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Abstract — The University Class Scheduling Problem 
(UCSP) is concerned with assigning a number of courses to 
classrooms taking into consideration constraints like 
classroom capacities and university regulations. The 
problem also attempts to optimize the performance criteria 
and distribute the courses fairly to classrooms depending 
on the ratio of classroom capacities to course enrollments. 
The problem is a classical scheduling problem and 
considered to be NP-complete. It has received some 
research during the past few years given its wide use in 
colleges and universities. Several formulations and 
algorithms have been proposed to solve scheduling 
problems, most of which are based on local search 
techniques. In this paper, we propose a complete approach 
using integer linear programming (ILP) to solve the 
problem. The ILP model of interest is developed and 
solved using the three advanced ILP solvers based on 
generic algorithms and Boolean Satisfiability (SAT) 
techniques. SAT has been heavily researched in the past 
few years and has lead to the development of powerful 0-1 
ILP solvers that can compete with the best available 
generic ILP solvers. Experimental results indicate that the 
proposed model is tractable for reasonable-sized UCSP 
problems. 
 
Index Terms — University Class Scheduling, Optimization, 
Integer Linear Programming (ILP), Boolean Satisfiability. 

I. INTRODUCTION 

The University Class Scheduling Problem (UCSP) 
represents an important class of optimization problems 
in operational research. It is considered one of the most 
difficult problems faced by universities and colleges 
today. Briefly defined, given a number of courses and 
classrooms, the goal is to assign courses to classrooms 
while satisfying all of the university constraints and 
optimizing the utilization of existing facilities 
effectively and efficiently.  

Given the increasing number of students in 
universities, a large number of courses are offered every 
term. Each course has a different number of enrolled 
students and each classroom has different capacities 
which make the assignment of courses to classrooms 
complicated. Furthermore, it is not only enough to 
schedule a course in a classroom with a higher capacity 
than the number of enrolled students, since this can still 

lead to inefficient utilization of classrooms which can 
upset instructors and students. For-example, given two 
courses with 6 and 19 enrolled students, respectively, 
and two classrooms with capacities of 20 and 50 
students, respectively, both courses can fit in either of 
the classrooms. However, it would make more sense to 
assign the larger course to the larger classroom which 
will improve the student’s learning experience, allow 
additional students to attend the class, and reduce the 
chances of cheating when conducting exams.  

Many formulations and algorithms have been 
proposed to solve UCSP. Most of these algorithms are 
based on local search techniques, namely hill climbing, 
simulated annealing, and tabu search  [7] [11] [14] [19]. 
Such algorithms cannot prove unsatisfiability or 
guarantee that a solution is optimal. In other words, if a 
solution is found, it cannot guarantee that this solution 
has the best possible optimization cost. In this paper, we 
propose an integer linear programming (ILP) approach 
to solve the UCSP. The approach is complete and hence 
examines the entire search space defined by the problem 
to prove that either (i) the problem has no solution, i.e. 
the problem is unsatisfiable, or (ii) that a solution does 
exist, i.e. the problem is satisfiable. If the problem is 
satisfiable, the proposed approach will search all 
possible solutions to find the optimal solution.  

Recently, advanced Boolean Satisfiability (SAT) 
solvers have been extended to solve 0-1 ILP problems 
 [1]. The SAT problem is a central problem in artificial 
intelligence and computer science and has received 
considerable attention from researchers. Many complex 
Engineering problems have been successfully solved 
using SAT. Such problems include routing  [16], power 
optimization  [2], verification  [4], and graph coloring 
 [17], etc. Today, several powerful SAT solvers exist and 
are able of handling problems consisting of thousands of 
variables and millions of constraints  [10] [13] [15]. They 
can also compete with the best available generic ILP 
solvers. 

In this paper, we will show how to formulate the 
UCSP as an ILP problem and study the possibility of 
solving the UCSP using (i) advanced SAT-based 0-1 
ILP algorithms and (ii) generic-based ILP algorithms. 
We compare the performance of both algorithms and 
provide empirical results showing that generic-based 
ILP solvers tend to outperform SAT-based ILP solvers 



for the proposed problem. The results include the actual 
schedule of classrooms and courses offered in the 
School of Engineering at the American University of 
Sharjah in addition to randomly generated set of courses 
and classrooms. The proposed approach is complete and 
is guaranteed to identify the optimal schedule.  

This paper is organized as follows. Section 2 
provides a general overview of SAT and ILP. Section 3 
shows how to formulate the UCSP as a 0-1 ILP 
instance. A detailed example is shown in Section 4. 
Experimental results are presented and discussed in 
Section 5. The paper is concluded in Section 6. 

II. BOOLEAN SATISFIABILITY AND INTEGER LINEAR 
PROGRAMMING 

Recent years have seen significant advances in 
Boolean satisfiability (SAT) solving. These advances 
have lead to the successful deployment of SAT solvers 
in a wide range of problems in Engineering and 
Computer Science. The SAT problem involves finding 
an assignment to a set of binary variables that satisfies a 
given set of constraints. In general, these constraints are 
expressed in products-of-sum form, also known as 
conjunctive normal form (CNF). A CNF formula ϕ  on 
n binary variables nxx ,...,1  consists of the conjunction 
(AND) of m clauses mωω ,...,1  each of which consists of 
the disjunction (OR) of literals. A literal is an 
occurrence of a Boolean variable or its complement. 

As an example, the CNF instance:  

))((),,( cbbacbaf ∨∨=  

consists of 3 variables, 2 clauses, and 4 literals. The 
assignment {a=1, b=0, c=0} leads to a conflict, whereas 
the assignment {a=1, b=0, c=1} satisfies f. Note that a 
problem with n variables will have n2  possible 
assignments to test. The above example with 3 variables 
has 8 possible assignments. An instance with 100 
variables will have 1.27e+30 assignments. Assuming a 
processor that can verify an assignment every 1 
nanosecond, the processor will complete testing all 2100 
assignments in 4e+12 years. 

Despite the SAT problem being NP-Complete  [6], 
there have been dramatic improvements in SAT solver 
technology over the past decade. This has lead to the 
development of several powerful SAT algorithms that 
are capable of solving problems consisting of thousands 
of variables and millions of constraints. Such solvers 
include GRASP  [13], zChaff  [15], and Berkmin  [10].  

Most powerful SAT solvers are based on the 
original Davis-Putnam backtrack search algorithm  [8]. 
The algorithm performs a depth first search process that 
traverses the space of n2  variable assignments until a 
satisfying assignment is found (the formula is 
satisfiable), or all combinations have been exhausted 
(the formula is unsatisfiable). The search process 

proceeds as follows. Originally, all variables are 
unassigned. The algorithm begins by choosing a 
decision assignment to an unassigned variable. A 
decision tree is maintained to keep track of variable 
assignments. After each decision, the algorithm 
determines the implications of the assignment on other 
variables. This is obtained by forcing the assignment of 
the variable representing an unassigned literal in an 
unresolved clause, whose all other literals are assigned 
to 0, to satisfy the clause. This is referred to as the unit 
clause rule. If no conflict is detected, the algorithm 
makes a new decision on a new unassigned variable. 
Otherwise, the backtracking process un-assigns one or 
more recently assigned variables and the search 
continues in another area of the search space.  

SAT solvers have been extended with several 
powerful algorithms to further expedite the search 
process. One of the best algorithms is known as the 
conflict analysis procedure  [13] and has been 
implemented in almost all SAT solvers. Whenever a 
conflict is detected, the procedure identifies the causes 
of the conflict and augments the clause database with 
additional clauses, known as conflict-induced clauses, to 
avoid regenerating the same conflict in future parts of 
the search process. In essence, the procedure performs a 
form of learning from the encountered conflicts. 
Significant speedups have been achieved with the 
addition of conflict-induced clauses, as they tend to 
effectively prune the search space.  

Intelligent decision heuristics and random restarts 
 [15] also played an important role in enhancing the SAT 
solvers performance. The developers of the state-of-the-
art SAT solver, Chaff  [15], proposed an effective 
decision heuristic, known as VSIDS, and implemented 
several other enhancements, including random restarts, 
which lead to dramatic performance gains on many CNF 
instances. 

Another recent extension to SAT solvers deals with 
its input format. Restricting the input of SAT solvers to 
CNF formulas can restrict their usage in various 
domains. Therefore, researchers have focused on 
extending SAT solvers to handle stronger input 
representations. Specifically, existing SAT solvers 
 [1] [9] [18] have recently been extended to handle 
pseudo-Boolean (PB) constraints which are linear 
inequalities with integer coefficients that can be 
expressed in the normalized form  [1] of: 

bxaxaxa nn ≥+++ ...2211  

where +∈Zbai , and ix  are literals of Boolean variables. 
Note that any CNF clause can be viewed as a PB 
constraint, e.g. clause )( cba ∨∨  is equivalent to 

1≥++ cba . PB constraints can, in some cases, replace 
an exponential number of CNF constraints. They have 
been found to be very efficient in expressing “counting 
constraints”  [1]. Furthermore, PB extends SAT solvers 



to handle optimization problems as opposed to only 
decision problems. This feature has introduced many 
new applications to the SAT domain. Specifically, all 0-
1 ILP problems (i.e. ILP problems whose variables are 
Boolean) can be easily solved now by SAT solvers. 

III. PROBLEM FORMULATION 

In this paper, we are interested in evaluating the use 
of advanced ILP solvers, SAT- and generic-based, in 
solving the university class scheduling problem (UCSP). 
We start by describing how to formulate the problem as 
0-1 ILP. To illustrate our approach, consider a 
university with n courses and m classrooms. In general, 
the number of classrooms m is greater than or equal to 
the number of courses n. For each course i, we define m 
variables as follows: 

 ijx = 1 if course i is assigned to classroom j,  
                    0 otherwise. 

Three sets of constraints are generated as follows: 
• Each course must be assigned to one classroom. This 

can be expressed using the following PB constraint: 

∑
=

∀=
m

j
ij ix

1
1  

• Each classroom can fit up to one course to avoid 
scheduling two courses in the same classroom. This 
can be expressed using the following PB constraint: 

∑
=

∀≤
n

i
ij jx

1
1  

• Each classroom capacity must be equal to or exceed 
the course’s enrollment. This can be expressed using 
the following PB constraint: 

∑
∈

∀=
Tj

ij ix 0  

Where T is the set of classrooms whose capacity is less 
than the number of enrolled students in class i. 
 The above three constraints will satisfy the 
university constraints and ensure that each course gets 
assigned to a classroom with a larger (or equal) capacity 
than the course’s student enrollment. However, it will 
not optimize the utilization of the existing classrooms. It 
is still possible that large courses get assigned to small 
classrooms and small courses to large classrooms as 
shown in Section 1. In order to avoid such a scenario, 
and distribute the courses fairly and efficiently among 
the available classrooms, we add the following 
optimization PB objective function: 

jixcinimizem ijij ∀∀∑ ,)(  
where ijc is equal to the capacity of classroom j divided 
by the number of students enrolled in course i. The 
advantage of the objective function is described in 
Section IV. 

By formulating the problem as such, we can do 
more than finding a fair schedule. We can incorporate 
any university restrictions or faculty preferences that we 
can think of in the resulting schedule. For example, by 
adding the PB constraint 1=AZx , we are forcing course 
A to be assigned to classroom Z. Similarly, we can 
exclude course A from being assigned to classroom Y by 
adding the PB constraint 1=AYx .  

We can also add dependencies between courses. 
For example, we can force one of two courses, e.g. A 
and B, to be assigned to a specific classroom Z. This can 
be expressed by adding the following CNF constraint 

)( BZAZ xx ∨ .  
We can also force certain courses to be assigned to 

specific classrooms only if a specific situation occurs. 
For example, we can force courses A and B to be 
assigned to classrooms X and Z only if course C is 
assigned to classroom W. This is expressed using the 
following set of CNF constraints )( AXCW xx ∨  and 

)( BZCW xx ∨ . 
Note that the complexity of converting the class 

scheduling problem into a 0-1 ILP problem is 
)( kmnO + , where k is the number of course restrictions 

described above. 

IV. ILLUSTRATIVE EXAMPLE 

In this example, we will consider a university 
consisting of 3 classrooms (Class A, Class B and Class 
C), and offering 3 courses (Course 1, Course 2 and 
Course 3). Let’s also assume the capacities and 
enrollments shown in Table 1. 

 
TABLE I 

Summary of class capacities and enrollments 
Class Capacity  Course Enrollment 

A 10  1 5 
B 15  2 18 
C 20  3 8 

 
The problem will consist of 9 variables. The following 
constraints are generated: 
• Each course must be assigned to one classroom 

1111 =++ CBA xxx  
1222 =++ CBA xxx  
1333 =++ CBA xxx   

• Each classroom can fit up to one course 
1321 ≤++ AAA xxx  
1321 ≤++ BBB xxx  
1321 ≤++ CCC xxx  

• Classroom capacity must exceed course enrollment 
022 =+ BA xx  

 
The optimization function is expressed as follows: 
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Note that in the above expression, since the ILP solver 
can only accept integer coefficients, all ratios were 
multiplied by one hundred and were rounded to the 
nearest integer for simplicity. 

In summary the example needs a total of 9 
variables, 7 PB constraints, and 1 PB objective function. 
Two solutions are identified by the ILP solver and are 
summarized in Table 2. Clearly, the first solution is the 
best solution since it yields the smallest objective 
function value and assigns the smaller course, i.e. course 
1, to the smaller classroom, i.e. classroom A, and the 
larger course, i.e. course 3, to the larger classroom, i.e. 
classroom C. Course 2 can only fit in classroom B. 

 
TABLE II 

Summary of identified solutions. 
Course 

Assignment Solution 
# 1 2 3 

Optimization 
function 

value 
1 A C B 499 
2 B C A 536 

V. EXPERIMENTAL RESULTS 

In this section, we evaluate the use of ILP 
algorithms in solving the UCSP problem. A tool was 
developed using C# with an easy-to-use GUI interface. 
The user inputs the available courses and classrooms 
with their corresponding enrollment size and capacities, 
respectively. The tool also allows the user to upload an 
excel sheet that lists all available courses and 
classrooms to speed up and ease the data entry process. 
The tool then converts the user input into a 0-1 ILP 
instance as described in Section 3. The instance is then 
passed into a backend ILP solver and once the search is 
completed, the solution, if satisfiable, is converted into 
an easy-to-read schedule. The tool can handle an 
unlimited number of courses and classrooms, allows the 
user to enter unique preferences for each course or 
classroom, and is easily adaptable to use any 0-1 ILP 
solver in the backend as long as the solver accepts the 
input format generated by the tool. We used three of the 
best 0-1 ILP solvers: (1) The SAT-based 0-1 ILP solvers 
PBS  [1] [3] and MiniSAT+  [9], and (2) the leading 
commercial generic ILP solver, CPLEX  [12]. PBS and 
MiniSAT+ are advanced SAT solvers that can handle 
both CNF and PB constraints. They employ the latest 
advances in the SAT technology. The experiments were 
tested on an Intel Xeon 3.2 GHz machine with 4 GB of 
RAM. The runtime limit was set to 1000 seconds. We 
present results for the Spring 2007 schedule of the 
School of Engineering at the American University of 
Sharjah (AUS). We also present results for 8 randomly 
generated sets of courses and classrooms. The random 

test case generator was modified to produce only 
satisfiable instances as following. For each case, the 
user would enter the number of courses d and a 
minimum/maximum course enrollment size g/h. The 
generator defines a number of classrooms equal to the 
number of courses d will be defined. For each course, 
the generator will set the enrollment size to a random 
value q that is hqg ≤≤ . A corresponding classroom 
will be assigned a random capacity r such that hrq ≤≤ . 

Table III shows the results using AUS’s course 
schedule. The course slots are shown for each case. A 
UTR slot means that the course is taught on Sundays, 
Tuesdays, and Thursdays. Similarly, a MW slot means 
that the course is taught on Mondays and Wednesdays. 
The table also shows the course timings. A single ILP 
instance is generated for all courses per time slot. The 
table shows the results obtained by the ILP solvers. 
Specifically, the table shows the runtime in seconds 
(Time), the value of the optimization objective function 
(Weight), and whether the solution is optimal or not 
(Opt). If the solver times-out, i.e. is unable to complete 
the search within the 1000 seconds runtime limit, we 
report the best found solution. All solvers should yield 
the same optimal solution if they complete the search. 
Finally, in order to evaluate the advantage of the 
proposed approach, we report in the third column of the 
table the value of the objective function using the 
current AUS class assignment.  

Table IV shows the results using the randomly-
generated course schedules. The table shows a 
description of courses and classrooms size and the 
results obtained by the ILP solvers. Several observations 
are in order: 
• For the AUS schedule, all solvers identify better 

schedules than the existing course schedule used at 
AUS for all time slots. In fact, the schedule 
identified by CPLEX has a weight that is on 
average 25% smaller than the weight identified by 
the existing schedule. 

• In some cases, CPLEX was able to improve the 
weight by a factor of almost 40% as in the MW 11-
12:15 case. 

• The generic ILP solver CPLEX successfully solves 
and identifies the optimal solution for all instances 
in less than a second. 

• The SAT-based ILP solvers, PBS and MiniSAT+, 
time-out in all but one case, but return the best 
found solution. Giving the solvers extra time would 
have probably help find a better solution or even 
solve the problem by finding the optimal solution.  

• The generic ILP solver, CPLEX, outperforms the 
SAT-based ILP solvers for the proposed problem. 

• The larger the instance, i.e. number of classes and 
classrooms, the longer is the search runtime. 

• The approach is complete and is guaranteed to find 
a fair schedule given enough time and memory 
resources. 



VI. CONCLUSIONS 

In this paper, we present an ILP-based approach to 
generating university course schedules. We show how 
to formulate the university schedule as an ILP problem. 
The ILP models are solved using advanced generic-
based and Boolean satisfiability based ILP solvers. The 
goal is to find a schedule that satisfies the university’s 
rules, yet optimizes the use of the existing facilities such 
as minimizing the capacity to enrollment ratio in a class. 
The approach was tested on different cases with various 
sizes and showed promising results. The approach is 
complete and will find the best possible schedule, or will 
indicate that no schedule exists that meets the current 
university rules. 
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TABLE III 
SUMMARY OF RESULTS USING THE AUS SCHEDULE. 

AUS School of Engineering Schedule MiniSAT+ PBS CPLEX Test 
Case Class Slot # of  

Courses Weight Time Opt Weight Time Opt Weight Time Opt Weight

1 UTR 8-8:50 10 2052 >1K No 1436 >1K No 1444 0 Yes 1436 
2 UTR 9-9:50 12 2017 >1K No 1687 >1K No 1689 0 Yes 1686 
3 UTR 10-10:50 10 1938 >1K No 1511 >1K No 1522 0 Yes 1511 
4 UTR 11-11:50 12 2288 >1K No 1938 >1K No 1940 0 Yes 1936 
5 UTR 12-12:50 11 1932 >1K No 1630 >1K No 1638 0.01 Yes 1627 
6 UTR 1-1:50 11 2173 >1K No 1608 >1K No 1613 0 Yes 1607 
7 MW 8-9:15 10 1721 >1K No 1577 >1K No 1592 0 Yes 1574 
8 MW 9:30-10:45 10 1923 >1K No 1413 >1K No 1426 0.01 Yes 1413 
9 MW 11-12:15 3 616 0.14 Yes 366 0.01 Yes 366 0 Yes 366 
10 MW 12:30-1:45 9 1628 384 Yes 1274 >1K No 1277 0.01 Yes 1274 

TABLE IV 
SUMMARY OF RESULTS USING THE RANDOMLY GENERATED SCHEDULE. 

Enrollment MiniSAT+ PBS CPLEX Test  
Case 

# of  
Courses Min Max Time Opt Weight Time Opt Weight Time Opt Weight 

1 20 10 25 >1K No 2392 >1K No 2391 0.01 Yes 2385 
2 20 10 70 >1K No 2957 >1K No 2933 0.01 Yes 2925 
3 40 10 25 >1K No 4827 >1K No 4810 0.02 Yes 4786 
4 40 10 70 >1K No 5882 >1K No 5866 0.02 Yes 5762 
5 60 10 25 >1K No 7610 >1K No 7586 0.06 Yes 7523 
6 60 10 70 >1K No 10324 >1K No 10311 0.03 Yes 9928 
7 80 10 70 >1K No 12930 >1K No 12735 0.17 Yes 12302 
8 100 10 70 >1K No 17437 >1K No 17186 0.3 Yes 16307 


