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Abstract

Data mining techniques aim to discover patterns and extract useful information from facts
recorded in databases. A widely adopted approach to this objective isto apply various machine learning
algorithms to compute predictive classifiers (models) of the available data. One of the main challengesin
this research area is the development of techniques that scale up to large and possibly physically
distributed databases. This paper investigates data mining techniques that scale up to large and physically
distributed databases (Meta-Learning). It presents a suggested solution for ensembl e of classifiers through
a meta-learning. Specifically, it describes the architecture, design, and implementation of CMC System
(Combining Multiple Classifiers System), a distributed data mining system that facilitates the sharing of
information among participating data sites without the need of exchanging or dispatching remote data, and
employs meta-learning approaches to combine the multiple classifiers that are learned. Furthermore, one
of the most powerful learning ideas that boost any learning algorithm (Boosting) is used to increase the
performance of this system. An empirical evaluation of the CMC system and its boosting on different
databases over N distributed nodes is also computed by detailing a comprehensive set of experiments and
results achieved.

1 Introduction

The number and sze of databases and data warehouses grow at phenomena rates.
For these databases to be useful, data mining process (the process of extracting useful
information from such datasets) must be peformed [1, 3, 8]. The datasets may be
inherently didtributed but cannot be localized on one processng sSte to compute one
cassfier [5, 6, 9. Mog of the current machine learning dgorithms are required dl data
to be resdent in man memory, which is dealy untenable in many redidic databases
[15]. So, andyzing and monitoring these didributed data sources require data mining
technology designed for distributed applications (Didributed Data Mining (DDM)) [2, 4,
5,6,7,8,9, 10,11, 16, 27, 28, 29, 31, 32].

Nowadays, classfier ensembles are often used for distributed data mining in order
to discover knowledge from distributed data sources. They are rather recent sub-area of
machine learning that has been manly used for increesng the predictive accurecy of



sngle dasdfies, scding up learning dgorithm to very large datasets, and learning from
distributed datasets. They have been gpplied with success to a number of applications,
playing an important role to new research aress like DDM, Multiple Classfier Systems,
and Information Fusion.

A particular approach that has been successfully gpplied to classfier ensembles is
meta-learning [2, 11, 12]. Metalearning is defined as learning from learned knowledge.
It refers to a generd drategy that seeks to learn how to integrate a number of separate
learning processes in an intdligent fashion. The basc idea is to execute a number of
machine learning processes on a number of data subsets in pardle, and then to integrate
their collective results (classfiers) through an additiona phase of learning.

The rest of the paper is organized as follows. Section 2 views reated
methodologies for combining classfiers induced from distributed databases. Section 3
presents the architecture design of the CMC System. Section 4 outlines the materids and
methods used in this sudy. Section 5 exhibits experimental results and discussion.
Section 6 concludes thiswork, and section 7 poses future research directions.

2 Related Works

Classficaion is the derivatiion of a function or modd, cdled a classfier, which
determines the class of an object based on its attributes. A set of objects is given as the
traning set in which every object is represented by a vector of atributes dong with its
cass. A dassfier is condructed by andyzing the reationship between the attributes and
the dasses of the objects in the training set. Such a classfier can be used to predict the
classes of future objects and to develop a better understanding of the classes of the
objects in the database.

The integration of multiple classfiers has been under active research in machine
learning and neurd networks. The chdlenge of integration is to decide which classfier to
rly on or how to combine classfications produced by severa classfiers. Two man
goproaches have lately been used: sdection of the bett classfier and combining the
classfications produced by the basic classfiers.

Classfier sdection methods can dso be divided into two subsets datic and
dynamic methods. A gatic method proposes one “best” method for the whole data space,
while a dynamic method takes into account characterigics of a new instance to be
classified [26, 30].

The most popular and smplest method of combining classfiers is voting [6, 17].
The cdassfications produced by the basic classfie's are handled as (un-weighted
(Mgority) or weighted) votes for those particular classficaions and the classfication
with most votes is sdected as the find classfication. More sophidticated classfication
dgorithms that use combingtion of dassfiers incdude the Stacking [18], Average
Stacking [13], Didributed Stacking [27], SCANN [19], Bagging [14, 24], Boosting [22,
23, 24], and Smilarity Based [28, 33].
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Stacking is a method that combines multiple classfiers by learning the way that
their output correlates with the true class on an independent dataset which is collected
from dl nodes (meta-data) and then generates a globd classfier (GC). On the other hand,
Average Stacking uses the average of dl cassfiers outputs to generate a meta-data, and
Didributed Stacking congtructs a globa dassfier from loca cdassfiers that does not
require moving raw data around, scdes up efficiently with respect to large numbers of
distributed databases. SCANN method is based on the correspondence andysis [20] and
the nearest neighbor procedure, combining minima nearet neighbor classfiers within
the stacking framework.

Smilaity Based agpproach for didributed classfication uses the par-wise
gmilarity of loca cassfiers in order to produce a better classfication for esch of the
digributed databases. This is achieved by averaging the decisons of dl locd classfiers
weighted by ther smilarity with the cdassfier induced from the origin of the unclassfied
instances.

Boogting is one of the most powerful learning ideas introduced in the lagt ten
years [21, 25]. It was developed as a method for boogting the performance of any
learning agorithm. The focus of boogting method is to produce a series of wesk
classfiers in order to produce a powerful combination. The training set used for each
classfier of the series is chosen based on the peformance of the ealier classfier.
Instances that are incorrectly predicted by previous classfier in the series are chosen
more often than instances that were correctly predicted.

All these Meta-Learning approaches and their properties are briefly described in
[37].

3 CMC System

One of the man objectives of this study is the design and implementation of a
system that supports Combining Multiple Classfiers (CMC), efficiently and accurately,
induced from large and digtributed databases. With meta-learning to provide the means
for combining information across separate data sources (by integrating  individudly
computed classfiers), CMC system is developed using four meta-learning agorithms thet
facilitates the dharing of information among multiple dtes without the need of
exchanging or directly accessng remote data. Also, one of the most powerful learning
ideas that boost any learning agorithm (Boosting) is used to increase the performance of
this sysem, which helps to choose a suitable dgorithm that has more advantages upon
others. This section describes the distributed architecture and design of CMC system.

3.1 CMC System Architecture

This sysem is desgned aound the idea of metalearning to benefit from its
inherent pardldisn and didributed nature. Recdl that meta-learning improves efficiency
by executing in pardld the same or different serid learning agorithms over different sets
of the training databases. A graphicad representation of CMC System is depicted in
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Figure 1 in a dgmplified scenario. In this figure, m cdlassfiers are deived from m
distributed databases. Then, the meta-learning process integrates the m classfiers.

CMC Sydem is architected as a digtributed computing construct developed on top
of operaing system environments. It can be viewed as a pardle application, with each
condtituent process running on a separate database Ste. Under norma operation, each Ste
(database dte) functions autonomoudy and exchanges classfiers with the rest. It is
implemented as a collection of classfication programs. CMC System congsts of

Distributed databases.

One or more classficaion programs, or in other words machine learning
programs that islocdly stored as native programs.

One or more meta-learning programs, programs capable of combining a collection
of classfiers

A repository of locally computed and imported base- and meta-classifiers.

A Text-based User Interface.

- T
.................................... Database m
Learning Learning Learning
Alaorithm Alaorithm Alaorithm
Classifier
m

( M eta-L earning Process )

Final Classification

Figure 1: CMC System Architecture.

When CMC Sydtem is initiated, loca karning programs are executed on the loca
database to compute the loca classfiers Each CMC Sysem dte may then imports
(remote) dassfiers and combines them with its own locd dassfier usng the locd meta
learning programs. Findly, once the base and metaclassfiers are generated, the CMC
Sysgem manages the execution of these classfiers to classfy new unlabded instances.
Each CMC System dte dores its base- and meta-classfiers in its classfier repository (a
gpecid filefor each classfier).
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Figure 2 Simulation of distributed nodes scenario.

4 Experimental Setting

An empirical evauation of CMC sysem on different databases is computed by
detaling a comprehensve st of experiments. This section gives the results achieved
from these experiments and offers some discussons upon them. Before discussng these
various experiments and results, the used materials and methodol ogies are detailed.

4.1 Machine Learning Algorithm with Java Implementation

C4.5 (decision tree based adgorithm [34, 35, 36]) represents a supervised approach
to classfication [38]. It is a Smple structure where non-terminal nodes represent tests on
one or more attributes and termind nodes reflect decison outcomes. This inductive
learning dgorithm is used in these expeiments, which is obtained from the WEKA
mechine-learning package [41].

4.2 Meta-Learning Algorithms with Java Implementation

Four meta-learning techniques (Mgority Voting (MV), Stacking (S), Average
Stacking (AS), and Didributed Stacking (DS)) are employed. These techniques are
implemented using Java.

4 3 Distributed Databases

In order to evaluate the proposed framework, a set of experiments were conducted
usng four of the largest red world and synthetic databases from the UCI (Universty of
Cdifornia a Irvine) Machine Learning Repostory [15]. The details of these databases
are described in Table 1.

In this sudy, the origind database is randomly fragmented horizontdly into a
variable number of databases (10, 20, 30, 40, 50, 60, 70, 80), which are divided randomly
into testing dataset (20%) and training dataset (80%). This dlows us to smulae a variety
of digributed database configurations and examine how the methodologies scade up with
respect to the number of distributed nodes. Figure 2 illustrates that.
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Table 1 Details of databases used in the experiments.

Data Set Size  Attributes Classes Missing Values (%)

Adult 48,842 14 2 0.95
L etter 20,000 16 26 0
Nursery 12,960 8 5 0
Waveform 5,000 40 3 0

4 4 Performance Evaluation

The peformance of a proposed CMC System is evduated usng the mogt
common metrics used in the evaudion of classfier's performance (Accuracy, Error
Rate, True Postive Rate, Fase Podtive Rate, Precision, and ROC curve). All described
in[8, 40, 42].

Accuracy measurements for these systems are obtained usng a smple holdout
method, which is usudly applied. Moreover, in order to obtan redistic results, each
experiment is performed 10 times then the find results are derived from averaging the
partia results of each run.

The time consumed to compute the training and testing phase, which is a part of
performance evauation, is aso measured. Furthermore, in order to get a machine
independent measure of computationd complexity, the size of the Mea Dataset (MD) is
recorded too, which is equal to (Number of records (R)* Number of attributes (A) -
(KRA)). This can be hdpful especidly in cases where the large number of distributed
nodes and classes makes the experiments too time consuming to be completed.

5 Experimental Results and Discussion

The experiments are conducted on a Persona Computer with a 24 GHz Pentium
processor and 256 M Bytes running Windows 2000 Prof.

According to the previous discusson, the main features of the experimenta setting
can be summarized as follow:

After 10 running times the average is ca culated.

N distributed nodes (10, 20, 30, 40, 50, 60, 70, and 80) are tested.

Four large databases are used.

CA5 decison tree learning agorithm, Booging dgorithm, and four meta:-learning
dgorithms (Mgority Voting (MV), Stacking (S), Average Stacking (AS), and
Digtributed Stacking (DS)) are applied.

PODNPE

Un-Boosted CM C System

0 CMC System using Mgority Voting Algorithm (CMCMV)
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0 CMC System using Stacking Algorithm (CMCYS)
0 CMC System using Average Stacking Algorithm (CMCAYS)
0 CMC System using Didtributed Stacking Algorithm (CMCDYS)

Boosted CM C System

o CMC Sysgem wusng Boosed Mgority Voting Algorithm
(CMCBMV)

0 CMC System using Boosted Stacking Algorithm (CMCBS)

o CMC Sysem usng Boosed Average Stacking Algorithm
(CMCBAYS)

o CMC Sysem usng Boosted Didributed Stacking Algorithm
(CMCBDYS)

5. Different performance’'s metrics (Accuracy, Error Rate, TP Rate, FP Rate, (TP-
FP) Rate, Precison, Training Phase Time (Sec), Testing Phase Time (Sec), and
Meta- Data Size (KRA)) are measured.

The following sections give the rests achieved from the experiments done over
Un-Boosted and Boosted CMC System using datistical tables and graphics. They dso
interpret why these results have occurred.

5.1 Results of Un-Boosted and Boosted CMC System

The experimentd results (Accuracy, (TP-FP) Rae, Precison, Traning Time
(sec), Tedting Time (sec), and Meta-Data sze (KRA)) of Un-Boosted and Boosted CMC
System are averaged over N digtributed nodes and plotted in Figure 3. The full andyss of
thisstudy isavalablein [39].

As shown n this figure, there is no congstent pattern that can be derived from dl
the experiments. However, Accuracy, (TP-FP) Rate, and Precison have approximatey
same behavior. A fird generd pattern that can be noticed is that as the number of
digributed nodes increases, the performance of al the drategies decreases. Moreover,
CMCS has better (Accuracy, (TP-FP) Rate, and Precison) than others especidly in large
number of distributed nodes. Also, it is observed that CMCAS is standing in the middle
of CMCS and CMCMV, while CMCDS is the worst one. This is logic as Stacking uses a
large vdidation dataset collected from dl nodes and full outputs of locd classfiers
predictions (meta-dataset) to generate a Globa Classfier (GC), while Average Stacking
uses only the averages of the predictions according to the class, and Didtributed Stacking
uses these averages (meta- dataset) to learn a GC.

However, the diffeeence in accuracy is smdl compaing with the
difference in time. Each one of CMCMV, CMCAS, and CMCDS has a computationa
complexity that is independent on the number of didributed nodes and achieves
tractability of building the find modd in contrast to CMCS that requires a great amount

Top



Average accuracy of Un-Boosted CMC System

100 o--a--0
- A a---A
20 % 3 e

- -

70 —4—CMCMV
- -CMCs

50 -

40 -+ a:-- CMCAS

30 CMCDS

Accuracy

20
10

10 20 30 4 50 60 70 80

Number of distributed nodes

Average accuracy of Boosted CMC System

70 [—e—cvcmy]
- -a-- cmcs

20 4 CMCAS
30 CMCDS

Accuracy
o
3

10 20 30 40 50 60 70 80

Number of distributed nodes

(b Average (TP-FP) Rate of Un-Boosted CMC System

- o--m--@---8--0""0

™ ~ A & A A
———t—— s .,  [—e—cmcwv
--o--CMCS
a - CMCAS
CMCDS

(TP-FP) Rate
°
&

10 20 30 40 50 60 70 80
Number of distributed nodes

(b)Average (TP-FP) Rate of Boosted CMC System

09 g----m--0" =

———— [—cmcwy]
- - cMcs

4 CMCAS

cMcDS

(TP-FP) Rate
o
&

10 20 30 40 50 60 70 80

Number of distributed nodes

(C) Average precision of Un-Boosted CMC System

100
- -a—
80 ke
—e—CMCMV]
c
2 & - @ -CMCS
S a0 a - CMCAS
o CMCDS
20
[ e A s S

10 20 30 40 50 60 70 80

Number of distributed nodes

(d) Average training time of Un-Boosted CMC System

180

160 a
140 e
120 o —e—CMCMV]
100 a’ - o -CMCS
2 80 a - -a - CMCAS

E 0 e
40 -a CMCDS

(sec)

Tim:

10 20 30 40 50 60 70 80

Number of distributed nodes

(e Average testing time of Un-Boosted CMC System

400
350

W
8
S

——CMCMV|

- -o- -CMCS

-+ - -- CMCAS
CMCDS

N
&
S

Time (sec)
BN
o 8
&3

=
1]
S

@
S

o

Number of distributed nodes

(f) Average Meta-Data size of Un-Boosted CMC System

3000
2500
2000

=--o- -CMCS
1500

1000
500

— ) -~CMCDS;

Meta-Data size (KRA)

10 20 30 40 50 60 70 80
Number of distributed nodes

(C Average precision of Boosted CMC System

100
e -g e -memCeteg
g0 { I—34 AT A A A
- $——t——+t | [ cmcmY]
S 60 - o-- cMcs
8 40 -.a- CMCAS
& cMCDS
20
0+ T T T T T T —
10 20 30 40 50 60 70 80
Number of distributed nodes
(d) Average training time of Boosted CMC System
1600
1400 a
.a”
__ 1200 a” —e— CMCMV]
3 1000 .
8 800 = - -a-= CMCS
> -
g 600 A +-a - CMCAS
£
400 CMCDS
2004 g "~
0+ T =y T e e e |

10 20 30 40 50 60 70 80
Number of distributed nodes

(e) Average testing time of Boosted CMC System

m

30
= g [——cmcwy]
& s - -a-- cmcs
2 CMCAS
E 150 -
= CMCDS

10

50

0

.
15}

20 30 40 50 60 70 80
Number of distributed nodes

(f) Average Meta-Data size of Boosted CMC System

3000
bd -a
é 2500 a
g ™ - - -CMCS
@ 1500 . 4 - CMCAS
< L
§ 100 e > -CMCDS
g .a
3 so04

(O e e L e e pes e |

10 20 30 40 50 60 70 80
Number of distributed nodes

Figure 3: Average Performance of Un-Boosted and Boosted CMC System.



of time for training & the training phase. This is dso evident from the plots in Figure 3
(d), which depict the relaionship of the necessary time to finish the training phase in the
experiments among CMCMV, CMCS, CMCAS, and CMCDS. This figure shows that the
training time for CMCS increases linearly with respect to the number of digtributed Stes.
This occurs because when the full output of the locd classfiers is used, the attribute
vector in the meta-dataset increases by number of classes The attribute vector in a
problem with C classes and M distributed nodes has size equa to C*M. Therefore,
depending on the agorithm used, the complexity of the learning problem a the training
phase is related to the product C*M*N, where N is the number of records in the meta-
dataset.

Also, Figure 3 (d) illudrates that the training time for CMCMV, CMCAS, and
CMCDS day in most cases amost constant with respect to the number of distributed
nodes. When the averages of the loca classfiers outputs are used, the atribute vector in
the meta-dataset is congant and equd to the number of classes. The Sze of the attribute
vector in a problem with C classes and N digributed nodes will dways be equa to C.
Therefore, depending on the dgorithm used, the complexity of the learning problem at
the training phase is related to the product C*N.

o, it is concluded that each of CMCMV, CMCAS, and CMCDS has constant
complexity with respect to the number of classes and linear complexity with respect to
the number of distributed nodes. In contrast, CMCS has not only linear complexity with
respect to the number of distributed nodes it also has one with respect to the number of

casses. This is why the largest meta-data sze was seen in CMCS. Figure 3 (f) illustrates
that.

5.2 Un-Boosted vs. Boosted CMC System

Boosted CMC System has some advantages and disadvantages over Un-Boosted
CMC System. Table 2 illustrates the overdl average performance of both.

Table 2: Overall Average Performance of Un-Boosted and Boosted CM C System.

CMC Accuracy Error TP Rate | FPRate | (TP-FP) | Precison Training Testing Meta-Data
System (%) Rate Rate (%) Time(Sec) | Time(Sec) | Size (KRA)
Un-
Boosted 88.21 11.79 0.796 0.072 0.724 81.26 25.46 41.36 512.35
Boosted 88.71 11.29 0.805 0.069 0.733 82.01 218.74 42.63 512.35

As can be seen from Figure 4, Boosted CMC System has better accuracy and
precison than Un-Boosted CMC System. Unfortunately, as the accuracy increased the
required time increased too. Boosted CMC System uses boosting adgorithm that boosts
the peformance of leaning dgorithm. It has a computationd complexity that is
dependent on the number of iterations used for generating of boosted classfier, where in
these experiments was ten. Otherwise, both have the same testing time and meta-data
sze
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Figure 4: Overall Average Perfor mance of Un-Boosted and Boosted CM C System.

5.3 Ensembles vs. Single Classifiers

One of the main features of meta-learning is improving predictive accuracy by
combining different inductive classfiers. It is expected to derive a higher leve learned
modd that explans a large database more accurately than individud learner. C4.5 is
tested on the four databases described in Table 1 without any $litting, in order to show
its performance before gpplying the four meta-learning dgorithms. Table 3 illudrates that
by presenting the overdl average peformance of a dngle dassfier (C4.5) and
Combining Multiple Classfiers (CMC) using the four different meta-learning dgorithms.

Table 3: Overall Average Performance of Singleand CMC.

Algorithm | Accuracy Error Precison | Training Testing Meta-
(%) Rate (%) (%) Time Time Data Size
(Sec) (Sec) (KRA)
C4.5 83.37 16.63 79.78 11.83 0.073
CMCMV 84.67 15.33 76.60 1.73 1.37
CMCS 95.5 4.5 90.29 89.49 1.55 1499.29
CMCAS 89.25 10.75 83.19 4.36 1.166 36.5
CMCDS 83.41 16.59 74.96 6.28 161.42 1.25

The superiority of combining multiple dassfiers is obvious from Fgure 5. Most

of the combined methods perform better (Accuracy and Precison) than the individud
learner. By peforming different initid dassfiers and combining the outputs, the find
classfier may provide a better gpproximation to the true class. Due to the limited amount
of training deta, theindividua classifier may not represent the true class. Thus, through
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conddering different classfiers, it may be possble to expand the find dasdfier to an
approximate representation of the true class.

Also, it can be observed tha the individud learner consumed more training time
than others, except CMCS which uses the full outputs of local classfiers predictions to
generate a Globa Classfier (GC) producing high accuracy up upon others. Furthermore,
individua learner consumed less tedting time than others because it has N0 meta-dataset
and has one dassifier to generate the find classfication.

5.4 Experimental Results Summary

The combingtion of various leaned dassfiers with multiple meta-leamning
techniques produces many ways for mining distributed databases. Through exhaudive
experiments performed, severa peformance measures (i.e, Accuracy, Error Rate, True
Podtive Rate, Fase Podtive Rate, Precison, Training Time (sec), Testing Time (sec),
and Meta-Data sze (KRA)) were evauated to determine the usefulness and effectiveness
of CMC System. Its limitation was exposed too.

The empiricd evdudion reveded that no specific and definitive drategy gives
best results in dl cases. Thus, the results produced from the experiments can be very
briefly summarized by the following Satements:

CMC Sysem could not consigtently perform wel over dl the databases. The
performance of the learning agorithms is highly dependant on the nature of the
training data.

Combining Multiple Classfiers (CMC) peform better than the individud ones in
terms of their predictive accuracy and precison.

Mog of the time, the literature reports mention that a learning scheme performs
better than another in term of one cdasdfier’'s accuracy when gpplied to a
paticular data set. This sudy showed that accuracy is not the ultimate
measurement when comparing the cdasdfier’s credibility. Accuracy is just the
measurement of the tota correctly dassfied ingances. This measurement is the
ovedl eror rate. Thus, when comparing the peformance of different classfiers,
accuracy as a measure is not enough. Different measures should be evauaed
depending on what type of quedtion that the user seeks to answer (i.e, True
Pogtive (TP), Fse Postive (FP), and Precision).

Boosted CMC System has better accuracy and precision than Un-Boosted CMC
System. Unfortunately, as the accuracy increased the required time increased too.
Although CMCS has better (Accuracy, (TP-FP) Rate, and Precision) than others
egpecidly in large number of didributed nodes, it has a high computationd
complexity, a large meta-data Sze (large meta-classfier), and consumes a great
amount of time for training phase.

CMCAS exhibits a reasonable classfication accuracy and precison with low
computationa complexity, traning time, and meta- data Sze (meta- classfier).
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CMCDS dose not require a raw data being moved around the distributed nodes as
a vdidation dataset (low meta-data Sze), and it scaes up well with respect to
large number of classfiers, but it produces alow accuracy and precision rate.

In generd, as the number of didributed nodes increases, the performance of all
the Strategies decreases.

6 Conclusion

The man focus of this paper is on the Ensamble of Classfiers for Mining
Digributed Databases usng Meta-Learning Approaches, or in other words, on the design
and implementation of a sysgem that supports Combining Multiple Classfiers (CMC),
efficiently and accurately, induced from large and distributed databases.

With meta-learning to provide the means for combining information across
separate data sources (by integrating individualy computed classfiers), CMC system is
developed usng four metalearning dgorithms (Mgority Voting (MV), Stacking (S),
Average Stacking (AS), and Didributed Stacking (DS)), that facilitates the sharing of
information among multiple stes without the need of exchanging or directly accessng
remote data Also, one of the most powerful learning idess that boost any learning
dgorithm (Boogting) is used to increase the peformance of this sysem, which helps to
choose a suitable agorithm that has more advantages upon others.

An empiricd evduation of CMC system on different databases is computed by
detalling a comprehensve st of experiments. Also results achieved from these
expaiments and some discussons upon them are reported. The following summarizes
briefly the contribution of this study:

The adaptation of current metalearning techniques to combine cdlassfiers
computed over data collected from different Sites.

The desgn of CMC Sysem, a nove digtributed data mining system that is based
on meta:learning.

The implementation of a prototype of the CMC System.

A ddaled account on the smilarities and differences between severd meta
learning methods. The andyss examines and corirasts the gpplicability of the
Boosting method on these techniques for combining classfiers (MV, S, AS, ad
DS).

The gpplication of CMC System on the red-world datasets and the evaluation of
its peformance under different redistic metrics (Accuracy, Error Rate, True
Podtive Rate, Fase Podtive Rae, Precison, Training Time (sec), Tesing Time
(sec), and Meta-Data Size (KRA)).

A thorough evauation and comparison of the performance of the CMC System
and its boogting, and a deep analysis of their strengths and weaknesses.

Findly, it is bdieved that CMC Sysem will be an important contributing

technology to deploy mining knowledge facilities in globa-scae, integrated distributed
information systems.
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7 Future Work
This study could be further extended in the following directions:

The implementation of CMC Sydem is currently executed on a single machine,
where the classfiers are induced sequentiadly from datasets. The next step is to
implement a didributed computing architecture that will dlow the padld
execution of the loca and globa modd learning phases.

CMC Sysem should be extended to mine distributed databases with different
schema (Heterogeneous).

This research plans to explore the effectiveness of other metalearning techniques
and dso intends to experiment with different learning dgorithms than CA.5,
which could potentidly improve the performance of CMC System.

All in dl, there are 4ill many open questions and enormous opportunities to
improve the suggested topic “Combining Multiple Classfiers for Mining Didtributed
Databases using Meta- Learning Approaches’.
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