
Analytical Model for Performance Evaluation of Load Balancing
Algorithm for Grid Computing

Abderezak Touzene, Hussein Al Maqbali

Department of Computer Science Sultan Qaboos University

P.O. Box 36, Al-Khod 123, Sultanate of Oman
{touzene, m010537@squ.edu.om}

Abstract — In this paper we propose a new load
balancing algorithm for the grid computing service. The
proposed load balancing is based on the CPU speed of the
workers in the grid system. We developed an analytical
model and a simulation model using NS2 to evaluate the
performance of our load balancing algorithm. Our
simulation results validate our anlytical model and in the
same time it shows asymptotically optimal behaviour of
our load balancing algorithms.

Index Terms — Grid computing, Load balancing,
Resource management, Performance evaluation, Queuing
theory, Simulation models.

I. INTRODUCTION

A definition for grid computing is provided in
[1][2][3] where the following keywords are used
summarizing the key features of grid computing:
distributed resources, resource sharing, transparent
remote access, and infinite storage and computing
power. There are many research problems in grid
computing. In Condor [4][5], Grid Computing Service
(GCS) is based on cycle-scavenging strategy that uses
the idle workstation model. In Condor the tasks migrate
when the owner of the machine starts using it. In our
proposed GCS, task allocation is based on the
processing capacities of the workstations participating in
the grid. In Condor there is no load balancing. Tasks
distribution is based on a Matchmaker module: Each
resource advertises its properties and each task
advertises its requirement and then the Matchmaker
performs the matching and ranks them. The resource
with the highest rank is selected. In this paper we
present a dynamic, distributed load balancing algorithm
in a Grid environment. Our algorithm can also be
classified as system-level scheme, i.e. [6], tends to
maximize tasks throughput or the overall utilization rate
of the grid machines. We focus on steady-state mode,
where the number of tasks submitted to the grid is
sufficiently large and the arrival rate of tasks does not
exceed the grid overall computing power capacity. As
in [7], steady-state mode will help us deriving optimality
for our proposed load balancing algorithm. The class of
problems we address is: computation-intensive and

totally independent tasks with no communication
between them. Our analytical model is based on queuing
theory and we are interested to compute the average
response time of grid tasks. This paper is organized as
follows: Section II discusses related works in the
literature. Section III presents our grid computing
architecture. Section IV presents the load balancing
algorithm and the analytical queuing model. In section
V, we present our performance evaluation using NS2
simulator for the grid computing service. Section VI
concludes the paper.

II. RELATED WORKS

Load balancing has been discussed in traditional
distributed systems literature for more than two decades
[8] [9] [10]. It is more difficult to achieve load
balancing in Grid systems than in traditional distributed
computing environments because of the heterogeneity
and the dynamic nature of the grid. Many papers have
been published recently to address this problem. Most of
the studies present only centralized schemes [11] [12].
Some of the proposed algorithms are extensions of load
balancing algorithms for traditional distributed systems.
Many proposed methods suffer from significant
deficiencies, such as lack of scalability in the centralized
approaches proposed in [13]. A triggering policy based
on the endurance of a node reflected by its current
queue length is used in [13]. The authors tried to
include the communication latency between two nodes
during the triggering processes on their model, but did
not include the cost of task transfer. In our previous
work [14], we proposed a ring topology for the Grid
Agent Managers GAM (responsible for managing a
dynamic pool of workers) and the load balancing
algorithm was based on the real load of the workers. In
this paper we consider a hierarchical structure of GAMs
rather than a ring topology to improve the scalability of
the grid system. The proposed adaptive task allocation
algorithm automatically regulates the steady-state flow
of tasks directed to a given Grid Agent Manager. In
[15], the authors consider hierarchical tree structure for
grid computing services similar to ours. However, they

did not provide any task allocation procedure. Their
resource management strategy is based on a periodic
collection of resource information by a central entity,
which might be communication consuming. In our
algorithm, resource information is done only when it is
needed, as an example a new workstation joins the grid
system, it publishes its status (CPU speed) on the closest
grid manager.

III. GRID COMPUTING SERVICE ARCHITECTURE

A Grid Computing Service (GCS) system allows
users to submit their computing tasks along with
indication of the required hardware. After task
execution, the GCS will reply to the user sending back
the results. We identify four main steps in a GCS
system:

1) Task Submission Mechanism

The task submission process needs to be as simple as
possible and it should be accessible to a maximum
number of clients. Task submission can be done through
web sites using available web browsers.

2) Task Allocation Mechanism

A GCS needs to allocate computation tasks to
available resources.

3) Task Execution Mechanism

After a GCS allocates a task to suitable resources
(processing unit), then the task needs to be executed.

4) Results Collection Mechanism

After the execution of the tasks, clients need to be
notified of the outcome of their tasks execution.

The Proposed Hierarchical GCS Architecture:
We consider a large-scale grid computing service based
on a hierarchical geographical decomposition structure.
The following is a bottom-up view of our proposed grid
computing service architecture.

Worker Level: Any workstation, here called
computing unit, which belongs to a private or public
institution can join the grid system and offer its
computing resources to the grid. Participating in the
grid is as simple as installing a GCS client code
available from the Grid web site. When the computing
unit starts the GCS service it will report to a manager
some information about its resources such as CPU
speed.

Site Grid Manager (SGM) Level: Each newly joining
computing unit registers itself within a Site Grid
Manager which is responsible for managing a dynamic
pool of workers. The role of the SGM is to collect
information about active workers (CPU speed) in the
same site such as a university or a private institution.

SGM is also responsible of allocating the incoming
tasks to its pool of workers according to a specified load
balancing algorithm.

Metropolitan Grid Manager (MGM) level: A MGM
collects information about active resources managed by
Site Grid Managers in its geographical area. A MGM
manages a pool of SGMs. As for workers, new SGMs
can join the grid system by registering them selves at a
given parent MGM. Within this hierarchical distributed
architecture, adding or removing SGMs or workers
becomes very flexible and serves both the openness and
the scalability of our grid computing service. MGMs are
also involved at a higher level in task allocation and
load balancing in the grid. Besides to the described
functionalities of the MGMs, they constitute the entry
points of tasks to our grid system. An MGM acts as a
web server for the grid system. Clients in any
metropolitan area submit their computational tasks using
their web browser to the associated MGM, and then the
MGM will pass it to an appropriate SGM, which in its
turn transfers it to a chosen worker for execution.
MGMs all over the world may be interconnected using
an ad-hoc high-speed network. Figure 1 shows an
overview of the proposed hierarchical architecture of
our grid computing service.

Fig.1. GCS Architecture.

Resource Management Issues: In our design we
propose a distributed resource management schema. As
mentioned earlier, if any workstation joins or leaves the
grid system its status (CPU speed) information is
collected at the parent SGM which in turn transmits it to
its parent MGM in the hierarchy. All these resources
status information are used for the load balancing
operation.

IV. LOAD BALANCING

Our algorithm takes into account the processing
capacity and the steady-state load of the workers in the
Grid. The class of problems we address is: computation-
intensive and totally independent tasks with no
communication between them.

Load Balancing Model: For each worker participating
in the grid we can define the following parameters,

SGM

MGM

SGM

SGM

MGM

SGM

which will be used later on the tasks allocation
operation. We define a pool of workers as a group of
computing units registered in the grid system. The pool
is dynamically configured, i.e. workers may join or
leave the pool at any time. We define the following
parameters for our model:
1) Task: A task is represented by an Id task, a number
of instructions NIT, and a task size TS in bytes.
2) Worker Processing Capacity (WPC): Number of
tasks per second (similar to the measure used in [16])
the worker can process at full load (100% utilization).
This can be calculated using the CPU speed and
assuming an Average Number of Instructions per task
ANIT.
3) Site Processing Capacity (SPC): Number of tasks
per second the site can process. This can be calculated
as the sum of the WPCs of all the workers of that site.
4) Metropolitan Processing Capacity (MPC): Number
of tasks per second that can be processed under the
responsibility of an MGM. This can be calculated as the
sum of all the SPCs managed by the MGM.

A Multi-Level Load Balancing Algorithm: Our load
balancing algorithm is a distributed multi-level
algorithm. In what follows we describe the proposed
algorithm at each level of the grid architecture:

A) Worker level load balancing (SGM):

 Let us consider one Site Grid Manager and its pool of
workers. The SGM maintains information about the
resources in its pool. In our load balancing algorithm
we consider only the CPU resources and their
corresponding Worker Processing Capacity WPC. The
total processing capacity at this site is given by SPC. If
we denote by NS the number of tasks arrived at the
SGM at steady-state, the number of tasks to be allocated
to each worker of the pool will be proportional to the
processing capacity of the worker in order to maximize
the throughput and have a good utilization of all the
workers in the pool. We define the worker share of a
worker i in the pool by:

WSharei =
SPC

WPCNS i. (1)

Example 1: If we assume that NS = 100 tasks/second
arrive at an SGM manager with three workers having
respectively the following worker processing capacities:
WPC1 = 10 tasks/second, WPC2 = 20 tasks/second,
WPC3 = 40 tasks/second. The load (or the share) of
each of the three workers is given by:

Wshare1= 100.
70
10

 = 14.28 tasks/second; Wshare2=

100.
70
20

 = 28.57 tasks/second; Wshare3= 100.
70
40

 =

57.14 tasks/second. This corresponds to allocating more
work to faster workers.

B) Site level load balancing (MGM):

 Let us consider one Metropolitan Grid Manager
MGM which is responsible of a group of site grid
managers SGMs. Since the MGM maintains
information about all its SGMs in terms of processing
capacity, the same load balancing strategy as for the
workers will be applied for the SGMs. The total
processing capacity managed by this MGM is MPC
which is the sum of all the SPCs in this group. If we
denote by NM the number of tasks arrived at the MGM,
the number of tasks to be allocated to each Site Grid
Manager of the group is also proportional to the total
processing capacity of the workers of the site. We
define the share of each SGM in the group by:

Ssharei =
MPC
SPCNM i. (2)

Example 2: If we assume that NM =1000 tasks/second
arrive at an MGM manager with three SGMs having
respectively the following processing capacities:
SPC1=70 tasks/second, SPC2=220 tasks/second,
WPC3=410 tasks/second. The load or the share of each

SGM is: Sshare1 = 1000.
700
70

= 100 tasks/second;

Sshare2= 1000.
700
220

 = 314.28 tasks/second; Sshare3

= 1000.
700
410

 = 585.71 tasks/second. Note that the share

of 100 tasks/second of the first site manager will then be
allocated to the workers managed by this site manager
as in example 1.

V. ANALYTICAL QUEUING MODEL

In order to come up with an analytical model to predict
the tasks response time we simplified our grid system
and we will focus on only the time spent by a task in the
workers.
A) Analytical Model

Worker Level Model: We model each worker in the
pool by an M/M/1 queue. The arrival process to the
worker can be modeled by a Poisson process with
arrival rate kerworλ tasks/second. The tasks are
completely independent. The service time at the worker
is assumed to be of exponential distribution with service
rate kerworμ tasks/second which represents the
worker’s processing capacity WPC in our load
balancing algorithm.

Grid Level Model: The Metropolitan Grid Manager
receives tasks according to Poisson process of intensity

gridλ (tasks/second) and then automatically distribute

Worker 1

MGM

PW1

gridλ PW2

PW3

Worker 2

Worker 3

them to the grid workers with a routing probability PWi

=
MPC
WPCi , where i identifies the worker. Note that the

sum of the routing probabilities for all workers in the
Site is equal to 1. The site queuing model is illustrated
in Figure 2.

B) Grid Task Average Response time

We are interested in studying the grid system at steady
state. As described in the previous section, the grid
system is modeled by an open network of M/M/1
queues. We want to compute the expected response time
for grid tasks. We will use the Little’s formula which

Fig.2. Grid Queuing Model

relates the expected time spent by a task in the Grid
system E[Tgrid] to the arrival rate gridλ and the average

number of tasks in the system E[Ngrid] by the following
formula: E[Ngrid] = gridλ E[Tgrid]. We assume that

there are no task is lost or blocked. First we need to
compute E[Ngrid]= ∑ ker ker][wor worNE , the sum of

the expected number of task in each worker queue.
Since the worker queue is an M/M/1 queue, it is known
that the expected number of task in a worker is given by

E[Nworker]= ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− ker

ker

1 wor

wor

σ
σ

, where

kerworσ = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ker

ker

wor

wor

μ
λ

, kerworμ =WPCworker , and

kerworλ =
MPC

WPCwor
grid

ker.λ according to our load

balancing algorithm.
The expected tasks response time E[Tgrid] =

∑ ker

1
wor

gridλ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− ker

ker

1 wor

wor

σ
σ

C) NS2 Simulation Model and Results

In this section we present a simulation model to
measure the performance of our load balancing
algorithm. We use NS2 network simulator to simulate
the grid system. We use TCL to build the hierarchical
topology of our grid system, which consists of one
MGM and parameterized by a given number of SGM’s,
and a number of workers (CPU speed) managed by each
SGM.

In our experimental scenario we generated a grid
system with 1 MGM, 10 SGM’s with 10 workers each.
The CPU speeds of the workers have been generated
randomly. We assumed a Poisson arrival process to the
grid of parameter gridλ (tasks/second). We compare

our load balancing algorithm with a simple uniform load
distribution algorithm:
Uniform Load Balancing Algorithm: In this algorithm
we fix the routing probability from the MGM to the

SGM to the value
ns
1

, where ns is the number of

SGM’s in the grid. We also fix the routing probability

from any SGM to its workers to the value
nws

1
, where

nws is the number of workers in the corresponding site.
Table I and II show close tasks response time (in
seconds) between the once predicted by our analytical
model and those given by the simulations. Table II,
shows clearly the superiority of our load balancing
algorithm over the uniform strategy. It shows also that
our load balancing algorithm is asymptotically optimal

because its saturation point ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

grid

grid

μ
λ

≈ 1 is close to the

saturation level of the grid, independently from any load
balancing strategy.

Table I
 Task response time (s) for uniform load balancing

strategy

Load=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

grid

grid

μ
λ

Simulator Analytical

1.03611E-05 1.812562 1.836861806
3.10833E-05 2.196113 2.204342397
5.18054E-05 2.799685 2.767137924
0.000103611 7.850639 8.104159554
0.000124333 40.145146 40.1057248

Table II

Response time (s) for our load balancing strategy
Load=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

grid

grid

μ
λ

Simulator Analytical

0.777081283 0.004625 0.004648
0.828886702 0.006062 0.006055
0.88069212 0.008546 0.008684
0.984302958 0.05583 0.066007

VI. CONCLUSION

We presented a hierarchical architecture to design
Grid Computing Services. We also proposed a two-level
load balancing algorithm, which minimizes the overall
tasks response time and maximizes the grid system
utilization and throughput at steady-state. We developed
an analytical model to predict the expected response
time of a task in the grid system. We validate our
analytical model by a simulation model using NS2 to
evaluate the performance of our proposed load
balancing algorithm. Results obtained our analytical
model are close to those given by the simulation, and
both by show the asymptotical optimal behavior of our
load balancing strategy.

REFERENCES

[1] I. Foster, C. Kesselman, S. Tuecke. The Anatomy of
the Grid: Enabling Scalable Virtual Organizations.
International J. Supercomputer Applications, 15(3),
2001.

[2] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, The
Physiology of the Grid: An Open Grid Services
Architecture for Distributed Systems Integration.
Open Grid Service Infrastructure WG, Global Grid
Forum, June 2002.

[3] T. DeFanti and R. S. Teleimmersion. The Grid:
blueprint for a New Computing Infrastructure, In
Foster, I. and Kesselman, C.eds. Morgan
Kaufmann, pp:131-155, 1999.

[4] D. Thain, T. Tannenbaum, and M. Livny, Condor
and the Grid. In Fran Berman, Anthony J.G. Hey,
Geoffrey Fox, editors, Grid Computing: Making
The Global Infrastructure a Reality, John Wiley,
2003.

[5] J. Basney and M. Livny, Managing Network
Resources in Condor. In Proceedings of the Ninth
IEEE Symposium on High Performance Distributed

Computing (HPDC9), Pittsburgh, Pennsylvania. pp:
298-299. August 2000.

[6] Y. Li and Z. Lan, A Survey of Load Balancing in
Grid Computing. Computational and Information
Science, First International Symposium, CIS 2004,
Shanghai, China, December 2004

[7] O. Beaumont, A. Legrand, L. Marchal and Y.
Robert. Steady-State Scheduling on Heterogeneous
Clusters. Int. J. of Foundations of Computer
Science, 2005.

[8] H.A.James and K.A.Hawick. Scheduling
Independent Tasks on Metacomputing Systems.
Proc. ISCA 12th Int. Conf. on Parallel and
Distributed Computing Systems (PDCS-99). Fort
Lauderdale, USA, March 1999.

[9] V. Subramani, R. Kettimuthu, S. Srinivasan and
P.Sadayappan, Distributed Job Scheduling on
Computational Grid Using Multiple Simultaneous
Requests. Proc. of 11-th IEEE Symposium on High
Performance Distributed Computing (HPDC 2002),
July 2002.

[10] M. Arora, S.K.Das and R. Biswas. A De-
Centralized Scheduling and Load Balancing
Algorithm for Heterogeneous Grid Environments.
ICPP Workshops pp: 499-505, 2002.

[11] T.L. Casavant and J.G. Khul. A taxonomy of
scheduling in general purpose distributed
computing systems. IEEE Transaction on Software
Engineering, 14(2):141-153, 1994.

[12] C.Z. Xu and F.C.M. Lau. Load Balancing in
Parallel Computers: Theory and practice. Kluwer,
Boston, MA, 1997.

[13] M.J. Zaki, W. Li , and S. Parthasarathy.
Customized dynamic load balancing for network of
workstations. In Proc. of the 5th IEEE Int. Symp.
HDPC: 282-291, 1996.

[14] A. Touzene, S. Al Yahia, K.Day, B. Arafeh, Load
Balancing Grid Computing Middleware, IASTED
International Conference on Web Technologies,
Applications, and Services (WTAS 2005), July
2005, Calgary, Canada.

[15] B. Yagoubi and Y. Slimani. Dynamic Load
Balancing Strategy for Grid Computing.
Transactions on Engineering, Computing and
Technology. Vol 13, p:260-265, 2006.

[16] G. Shao, F. Berman, R. Wolski. Master/Slave
Computing on the Grid. In Proceedings of the 9th
Heterogeneous Computing Workshop, pp:3-16,
(Cancun, Mexico, 2000).

