

ارامكو السعودية Saudi Aramco

Techniques & Algorithms for ACL Optimization

Ibrahim Al Abdulmohsin

Communications Eng. & Technical Support Dept. Saudi Aramco

OBJECTIVE

To explain the problems associated with access control lists, and how simple optimization techniques can alleviate such problems significantly

Background ACL Definition and Problem Statement Optimization Techniques & Algorithms ACLO Application Overview Results and Conclusions

Networking Introduced

Data Networking

is the science of linking together a group of two or more devices to allow for transmission of data and sharing of resources.

- Devices : computers, telephones, hardware appliances, network elements ...etc
- Transmission : unidirectional, bidirectional, oneto-one, one-to-many ..etc

Networking Introduced

أرامكو السعودية

Saudi Aramco

Routed Protocols such as IP and IPX, and routing protocols such as OSPF, IS-IS, and BGP are L3 protocols.

Networking Evolved

1st Phase:

Technologies that facilitate exchange of information

 Routing protocols, fast Layer2 technologies, ...etc

 2nd Phase:

 Technologies that are byproduct of networking
 Network Security, Network Management Systems, ...etc

3rd Phase:

Technologies that enhance the operation of existing infrastructures

SANs, Content Networking, ...etc

4th Phase:

Convergence

Voice over IP, Fax over IP, Video over IP, ...ete Saudi Aramco

Role of Routers in Today's Networks

4. Continghi Over praffic de lowel QoS; i ACL

What is an ACL?

- ACL (Access Control List): A policy that determines which traffic should be permitted and which should be denied. Packet p = {icmp, 10.1.12.3, 10.114.48.228, echo-reply}
 Rule: A 6-tuple object = {action, protocol, source address
 - range, source port range, destination address range, destination port range}

Permit tcp host 10.1.182.184 eq 1520 10.201.165.0 0.0.0.255 eq 1521

An ACL is composed of multiple rules, executed sequentianly

Saudi Aramco

X	Permit udp	host 10.1.12.2	any	eq snmp
√	Permit ip	10.1.12.2 0.0.0.3	any	
	Permit ip	host 10.1.12.3	any	
	Permit icmp	host 10.114.1.100	host 10.114.48.228	echo
	Permit icmp	host 10.114.1.100	host 10.114.48.228	echo-reply
	permit tcp	any	10.114.48.0 0.0.0.255	(95 matches)
	deny ip	any	any (365144 matches)	

Quick Definitions

- Executed Rule: Ri ε pk, read Ri executed for the kth packet
 → action field in Ri determines whether the packet pk will
 be permitted or denied.
- · Hits Probability of Bule Ril h(i)).

$$h(i) = matches$$
 (i) / $\sum_{j=1}^{ACL \ size} match$ (j)

Rule Packet Laten

$$RPL(i) = \sum_{0}^{i} RL(k)$$

Expected Packet L

$$EPL = \sum_{0}^{n-1} h(i)RPL(i)$$

Problem Statement

Delay

P

- Addition of ACLs increases end-to-end packet latency.
- Delay for a single packet depends on the location of the executed rule.

	$P_1 = \{i$.cmp,	10.1.12.3 , 10.1	14.48.228 , echo-re	eply)
2 X	P Permit	udp	host 10.1.12.2	any	eq snmp
Х	Permit	ip	10.1.12.2 0.0.0.3	any	
	Deny	ip	host 10.1.12.3	any	
	Permit	icmp	host 10.114.1.100	host 10.114.48.228	echo
	Permit	icmp	host 10.114.1.100	host 10.114.48.228	echo-reply
1	permit	tcp	any	10.114.48.0 0.0.0.255 ((95 matches)
	deny	ip	any	any (365144 matches)	

Increase in Packet latency for p2 = sixcrutideatencies ارامکو السمودیة Saudi Aramco

Problem Statement

Configuration Errors

الالمكو السمودية Configuration Errors are linearly proportional to **ACL size**

Saudi Aramco

Optimization Approaches

Optimal ACL Definition

Optimal ACL is an ACL that meets all security requirements with the least amount of processing overhead.

Two main approaches to ACL optimization:

I. Reducing ACL Size:

- **1.** Remove unnecessary rules.
 - **1.** Remove Shadowed Rules Algorithm: *O*(n⁴)
 - Remove Covered Rules Algorithm: O(n⁴)
- **ii.** Combine a pair of rules into a single general rule
 - Bit Combine Algorithm: O(n⁵)
- 2. Rearranging ACL rules:
 - I.Place rules with higher hits probabilities first without
changing ACL semantics.الامكو السعودية
Saudi Aramco
 - . Hits Optimizer Algorithm: O(n³ lg n)

Optimization Approaches

Optimal ACL Definition

Optimal ACL is an ACL that meets all security requirements with the least amount of processing overhead.

Optimizing ACLs is an NP-Complete problem ⁽¹⁾.

- \rightarrow Heuristics solutions needed.
- \rightarrow Scenario-based optimization:
 - 80% reduction in EPL
 - 40% reduction in ACL size.

(1) Source: V. Grout, J. McGinn, and J.Davies. "Real-Time Optimisation of Access Control Lists for Efficient Internet Packet Filtering", Journal of Heuristics, Vol. 12, 2006.

Quick Definitions

Rule Dependency:

Superset Rule:

$$\begin{aligned} Ri \supseteq Rj \leftrightarrow (Ri.prtcl \supseteq Rj.prtcl) \land (Ri.sa \supseteq Rj.sa) \\ \land (Ri.sp \supseteq Rj.sp) \land (Ri.da \supseteq Rj.da) \land (Ri.dp \supseteq Rj.dp) \end{aligned}$$

Shadowed Rule:

$$Ri \triangleright Rj \leftrightarrow (i < j) \land Ri \supseteq Rj$$

Covered Rules

$$\begin{aligned} Ri \triangleleft Rj \leftrightarrow (i < j) \land (Rj.act = Ri.act) \land Rj \supseteq Ri \\ \land (\forall k \mid i < k < j : Not (Ri\Delta Rk) \lor (Ri.act = Rk.act) \end{aligned}$$

ارامكو السعودية Saudi Aramco

Algorithmic Considerations

Changing the location of rules and/or combining them may change ACL semantics.
 Solution: Correct update of rules' boundaries after each change.
 Traffic counts are not always available for ACLs.
 Solution: Use prediction factors.
 Some anomalies may be deliberate.
 Solution: Report every action during optimization for the administrator to review.

Data Fie	Action	Protocol	Src IP	Src WCM
	Dst IP	Dst WCM	Src Port Rng	Dst Port Rng
	Hit Counts + Prediction Factor	Rule Latency	Ruie Up Bound	Rule Bottom Bound

General Algorithm

Go through the ACL & Look for potential optimization Potential Optimization found? \rightarrow Within rules' boundaries (i.e. no change in ACL semantics) ? \rightarrow Perform change Report Action Update Rules' boundaries Update ACL general variables (e.g. pointers to first and last rules, ACL size ...etc)

First Approach: Reducing ACL Size

permit	ip	10.1.12.2	0.0.0.7	any
deny	ip	any		any

Second Approach: Hits Optimizer

permit	ip	10.1.12.2 0.0.0.3	any	
permit	icmp	host 10.114.1.100	host 10.114.48.228	echo
permit	icmp	host 10.114.1.100	host 10.114.48.228	echo-reply
permit	tcp	any	10.114.48.0 0.0.0.255	eq www (10020 matches)
deny	ip	any	any (365144 matches)	

Sorted based on each individual rule's Effective Hits Probability (EHP) and ACL semantics. EHP is a function of three variables:

- Individual Rule Latencies (RL)
- 2. Hits Counts

3. Prediction Factor (PF)

 $EHP \propto (HitCounts + PF) / RL$

Second Approach: Hits Optimizer

1.	permit	tcp	any	10.114.48.0 0.0.0.255	eq 80 (109 matches)
2.	permit	ip	10.1.12.2 0.0.0.3	any	
3.	permit	icmp	host 10.114.1.100	host 10.114.48.228	echo
4.	permit	icmp	host 10.114.1.100	host 10.114.48.228	echo-reply
5.	deny	ip	any	any (365144 matches)	

- Rule 4 is placed first, highest HitsCount.
- Rule 5 cannot be relocated to keep ACL semantics.
- Rules 1, 2, & 3 are sorted based on each rule's prediction factor
- Rule 1 has a higher prediction factor than rules 2 and 3 for two reasons:
 - IP protocol vs. ICMP
 - **1.** "destination = any" vs. "destination = host"

Application Overview

ACLO Application: Quick Facts

- **Command-line C++ application.**
 - 3000+ lines of source code.
- 200KB executable file.
- Time complexity is $O(n^5)$
 - Customizable for speed at the expense of efficiency. E.g.
 - Selected scenarios instead of all scenarios.

Application Overview

ACLO Optimization Results

100+ ACLs optimized:

- **Average of 80% reduction in EPL (i.e. 5-time improvement)**
- Average of 40% reduction in ACL size (i.e.. ≈ 2-time improvement)

Reduction	Shadowed Rules Removal	Covered Rules Removal	Rules Combining Procedure	Hits Optimizer	dure and
EPL	1%	10%	25%	77%	
Size	2.5%	5%	37%	0%	

Reasons:

- Shadowing and covering are easier to detect by network administrators, and normally considered during security specifications.
- ii. Bit Combining procedure involves an excellent

ACLO Application Demo

Conclusions

- Optimizing ACLs is necessary to reduce processing overhead and configuration errors.
- It can be easily implemented using heuristic fast and efficient algorithms that reduces the size of the ACL and/or rearranges its rules.
- Hits Optimizer and Bit Combine procedures yield the greatest bulk of optimization.
- Algorithms can be easily customized in terms of time vs. efficiency, and can be implemented partially or fully, both online and offline.

