the simulation of the FOIM using PI 

controllers 
2. Using the input-output sets given in Table 1, 

create fuzzy blocks for the speed and the flux 
using ANFIS 

3. For SF, replace each part of each PI by its 
corresponding fuzzy block. For FF, replace each 
PI by its corresponding fuzzy block.    

4. Test the robustness of the fuzzy controller using 
different operating conditions  

 
Table 1 Training set for Fuzzy Controllers 
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Note: The sampling time, dt=Ts, is taken as 0.01 sec.  

 
Figure 3 PI Control of Speed and Flux 

  

 
(b) Full Fuzzy (FF) 

 

 
(b) Split Fuzzy (SF) 

Figure 4 Fuzzy Control of FOIM 
 

The structure of FIS consists of 2 bell-type MMFs 
for each input. The training error is around 10-6. To 
test the robustness of the fuzzy controllers, some 
tests are used and the results are compared to the PI 
ones, namely, 
1. Change in load torque 
2. Change in speed reference  
3. Change in system parameters  
 
 
 



Test 1: Load torque variation  
In order to compare the PI with the fuzzy 
controllers, a new load torque pattern (not used 
during training process) is used. The time response 
of ωm and φr are shown in Figure 5. It is worth 
noting that both fuzzy (SF & FF) responds 
identically with lower overshoot and faster settling 
time (not clearly shown in ωm because of the scale) 
than the PI.  

 
Figure 5 Time Response to load torque variation  

 
Test 2: Speed Reference Tracking  
A random pattern for the desired speed (ωref) 
tracking is applied and the time responses of ωm and 
φr are shown in Figure 6. It is clear that both fuzzy 
(SF & FF) show identical performance with lower 
overshoot and faster response in motor speed.  

 
Figure 6 Speed and Flux variation during ωref change 
 
Test 3: System Parameter Changes  
A 50% increase in the stator inductance Ls and 
resistance Rs, and rotor resistance Rr. The time 
response of ωm and φr are shown in Figure 7. It is 
clear that fuzzy controllers exhibit better 
performance.  
 
5.3 Variable Structure for Speed Control 
 
To fully analyze the structure of the fuzzy 

controllers, an improved Concept-based Fuzzy 
variable-structure controller (CF) is presented. It is 
based on [9] added to it a filter with one-time 
constant, as shown in Figure 8, where G=T=8. 
 
The control input u=Iqs takes only one value, uwp or 
uwi, depending on the error magnitude (tolerance, 
tol), that is,  
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The value of the tolerance, tol, could be found using 
[9]. Here, 5 [rad/sec] is selected. 
 

 
Figure 7 Speed and Flux Regulation for a 50% 

Increase in Ls, Rs and Rr 
 

 
Figure 8 Improved Variable-Structure Fuzzy 

Concept-Based Controller (CF) 
 
Figure 9 shows the time response of ωm and Iqs 
during load torque TL disturbance whereas Figure 10 
shows the time response of ωm and Iqs for speed 
tracking with TL disturbance. This controller shows 
robustness to load torque variation but with the 
presence of chattering that should be eliminated or at  
least reduced.  
 



6. Conclusion 
 
This paper has presented the basic steps to design 
fuzzy controllers for field-oriented control of an 
induction motor. The first step was to find optimum 
values for the PI controllers used for speed and rotor 
flux controls. The PI controllers were used to 
generate fuzzy blocks through ANFIS. Three 
configurations were presented, namely, the Split 
Fuzzy (SF), the Full Fuzzy (FF) and the Concept 
VSC Fuzzy (CF). 
 
From the tests performed, it can be noticed that both 
SF and FF exhibit identical behavior and present 
better performance (lower overshoot and faster 
settling time) than the PI one, with chattering free. 
However, for the CF, robustness is demonstrated but 
the chattering is still present that should be 
eliminated or at least reduced. 

 
Figure 9 Speed control during TL variation 

 
Figure 10 Speed Tracking with TL variation 

  
7. References 
 
1. M. Gopal, Modern Control System Theory, 

Wiley Eastern Ltd. 2nd edition, 1993. 
2. P.C. Krause, C.H. Thomas, “Simulation of 

Symmetrical Induction Machinery”, IEEE 
Trans. Pow. App. Syst., Vol. 84, No. 11, pp. 
1038-53, 1965.  

3. C.M. Liaw, Y.S. Kung, C.M. Wu, “Design and 
Implementation of a Performance Field-Oriented 
Induction Motor Drive”, IEEE Transactions on 

Industrial Electronics, Vol. 38, No. 4, Aug. 91, 
pp. 275-282. 

4. Sugeno, M., Industrial applications of fuzzy 
control, Elsevier Science Pub. Co., 1985. 

5. L. Hakju, L. Jaedo, S. Sejin, “Approach to 
Fuzzy Control of an Indirect Field-Oriented 
Induction Motor Drives”, ISIE 2001, Pusan, 
Korea, 2001 IEEE, pp. 1119-23. 

6. M.E. Aggoune, F. Boudjemaa, A. Bensenouci, 
et al., “Design of Variable Structure Voltage 
Regulator Using Pole Assignment Technique”, 
IEEE Transactions on Automatic Control, Vol. 
39, No. 10, Oct. 94, pp. 2106-10. 

7. A. Bensenouci, et al., “Variable Structure 
Control Schemes For A Dc Motor”, 
MEPCON'2001, Cairo, Egypt, Dec. 29-31, 
2001. 

8. E.H. Mamdani, “Applications of Fuzzy Logic to 
Approximate Reasoning Using Linguistic 
Synthesis”, IEEE Trans. Computers., Vol. 26, 
No. 12, pp. 1182-91, 1977.  

9. A. Bensenouci, A.M. Abdel Ghany, “ Power 
System Voltage Regulator Based on Variable 
Structure Control with Free Chattering”, 2nd 
IASTED Int. Conference On Power And Energy 
Systems, Europes 2002, June 25-28, 2002, Crete, 
Greece 
 

8. Appendix 
 

Table A: Model Parameter Values 

Parameters Values 
Number of Poles, Np 
Rotor Resistance, Rr 
Rotor Inductance, Lr 
Stator Resistance, Rs 
Stator Inductance, Ls 
Mutual Inductance, Lsr 
Inertia, J 
Viscous Coefficient, B 
Nominal Speed, ωn 

2 poles 
3.805 Ω 
0.274 H 
4.85 Ω 
0.274 H 
0.258 H 

0.031 Kg.m2 

0.008 N/sec 
1490 rpm 
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