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Abstract — In this paper we propose a new load 
balancing algorithm for the grid computing service. The 
proposed load balancing is based on the CPU speed of the 
workers in the grid system. We developed an analytical 
model and a simulation model using NS2 to evaluate the 
performance of our load balancing algorithm.  Our 
simulation results validate our anlytical model and in the 
same time it shows asymptotically optimal behaviour of 
our load balancing algorithms. 

Index Terms — Grid computing, Load balancing, 
Resource management, Performance evaluation, Queuing 
theory, Simulation models. 

I. INTRODUCTION 

A definition for grid computing is provided in 
[1][2][3] where the following keywords are used 
summarizing the key features of grid computing: 
distributed resources, resource sharing, transparent 
remote access, and infinite storage and computing 
power. There are many research problems in grid 
computing.  In Condor [4][5], Grid Computing Service 
(GCS) is based on cycle-scavenging strategy that uses 
the idle workstation model. In Condor the tasks migrate 
when the owner of the machine starts using it. In our 
proposed GCS, task allocation is based on the 
processing capacities of the workstations participating in 
the grid.  In Condor there is no load balancing. Tasks 
distribution is based on a Matchmaker module: Each 
resource advertises its properties and each task 
advertises its requirement and then the Matchmaker 
performs the matching and ranks them. The resource 
with the highest rank is selected. In this paper we 
present a dynamic, distributed load balancing algorithm 
in a Grid environment. Our algorithm can also be 
classified as system-level scheme, i.e. [6], tends to 
maximize tasks throughput or the overall utilization rate 
of the grid machines. We focus on steady-state mode, 
where the number of tasks submitted to the grid is 
sufficiently large and the arrival rate of tasks does not 
exceed the grid overall computing power capacity.  As 
in [7], steady-state mode will help us deriving optimality 
for our proposed load balancing algorithm.  The class of 
problems we address is: computation-intensive and 

totally independent tasks with no communication 
between them. Our analytical model is based on queuing 
theory and we are interested to compute the average 
response time of grid tasks. This paper is organized as 
follows: Section II discusses related works in the 
literature. Section III presents our grid computing 
architecture.  Section IV presents the load balancing 
algorithm and the analytical queuing model.  In section 
V, we present our performance evaluation using NS2 
simulator for the grid computing service.  Section VI 
concludes the paper. 

II. RELATED WORKS 

Load balancing has been discussed in traditional 
distributed systems literature for more than two decades 
[8] [9] [10]. It is more difficult to achieve load 
balancing in Grid systems than in traditional distributed 
computing environments because of the heterogeneity 
and the dynamic nature of the grid.  Many papers have 
been published recently to address this problem. Most of 
the studies present only centralized schemes [11] [12]. 
Some of the proposed algorithms are extensions of load 
balancing algorithms for traditional distributed systems. 
Many proposed methods suffer from significant 
deficiencies, such as lack of scalability in the centralized 
approaches proposed in [13].  A triggering policy based 
on the endurance of a node reflected by its current 
queue length is used in [13].  The authors tried to 
include the communication latency between two nodes 
during the triggering processes on their model, but did 
not include the cost of task transfer.  In our previous 
work [14], we proposed a ring topology for the Grid 
Agent Managers GAM (responsible for managing a 
dynamic pool of workers) and the load balancing 
algorithm was based on the real load of the workers.  In 
this paper we consider a hierarchical structure of  GAMs 
rather than a ring topology to improve the scalability of 
the grid system. The proposed adaptive task allocation 
algorithm automatically regulates the steady-state flow 
of tasks directed to a given Grid Agent Manager.   In 
[15], the authors consider hierarchical tree structure for 
grid computing services similar to ours.  However, they 



did not provide any task allocation procedure. Their 
resource management strategy is based on a periodic 
collection of resource information by a central entity, 
which might be communication consuming.  In our 
algorithm, resource information is done only when it is 
needed, as an example a new workstation joins the grid 
system, it publishes its status (CPU speed) on the closest 
grid manager.  

III. GRID COMPUTING SERVICE ARCHITECTURE 

A Grid Computing Service (GCS) system allows 
users to submit their computing tasks along with 
indication of the required hardware. After task 
execution, the GCS will reply to the user sending back 
the results.  We identify four main steps in a GCS 
system: 

1) Task Submission Mechanism 

The task submission process needs to be as simple as 
possible and it should be accessible to a maximum 
number of clients. Task submission can be done through 
web sites using available web browsers.  

2) Task Allocation Mechanism 

A GCS needs to allocate computation tasks to 
available resources. 

3) Task Execution Mechanism 

After a GCS allocates a task to suitable resources 
(processing unit), then the task needs to be executed.  

4) Results Collection Mechanism 

After the execution of the tasks, clients need to be 
notified of the outcome of their tasks execution. 

The Proposed Hierarchical GCS Architecture: 
We consider a large-scale grid computing service based 
on a hierarchical geographical decomposition structure. 
The following is a bottom-up view of our proposed grid 
computing service architecture. 

Worker Level: Any workstation, here called 
computing unit, which belongs to a private or public 
institution can join the grid system and offer its 
computing resources to the grid.  Participating in the 
grid is as simple as installing a GCS client code 
available from the Grid web site. When the computing 
unit starts the GCS service it will report to a manager 
some information about its resources such as CPU 
speed.  

Site Grid Manager (SGM) Level: Each newly joining 
computing unit registers itself within a Site Grid 
Manager which is responsible for managing a dynamic 
pool of workers. The role of the SGM is to collect 
information about active workers (CPU speed) in the 
same site such as a university or a private institution. 

SGM is also responsible of allocating the incoming 
tasks to its pool of workers according to a specified load 
balancing algorithm.  

Metropolitan Grid Manager (MGM) level: A MGM 
collects information about active resources managed by 
Site Grid Managers in its geographical area. A MGM 
manages a pool of SGMs. As for workers, new SGMs 
can join the grid system by registering them selves at a 
given parent MGM. Within this hierarchical distributed 
architecture, adding or removing SGMs or workers 
becomes very flexible and serves both the openness and 
the scalability of our grid computing service. MGMs are 
also involved at a higher level in task allocation and 
load balancing in the grid.  Besides to the described 
functionalities of the MGMs, they constitute the entry 
points of tasks to our grid system. An MGM acts as a 
web server for the grid system.  Clients in any 
metropolitan area submit their computational tasks using 
their web browser to the associated MGM, and then the 
MGM will pass it to an appropriate SGM, which in its 
turn transfers it to a chosen worker for execution. 
MGMs all over the world may be interconnected using 
an ad-hoc high-speed network.  Figure 1 shows an 
overview of the proposed hierarchical architecture of 
our grid computing service. 
 

 
 
Fig.1. GCS Architecture. 
 

Resource Management Issues: In our design we 
propose a distributed resource management schema.  As 
mentioned earlier, if any workstation joins or leaves the 
grid system its status (CPU speed) information is 
collected at the parent SGM which in turn transmits it to 
its parent MGM in the hierarchy. All these resources 
status information are used for the load balancing 
operation.  

IV. LOAD BALANCING 

Our algorithm takes into account the processing 
capacity and the steady-state load of the workers in the 
Grid. The class of problems we address is: computation-
intensive and totally independent tasks with no 
communication between them.  

Load Balancing Model: For each worker participating 
in the grid we can define the following parameters, 
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which will be used later on the tasks allocation 
operation. We define a pool of workers as a group of 
computing units registered in the grid system.  The pool 
is dynamically configured, i.e. workers may join or 
leave the pool at any time.  We define the following 
parameters for our model: 
1) Task: A task is represented by an Id task, a number 
of instructions NIT, and a task size TS in bytes.   
2) Worker Processing Capacity (WPC): Number of 
tasks per second (similar to the measure used in [16]) 
the worker can process at full load (100% utilization). 
This can be calculated using the CPU speed and 
assuming an Average Number of Instructions per task 
ANIT.  
3) Site Processing Capacity (SPC): Number of tasks 
per second the site can process.  This can be calculated 
as the sum of the WPCs of all the workers of that site.  
4) Metropolitan Processing Capacity (MPC): Number 
of tasks per second that can be processed under the 
responsibility of an MGM. This can be calculated as the 
sum of all the SPCs managed by the MGM.  

A Multi-Level Load Balancing Algorithm: Our load 
balancing algorithm is a distributed multi-level 
algorithm. In what follows we describe the proposed 
algorithm at each level of the grid architecture: 

A) Worker level load balancing (SGM): 

 Let us consider one Site Grid Manager and its pool of 
workers.  The SGM maintains information about the 
resources in its pool.  In our load balancing algorithm 
we consider only the CPU resources and their 
corresponding Worker Processing Capacity WPC. The 
total processing capacity at this site is given by SPC. If 
we denote by NS the number of tasks arrived at the 
SGM at steady-state, the number of tasks to be allocated 
to each worker of the pool will be proportional to the 
processing capacity of the worker in order to maximize 
the throughput and have a good utilization of all the 
workers in the pool. We define the worker share of a 
worker i in the pool by:  

WSharei = 
SPC

WPCNS i.   (1)                               

Example 1: If we assume that NS = 100 tasks/second 
arrive at an SGM manager with three workers having 
respectively the following worker processing capacities: 
WPC1 = 10 tasks/second, WPC2 = 20 tasks/second, 
WPC3 = 40 tasks/second.  The load (or the share) of 
each of the three workers is given by: 

Wshare1= 100. 
70
10

 = 14.28 tasks/second; Wshare2= 

100. 
70
20

 = 28.57 tasks/second;   Wshare3= 100. 
70
40

 = 

57.14 tasks/second.  This corresponds to allocating more 
work to faster workers. 

B) Site level load balancing (MGM): 

 Let us consider one Metropolitan Grid Manager 
MGM which is responsible of a group of site grid 
managers SGMs.  Since the MGM maintains 
information about all its SGMs in terms of processing 
capacity, the same load balancing strategy as for the 
workers will be applied for the SGMs. The total 
processing capacity managed by this MGM is MPC 
which is the sum of all the SPCs in this group.  If we 
denote by NM the number of tasks arrived at the MGM, 
the number of tasks to be allocated to each Site Grid 
Manager of the group is also   proportional to the total 
processing capacity of the workers of the site.  We 
define the share of each SGM in the group by:  

Ssharei = 
MPC
SPCNM i.   (2) 

Example 2: If we assume that NM =1000 tasks/second 
arrive at an MGM manager with three SGMs having 
respectively the following processing capacities: 
SPC1=70 tasks/second, SPC2=220 tasks/second, 
WPC3=410 tasks/second.  The load or the share of each 

SGM is:  Sshare1 = 1000. 
700
70

= 100 tasks/second; 

Sshare2= 1000. 
700
220

 = 314.28 tasks/second;   Sshare3 

= 1000.
700
410

 = 585.71 tasks/second. Note that the share 

of 100 tasks/second of the first site manager will then be 
allocated to the workers managed by this site manager 
as in example 1.  

V. ANALYTICAL QUEUING MODEL 

In order to come up with an analytical model to predict 
the tasks response time we simplified our grid system 
and we will focus on only the time spent by a task in the 
workers.    
A) Analytical Model 

Worker Level Model: We model each worker in the 
pool by an M/M/1 queue. The arrival process to the 
worker can be modeled by a Poisson process with 
arrival rate kerworλ  tasks/second. The tasks are 
completely independent. The service time at the worker 
is assumed to be of exponential distribution with service 
rate kerworμ  tasks/second which represents the 
worker’s processing capacity WPC in our load 
balancing algorithm. 

Grid Level Model: The Metropolitan Grid Manager 
receives tasks according to Poisson process of intensity 

gridλ  (tasks/second) and then automatically distribute 
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them to the grid workers with a routing probability PWi 

= 
MPC
WPCi , where i identifies the worker.  Note that the 

sum of the routing probabilities for all workers in the 
Site is equal to 1.  The site queuing model is illustrated 
in Figure 2.                                       

B) Grid Task Average Response time 

We are interested in studying the grid system at steady 
state. As described in the previous section, the grid 
system is modeled by an open network of M/M/1 
queues. We want to compute the expected response time 
for grid tasks.  We will use the Little’s formula which   
 

Fig.2. Grid Queuing Model 
 

relates the expected time spent by a task in the Grid 
system E[Tgrid] to the arrival rate gridλ  and the average 

number of tasks in the system E[Ngrid] by the following 
formula: E[Ngrid] = gridλ  E[Tgrid].  We assume that 

there are no task is lost or blocked.  First we need to 
compute E[Ngrid]= ∑ ker ker ][wor worNE , the sum of 

the expected number of task in each worker queue.  
Since the worker queue is an M/M/1 queue, it is known 
that the expected number of task in a worker is given by 

E[Nworker]= ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− ker

ker

1 wor

wor

σ
σ

, where 

kerworσ = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ker

ker

wor

wor

μ
λ

, kerworμ =WPCworker , and  

kerworλ = 
MPC

WPCwor
grid

ker.λ  according to our load 

balancing algorithm. 
The expected tasks response time E[Tgrid] = 

∑ ker

1
wor

gridλ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− ker

ker

1 wor

wor

σ
σ

 

C)  NS2 Simulation Model and Results 

In this section we present a simulation model to 
measure the performance of our load balancing 
algorithm. We use NS2 network simulator to simulate 
the grid system.  We use TCL to build the hierarchical 
topology of our grid system, which consists of one 
MGM and parameterized by a given number of SGM’s, 
and a number of workers (CPU speed) managed by each 
SGM.   

In our experimental scenario we generated a grid 
system with 1 MGM, 10 SGM’s with 10 workers each.  
The CPU speeds of the workers have been generated 
randomly.  We assumed a Poisson arrival process to the 
grid of parameter gridλ  (tasks/second).   We compare 

our load balancing algorithm with a simple uniform load 
distribution algorithm:  
Uniform Load Balancing Algorithm: In this algorithm 
we fix the routing probability from the MGM to the 

SGM to the value
ns
1

, where ns is the number of 

SGM’s in the grid. We also fix the routing probability 

from any SGM to its workers to the value
nws

1
, where 

nws is the number of workers in the corresponding site.  
Table I and II show close tasks response time (in 
seconds) between the once predicted by our analytical 
model and those given by the simulations.  Table II, 
shows clearly the superiority of our load balancing 
algorithm over the uniform strategy.  It shows also that 
our load balancing algorithm is asymptotically optimal 

because its saturation point ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

grid

grid

μ
λ

≈ 1 is close to the 

saturation level of the grid, independently from any load 
balancing strategy. 
 
 

Table I 
 Task response time (s) for uniform load balancing 

strategy 
 

Load=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

grid

grid

μ
λ

 
Simulator Analytical 

1.03611E-05 1.812562 1.836861806 
3.10833E-05 2.196113 2.204342397 
5.18054E-05 2.799685 2.767137924 
0.000103611 7.850639 8.104159554 
0.000124333 40.145146 40.1057248 

 
 
 



 
Table II 

Response time (s) for our load balancing strategy 
Load=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

grid

grid

μ
λ

 
Simulator Analytical 

0.777081283 0.004625 0.004648 
0.828886702 0.006062 0.006055 
0.88069212 0.008546 0.008684 
0.984302958 0.05583 0.066007 

VI. CONCLUSION 

We presented a hierarchical architecture to design 
Grid Computing Services. We also proposed a two-level 
load balancing algorithm, which minimizes the overall 
tasks response time and maximizes the grid system 
utilization and throughput at steady-state. We developed 
an analytical model to predict the expected response 
time of a task in the grid system.  We validate our 
analytical model by a simulation model using NS2 to 
evaluate the performance of our proposed load 
balancing algorithm.   Results obtained our analytical 
model are close to those given by the simulation, and 
both by show the asymptotical optimal behavior of our 
load balancing strategy. 
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