
� A Very Fast and Low Power Pseudo-Incrementer
for Address Bus Encoder/Decoder

Hadi Parandeh-Afshar 1, Ali Afzali-Kusha1, and Ali Khakifirouz2

1Nanoelectronics Center of Excellence, School of Electrical and Computer Engineering,
University of Tehran, Tehran, Iran

2 Department of Electrical and Computer Engineering, Microsystems Technology Laboratories
Massachusetts Institute of Technology, USA

hparande@ut.ac.ir, afzali@ut.ac.ir, khaki@mit.edu

Abstract—This paper presents a very fast yet low power
pseudo incrementer structure which may be used in address bus
encoders/decoders. This structure, which is based on the ripple
carry incrementer, is much faster than the incrementer. Using
this structure, the delay and the power of address bus
encoders/decoders may be reduced considerably. Analytical and
synthesis results show that the structure is faster than current
incrementer circuits while its circuit area and power are much
smaller than those of current fast incrementers.

Index Terms—Bus encoder, Incrementer, Low Power, High
Performance.

I. INTRODUCTION
For the design of high-speed low-power VLSI architectures
efficient processing units which are optimized for the speed
and power consumption should be used. Among different
modules of a digital system, arithmetic blocks have a key
effect in minimizing the power and the delay of the digital
system. Recently, for many reasons such as the limited battery
life, maximum allowed chip temperature, reliability issues,
and cooling and packaging costs the power minimization has
become a vital design objective. Consequently, low power
design methodologies at different design level have received a
significant attention. Since the circuit speed is also an
important design objective, it is desired that wherever
possible, these methodologies do not adversely affect the
speed of the digital system.

 In the state of the art digital systems, the energy
dissipation per memory bus access could be unacceptably
high. The large power consumption is due to the high
capacitance of the buses. In a computer system, the generated
addresses on an address bus are often in-sequence and two
sequential addresses have the difference of one unit.
Therefore, instead of placing sequential values on the bus, the
value at the source (source word) is examined. If the value is
only one unit greater than the previous address, then the
address bus will remain unchanged. If this is not the case, the
previous address is incremented and XORed by the current
address and the results of the XOR is sent over the bus. Then,

the same address should be constructed in the decoder.
Among the efficient methods used for the address bus
encoding are T0-XOR and a combination of T0-XOR and
other methods [1][2]. The T0-XOR scheme, which is very
efficient for consecutive addresses, an encoder (/decoder) is
used for reducing the bus switching activities. Here, both the
encoder and the decoder modules make use of an incrementer
whose width is equal to that of the bus. Therefore, an
incrementer is an essential component of the bus
encoding/decoding blocks. As the bus width increases, the
logic complexity, the delay, and the power consumption of
this incrementer also increase proportional to the bus width.
This increase can lead to the deterioration of the delay, the
power, and the area of the overall structure.

In this paper, we propose a structure which plays the
incrementer role for the T0-XOR encoder/decoder. With the
proposed incrementer, the delay, the power-delay product, and
the energy-delay product of the encoder/decoder improves
while the power dissipation and the area overhead become
less dependent on the bus width. The rest of this paper is
organized as follows. In Section II, we provide a review of
different incrementer structures while in Section III the
proposed architecture is presented. Section IV shows a
comparison between the proposed architecture and
conventional incrementers. The summary and concluding
remarks are given in Section V.

II. CONVENTIONAL INCREMENTER CIRCUITS

In this work, we have studied three incrementer
architectures which include ripple-carry structure, binary-tree
Carry Look Ahead structure [3], and Sklansky Prefix-adders
[4][5]. When comparing the incrementers, the performance
level is greatly dependent on the technology used for the
implementation. To be able to evaluate each architecture
independent of the target implementation, we adopted the
model proposed in [6] which relates the required circuit area
with the propagation time of each logic cell [4]. In this
approach, each two-input monotonic gate (e.g., AND, NAND)
is counted as one gate while an XOR is counted as two gates

91

The 18th International Confernece on Microelectronics (ICM) 2006

in terms of area and delay. In [3], the above structures have
been compared by assuming that the width of the desired
adder is ‘W’. The results of this comparison are given in Table
I. As the results show, the ripple carry incrementer has the
minimum area while the Sklansky Prefix incrementer has the
minimum delay.

TABLE I. CONVENTIONAL INCREMENTER FEATURES [3].

Incrementer Circuit Area Circuit Delay

Ripple Carry 3.W W+1

Carry Look-Ahead 6.W 4.Log2W

Sklansky Prefix 1/2.W.log2W+2W Log2W + 2

'W' is the incrementer width.

III. PROPOSED ARCHITECTURE

The structure of the proposed architecture is based on the
ripple carry incrementer. Fig. 1 shows the internal logic of a
4-bit ripple carry incrementer. The half adders, denoted by
HA, are used for constructing the incrementers. In this figure,
the critical delay is the delay of carry propagation through the
AND gates chain. As the size of the chain grows, this delay
increases making the delay of the most significant bit the
largest one.

To alleviate the delay problem, we use the fact that when
incrementing a number, the carry will not propagate if several
consecutive bits are zero. This is achieved in the proposed
solution by inserting flip-flops between each M bit slice.
These slices are called RC (Ripple Carry) blocks. Each flip-
flop stores the result of ANDing of M bits of the previous
address which should be incremented (see Fig. 2). Inserting
flip-flops in the AND gate chain produces a new chain of
AND gates which is much shorter than the previous one. This
way, we can speed up the carry propagation to the MSB bits.
Indeed we have pipelined the incrementer by considering the
consecutive addresses. This causes that delay of each stage
goes down, while the total latency remains unchanged. This is
possible by considering that the upper stages do not change
from one cycle to next; so most of the time we can use
previous values of these stages.

The new chain consists of two separate chains: before and
after the flip-flop. The first part of this chain is inside the RC
slices and performs AND of ‘X’ bits inside that slice to form
the ‘co’ output. This is shown in Fig. 3, where a basic RC
slice for M = 4 is shown. Compared to the circuit of Fig. 1,
a new AND gate chain has been added. This output is
registered so that it can be used in the next clock cycle. The
second part of the new chain is out of the RS blocks, where
the ‘ci’ inputs of the RC blocks are constructed. Note that the
‘ci’ input of the last RC block has the longest propagation
delay. Except for the first clock, the ‘ci’ input may be
considered as the input carry bit of the block. If the input is 1,
some of the addresses associated with that block will possibly
change, while if it is 0, no address bit for that block will

change for cycle n.
Note that the ‘co’ output of each block is independent of the

‘ci’ input and only depends on ‘X’, and, therefore, the
generations of ‘co’ outputs of all M-bit blocks are performed
in parallel.

Fig. 1. 4-bit ripple carry incrementer.

Fig. 2. General structure of proposed circuit.

Fig. 3. RC block proposed circuit with M = 4.

To see how this circuit works, assume that the following
sequential values should be generated by a 16-bit incrementer:

Time Generated Address X[15:0]
0 0010 0101 1111 1101
1 0010 0101 1111 1110
2 0010 0101 1111 1111
3 0010 0110 0000 0000
4 0010 0110 0000 0001

Note that the ‘1’ digits that are shown in bold font (bit 7 to
bit 1) in time 1 are repeated at time 2. This means that bits (7
to 1) of the address in time 1 can be used instead of the same
bits in time 2 to reduce the delay. Let us consider the case
where all the ‘X’ bits for a slice (say, X [4:7] in time 2) is
equal to those in time 1, then ‘co’ is generated in the previous
cycle as 1 and is stored in the register. Now, if ‘ci’ for this
block is 1, then for the next block, the ‘ci’ is generated to be 1,
meaning that some of the addresses associated with this block
should change. This way, we have managed to generate ‘ci’
for the next block faster which yields a quicker generation of
the corresponding Y’s.

The above explanation was based on with the assumption

92

The 18th International Confernece on Microelectronics (ICM) 2006

that the corresponding input bits in the two consecutive cycles
are the same. If this is not case, again the circuit will work
correctly. To show this, consider the case that the
corresponding bits in the two cycles are not the same. The
only case, in consecutive sequences, that this difference
affects the output of the first chain is the case where all the M
bits of the input in the previous time are 1’s (this is the only
case where the output of the first AND gate chain is 1) and in
the next cycle, they all become 0 making the output of the
AND gate chain 0 while the register has stored 1. Note that
the output of the second AND gate, whose inputs are the
output of the flip-flop and the ‘ci’ of the current block, is the
‘ci’ of the next block. Since the latter input for this special
case is 0, then the output of the flip-flop, which is 1, is masked
ensuring the correct operation of the circuit. For other cases,
which occur rarely in the stream of instruction addresses, the
inputs are not consecutive. In these cases, the proposed
pseudo incrementer may generate a value different from the
incremented value of new input. This is the reason for calling
the structure ‘pseudo incrementer’. Here, the result is
corrected for the next consecutive address. As the decoder
uses the same structure, no address conflicts occurs and the
original address is recovered in the decoder side.

These basic M-bit RC blocks are cascaded for wider buses.
Fig. 2 shows a 32-bit pseudo incrementer in which four 8-bit
RC blocks have been cascaded. As explained, by using
intermediate flip-flops, the original functionality of
incrementer will be kept, while the critical path of the
incrementer is reduced considerably. For an incrementer wider
than RC blocks, e.g., 32 or 64 bits, the critical path delay is
equal to the maximum delay of the RC blocks plus the
propagation delay of the last block ‘ci’ input. The longest path
through each RC block is equal to the generation delay of the
output bit for the last AND gate in the block. The propagation
delay of the last block ‘ci’ input is reduced by using a
balanced tree of 2-input AND gates.

From the above discussion, it may be concluded that the
number of flip-flops, which are used in the architecture,
depends on the widths of the RC block and the whole pseudo
incrementer. It will be shown in the next section, for a 64-bits
bus, the optimum number of blocks is four leading to 15 flip-
flops. This width is chosen to minimize both the delay and the
area of the circuit.

IV. RESULTS AND DISCUSSION

In this section, the efficiency of the proposed technique is
evaluated by comparing its results by those of the
conventional incrementer architectures. Given the small
number of gates on the critical path and the weak dependence
of the delay on the bus width, a higher performance and a
lower power consumption is expected to be achieved for the
proposed technique compared to those of the conventional
incrementers. To evaluate the power dissipation and the delay
of the incrementers, the architectures described in this paper
were implemented in Verilog HDL at the RT level and

simulated for the functional verification. Then, a prototype
was synthesized using the Synopsys Design Compiler with the
TSMC 0.18�m library designed for the operation at 1.6V.

A. Analytical Timing Analysis
There are different choices for the width of each RC block
depending on the incrementer width. Here, we obtain an
approximate relation between the maximum delay of the
incrementer as a function of the incrementer width and the
width of the RC block. Suppose that the bus width is W and
each RC slice is M bit wide. As explained in Section II, the
model used in [6] is used for computing the delay and the area
of incrementer. The critical path of the pseudo incrementer
will pass through the last slice of the RC block, where the Wth

bit (Y [W – 1]) is constructed. First, consider the ‘ci’ input of
this slice which is generated using (W/M – 1) AND gates. If
the balanced tree of 2-input AND gates is used for
constructing ‘ci’ input, then the delay of ‘ci’ (�ci) is given by

�ci = log2(W/M – 1) (1)

On the other hand, note that the most significant bit in each
slice has the maximum delay in that slice. This delay is equal
to the sum of the delays of the ‘ci’ input to that slice, (M – 1)
AND gates, and one XOR gate. As the XOR gate is a two
level gate, its delay is 2 and, hence, the internal delay of each
RC (�int) block is given by

�int = log2(M – 1) + 2 (2)

where a balanced tree of 2-input AND gates is used for
constructing the AND products. Therefore, the total delay of
the pseudo incrementer (�inc) is obtained as

�inc = log2(W/M – 1) + log2(M – 1) + 2 (3)

This analysis may be used in obtaining the optimum M for any
W. For example, in the case of a 64-bit address bus width, the
optimum M is four (see Fig. 4). With this width, the delay of
the pseudo incrementer is about 7.
 The area of the proposed incrementer is the sum of the
areas consumed by the RC blocks, external AND gates, and
flip-flops. Each RC block has 4.(M – 1) area unit. Also, there
are (W/M – 1) external AND gates and flip-flops. For the sake
of analytical analysis, we use a pass-transistors
implementation of flip-flops and, hence, the area of each flip-
flop is considered approximately equal to two AND gates
area. The total area of the incrementer (Ainc) is obtained from

Ainc = 4W – W/M – 3 (4)

Using the above computations and assuming that the pseudo
incrementer is 64-bit wide and the RC is 4-bit wide, Table II
shows the comparison results for different incrementer
structures. As evident from the results, the proposed structure
has the lowest delay while its circuit area is smaller than
fastest conventional structure.

93

The 18th International Confernece on Microelectronics (ICM) 2006

B. Synthesis Results
The switching activities of the gate-level implementation of
the incrementer circuits were obtained by simulating the
synthesized blocks with the random streams of addresses. We
have used Synopsys Design Power to correlate the switching
activities to the power dissipation. Table III shows the
performance parameters for the 64-bits incrementers of
proposed architectures and the conventional incrementer
structures using a 0.18�m CMOS technology with a supply
voltage of 1.6V. The results show that the proposed structure
has a lower delay compared to those of the conventional
incrementers while its area and power are much smaller than
those of the previous fast structures.

V. SUMMARY AND CONCLUSION

We presented new pseudo incrementer architecture suitable
for address bus encoder/decoder. Both the analytical and
synthesis results showed that the proposed architecture was
very fast in comparison with the conventional incrementer
architectures, while its circuit area was also much smaller than
that of conventional structure. In addition, the simulations
results showed a considerable improvement in reducing the
power consumption was achieved in the proposed
incrementer.

REFERENCES

[1] W. Fornaciari, M. Polentarutti, D. Sciuto, and C. Silvano,
“Power Optimization of System-Level Address Buses
Based on Software Profiling,” CODES, pp. 29-33, 2000.

[2] S. Ramprasad, N. Shanbhag, and I.N. Hajj, “A Coding
Framework for Low-Power Address and Data Buses,”
IEEE Transaction on Very Large Scale Integration
Systems, June 1999.

[3] B. Parhami, Computer Arithmetic: Algorithms and
Hardware Designs, Oxford University Press, New York,
2000.

[4] Reto Zimmermann, Binary Adder Architectures for Cell-
Based VLSI and their Synthesis, Ph.D. thesis, Swiss
Federal Institute of Technology, Zurich, 1997.

[5] J. Sklansky, “Conditional sum addition logic,” IRE
Transactions on Electronic Computers, volume EC-9, no.
6, pp. 226–231, June 1960.

[6] Akhilesh Tyagi, “A reduced-area scheme for carry-select
adders,” IEEE Transactions on Computers, vol. 42, no.
10, pp. 1163–1170, October 1993.

18.45

7.48 7.59 7.61 7.83 7.56 7.53 7.49

0
2
4
6
8
10
12
14
16
18
20

2 4 6 8 10 12 14 16

M-bit

De
la
y

Fig. 4. Delay of proposed circuit as a function of different slice widths.

TABLE II. COMPARISON OF CONVENTIONAL INCREMENTERS AND PROPOSED

CIRCUIT.

Incrementer Circuit Area Circuit Delay

Ripple Carry 192 65

Carry Look-Ahead 384 24

Sklansky Prefix 320 8

Proposed Circuit 237 7

TABLE III. PERFORMANCE COMPARISON.

Incrementer Ripple
Carry

Carry Look
Ahead

Sklansky
Prefix Adder

Proposed
Circuit

Power (mW) 0.297 0.534 0.476 0.320

Critical Path (ns) 7.64 3.74 1.01 0.88

of Transistors 14890 30533 27017 18776

PDP (10-12J) 2.269 1.997 0.480 0.281

PD2P (10-15Js) 17.33 7.468 0.484 0.247

94

The 18th International Confernece on Microelectronics (ICM) 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

	Button2:
	Button3:

