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Abstract 

Data mining techniques aim to discover patterns and extract useful information from facts 
recorded in databases. A widely adopted approach to this objective is to apply various machine learning 
algorithms to compute predictive classifiers (models) of the available data. One of the main challenges in 
this research area is the development of techniques that scale up to large and possibly physically 
distributed databases. This paper investigates data mining techniques that scale up to large and physically 
distributed databases (Meta-Learning). It presents a suggested solution for ensemble of classifiers through 
a meta-learning. Specifically, it describes the architecture, design, and implementation of CMC System 
(Combining Multiple Classifiers System), a distributed data mining system that facilitates the sharing of 
information among participating data sites without the need of exchanging or dispatching remote data, and 
employs meta-learning approaches to combine the multiple classifiers that are learned. Furthermore, one 
of the most powerful learning ideas that boost any learning algorithm (Boosting) is used to increase the 
performance of this system. An empirical evaluation of the CMC system and its boosting on different 
databases over N distributed nodes is also computed by detailing a comprehensive set of experiments and 
results achieved. 

1 Introduction 

The number and size of databases and data warehouses grow at phenomenal rates. 
For these databases to be useful, data mining process (the process of extracting useful 
information from such datasets) must be performed [1, 3, 8]. The datasets may be 
inherently distributed but cannot be localized on one processing site to compute one 
classifier [5, 6, 9]. Most of the current machine learning algorithms are required all data 
to be resident in main memory, which is clearly untenable in many realistic databases 
[15]. So, analyzing and monitoring these distributed data sources require data mining 
technology designed for distributed applications (Distributed Data Mining (DDM)) [2, 4, 
5, 6, 7, 8, 9, 10, 11, 16, 27, 28, 29, 31, 32]. 

 Nowadays, classifier ensembles are often used for distributed data mining in order 
to discover knowledge from distributed data sources. They are rather recent sub-area of 
machine learning that has been mainly used for increasing the predictive accuracy of 



single classifies, scaling up learning algorithm to very large datasets, and learning from 
distributed datasets. They have been applied with success to a number of applications, 
playing an important role to new research areas like DDM, Multiple Classifier Systems, 
and Information Fusion. 

A particular approach that has been successfully applied to classifier ensembles is 
meta-learning [2, 11, 12]. Meta-learning is defined as learning from learned knowledge. 
It refers to a general strategy that seeks to learn how to integrate a number of separate 
learning processes in an intelligent fashion. The basic idea is to execute a number of 
machine learning processes on a number of data subsets in parallel, and then to integrate 
their collective results (classifiers) through an additional phase of learning.  

The rest of the paper is organized as follows. Section 2 views related 
methodologies for combining classifiers induced from distributed databases. Section 3 
presents the architecture design of the CMC System. Section 4 outlines the materials and 
methods used in this study. Section 5 exhibits experimental results and discussion. 
Section 6 concludes this work, and section 7 poses future research directions. 

2 Related Works 

Classification is the derivation of a function or model, called a classifier, which 
determines the class of an object based on its attributes. A set of objects is given as the 
training set in which every object is represented by a vector of attributes along with its 
class. A classifier is constructed by analyzing the relationship between the attributes and 
the classes of the objects in the training set. Such a classifier can be used to predict the 
classes of future objects and to develop a better understanding of the classes of the 
objects in the database. 

The integration of multiple classifiers has been under active research in machine 
learning and neural networks. The challenge of integration is to decide which classifier to 
rely on or how to combine classifications produced by several classifiers. Two main 
approaches have lately been used: selection of the best classifier and combining the 
classifications produced by the basic classifiers.  

Classifier selection methods can also be divided into two subsets: static and 
dynamic methods. A static method proposes one “best” method for the whole data space, 
while a dynamic method takes into account characteristics of a new instance to be 
classified [26, 30]. 

The most popular and simplest method of combining classifiers is voting [6, 17]. 
The classifications produced by the basic classifiers are handled as (un-weighted 
(Majority) or weighted) votes for those particular classifications and the classification 
with most votes is selected as the final classification. More sophisticated classification 
algorithms that use combination of classifiers include the Stacking [18], Average 
Stacking [13], Distributed Stacking [27], SCANN [19], Bagging [14, 24], Boosting [22, 
23, 24], and Similarity Based [28, 33]. 



Stacking is a method that combines multiple classifiers by learning the way that 
their output correlates with the true class on an independent dataset which is collected 
from all nodes (meta-data) and then generates a global classifier (GC). On the other hand, 
Average Stacking uses the average of all classifiers outputs to generate a meta-data, and 
Distributed Stacking constructs a global classifier from local classifiers that does not 
require moving raw data around, scales up efficiently with respect to large numbers of 
distributed databases. SCANN method is based on the correspondence analysis [20] and 
the nearest neighbor procedure, combining minimal nearest neighbor classifiers within 
the stacking framework.  

Similarity Based approach for distributed classification uses the pair-wise 
similarity of local classifiers in order to produce a better classification for each of the 
distributed databases. This is achieved by averaging the decisions of all local classifiers 
weighted by their similarity with the classifier induced from the origin of the unclassified 
instances. 

 Boosting is one of the most powerful learning ideas introduced in the last ten 
years [21, 25]. It was developed as a method for boosting the performance of any 
learning algorithm. The focus of boosting method is to produce a series of weak 
classifiers in order to produce a powerful combination. The training set used for each 
classifier of the series is chosen based on the performance of the earlier classifier. 
Instances that are incorrectly predicted by previous classifier in the series are chosen 
more often than instances that were correctly predicted. 

 All these Meta-Learning approaches and their properties are briefly described in 
[37]. 

3 CMC System 

One of the main objectives of this study is the design and implementation of a 
system that supports Combining Multiple Classifiers (CMC), efficiently and accurately, 
induced from large and distributed databases. With meta-learning to provide the means 
for combining information across separate data sources (by integrating individually 
computed classifiers), CMC system is developed using four meta-learning algorithms that 
facilitates the sharing of information among multiple sites without the need of 
exchanging or directly accessing remote data. Also, one of the most powerful learning 
ideas that boost any learning algorithm (Boosting) is used to increase the performance of 
this system, which helps to choose a suitable algorithm that has more advantages upon 
others. This section describes the distributed architecture and design of CMC system.  

3.1 CMC System Architecture 

This system is designed around the idea of meta-learning to benefit from its 
inherent parallelism and distributed nature. Recall that meta-learning improves efficiency 
by executing in parallel the same or different serial learning algorithms over different sets 
of the training databases. A graphical representation of CMC System is depicted in 



Figure 1 in a simplified scenario. In this figure, m classifiers are derived from m 
distributed databases. Then, the meta-learning process integrates the m classifiers. 

 CMC System is architected as a distributed computing construct developed on top 
of operating system environments. It can be viewed as a parallel application, with each 
constituent process running on a separate database site. Under normal operation, each site 
(database site) functions autonomously and exchanges classifiers with the rest. It is 
implemented as a collection of classification programs. CMC System consists of: 

• Distributed databases. 
• One or more classification programs, or in other words machine learning 

programs that is locally stored as native programs. 
• One or more meta-learning programs, programs capable of combining a collection 

of classifiers. 
• A repository of locally computed and imported base- and meta-classifiers. 
• A Text-based User Interface. 

 

 

 

 

 

 

 

 

 

 

 

 When CMC System is initiated, local learning programs are executed on the local 
database to compute the local classifiers. Each CMC System site may then imports 
(remote) classifiers and combines them with its own local classifier using the local meta-
learning programs. Finally, once the base and meta-classifiers are generated, the CMC 
System manages the execution of these classifiers to classify new unlabeled instances. 
Each CMC System site stores its base- and meta-classifiers in its classifier repository (a 
special file for each classifier). 
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Figure 1: CMC System Architecture. 
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4 Experimental Setting 

An empirical evaluation of CMC system on different databases is computed by 
detailing a comprehensive set of experiments. This section gives the results achieved 
from these experiments and offers some discussions upon them. Before discussing these 
various experiments and results, the used materials and methodologies are detailed. 

4.1 Machine Learning Algorithm with Java Implementation 

C4.5 (decision tree based algorithm [34, 35, 36]) represents a supervised approach 
to classification [38]. It is a simple structure where non-terminal nodes represent tests on 
one or more attributes and terminal nodes reflect decision outcomes. This inductive 
learning algorithm is used in these experiments, which is obtained from the WEKA 
machine-learning package [41]. 

4.2 Meta-Learning Algorithms with Java Implementation 

 Four meta-learning techniques (Majority Voting (MV), Stacking (S), Average 
Stacking (AS), and Distributed Stacking (DS)) are employed. These techniques are 
implemented using Java. 

4.3 Distributed Databases 

In order to evaluate the proposed framework, a set of experiments were conducted 
using four of the largest real world and synthetic databases from the UCI (University of 
California at Irvine) Machine Learning Repository [15]. The details of these databases 
are described in Table 1.  

 In this study, the original database is randomly fragmented horizontally into a 
variable number of databases (10, 20, 30, 40, 50, 60, 70, 80), which are divided randomly 
into testing dataset (20%) and training dataset (80%). This allows us to simulate a variety 
of distributed database configurations and examine how the methodologies scale up with 
respect to the number of distributed nodes. Figure 2 illustrates that. 

Figure 2 Simulation of distributed nodes scenario. 
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Table 1 Details of databases used in the experiments. 

Data Set Size Attributes Classes Missing Values (%) 
Adult 48,842 14 2 0.95 
Letter 20,000 16 26 0 

Nursery 12,960 8 5 0 
Waveform 5,000 40 3 0 

4.4 Performance Evaluation 

 The performance of a proposed CMC System is evaluated using the most 
common metrics used in the evaluation of classifier’s performance (Accuracy, Error 
Rate, True Positive Rate, False Positive Rate, Precision, and ROC curve). All described 
in [8, 40, 42]. 

 Accuracy measurements for these systems are obtained using a simple holdout 
method, which is usually applied. Moreover, in order to obtain realistic results, each 
experiment is performed 10 times then the final results are derived from averaging the 
partial results of each run. 

 The time consumed to compute the training and testing phase, which is a part of 
performance evaluation, is also measured. Furthermore, in order to get a machine 
independent measure of computational complexity, the size of the Meta-Dataset (MD) is 
recorded too, which is equal to (Number of records (R)* Number of attributes (A) à  
(KRA)). This can be helpful especially in cases where the large number of distributed 
nodes and classes makes the experiments too time consuming to be completed.  

5 Experimental Results and Discussion 

 The experiments are conducted on a Personal Computer with a 2.4 GHz Pentium 
processor and 256 MBytes running Windows 2000 Prof. 

According to the previous discussion, the main features of the experimental setting 
can be summarized as follow: 

1. After 10 running times the average is calculated. 
2. N distributed nodes (10, 20, 30, 40, 50, 60, 70, and 80) are tested. 
3. Four large databases are used. 
4. C4.5 decision tree learning algorithm, Boosting algorithm, and four meta-learning 

algorithms (Majority Voting (MV), Stacking (S), Average Stacking (AS), and 
Distributed Stacking (DS)) are applied. 

Un-Boosted CMC System 

o CMC System using Majority Voting Algorithm (CMCMV) 



o CMC System using Stacking Algorithm (CMCS) 
o CMC System using Average Stacking Algorithm (CMCAS) 
o CMC System using Distributed Stacking Algorithm (CMCDS) 

Boosted CMC System 

o CMC System using Boosted Majority Voting Algorithm  
(CMCBMV) 

o CMC System using Boosted Stacking Algorithm (CMCBS) 
o CMC System using Boosted Average Stacking Algorithm 

(CMCBAS) 
o CMC System using Boosted Distributed Stacking Algorithm 

(CMCBDS) 

5. Different performance’s metrics (Accuracy, Error Rate, TP Rate, FP Rate, (TP-
FP) Rate, Precision, Training Phase Time (Sec), Testing Phase Time (Sec), and 
Meta-Data Size (KRA)) are measured. 

The following sections give the results achieved from the experiments done over 
Un-Boosted and Boosted CMC System using statistical tables and graphics. They also 
interpret why these results have occurred. 

5.1 Results of Un-Boosted and Boosted CMC System 

The experimental results (Accuracy, (TP-FP) Rate, Precision, Training Time 
(sec), Testing Time (sec), and Meta-Data size (KRA)) of Un-Boosted and Boosted CMC 
System are averaged over N distributed nodes and plotted in Figure 3. The full analysis of 
this study is available in [39]. 

 As shown in this figure, there is no consistent pattern that can be derived from all 
the experiments. However, Accuracy, (TP-FP) Rate, and Precision have approximately 
same behavior. A first general pattern that can be noticed is that as the number of 
distributed nodes increases, the performance of all the strategies decreases. Moreover, 
CMCS has better (Accuracy, (TP-FP) Rate, and Precision) than others especially in large 
number of distributed nodes. Also, it is observed that CMCAS is standing in the middle 
of CMCS and CMCMV, while CMCDS is the worst one. This is logic as Stacking uses a 
large validation dataset collected from all nodes and full outputs of local classifiers' 
predictions (meta-dataset) to generate a Global Classifier (GC), while Average Stacking 
uses only the averages of the predictions according to the class, and Distributed Stacking 
uses these averages (meta-dataset) to learn a GC. 

 However, the difference in accuracy is small comparing with the 
difference in time. Each one of CMCMV, CMCAS, and CMCDS has a computational 
complexity that is independent on the number of distributed nodes and achieves 
tractability of building the final model in contrast to CMCS that requires a great amount  
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Figure 3: Average Performance of Un-Boosted and Boosted CMC System. 
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of time for training at the training phase. This is also evident from the plots in Figure 3 
(d), which depict the relationship of the necessary time to finish the training phase in the 
experiments among CMCMV, CMCS, CMCAS, and CMCDS. This figure shows that the 
training time for CMCS increases linearly with respect to the number of distributed sites. 
This occurs because when the full output of the local classifiers is used, the attribute 
vector in the meta-dataset increases by number of classes. The attribute vector in a 
problem with C classes and M distributed nodes has size equal to C*M. Therefore, 
depending on the algorithm used, the complexity of the learning problem at the training 
phase is related to the product C*M*N, where N is the number of records in the meta-
dataset. 

 Also, Figure 3 (d) illustrates that the training time for CMCMV, CMCAS, and 
CMCDS stay in most cases almost constant with respect to the number of distributed 
nodes. When the averages of the local classifiers’ outputs are used, the attribute vector in 
the meta-dataset is constant and equal to the number of classes. The size of the attribute 
vector in a problem with C classes and N distributed nodes will always be equal to C. 
Therefore, depending on the algorithm used, the complexity of the learning problem at 
the training phase is related to the product C*N. 

So, it is concluded that each of CMCMV, CMCAS, and CMCDS has constant 
complexity with respect to the number of classes and linear complexity with respect to 
the number of distributed nodes. In contrast, CMCS has not only linear complexity with 
respect to the number of distributed nodes it also has one with respect to the number of 
classes. This is why the largest meta-data size was seen in CMCS. Figure 3 (f) illustrates 
that. 

5.2 Un-Boosted vs. Boosted CMC System 

Boosted CMC System has some advantages and disadvantages over Un-Boosted 
CMC System. Table 2 illustrates the overall average performance of both. 

 

CMC 
System 

Accuracy 
(%) 

Error 
Rate 

TP Rate  FP Rate  (TP-FP) 
Rate 

Precision 
(%) 

Training 
Time (Sec) 

Testing 
Time (Sec) 

Meta-Data 
Size (KRA) 

Un-
Boosted 88.21 11.79 0.796 0.072 0.724 81.26 25.46 41.36 512.35 
Boosted 88.71 11.29 0.805 0.069 0.733 82.01 218.74 42.63 512.35 

 As can be seen from Figure 4, Boosted CMC System has better accuracy and 
precision than Un-Boosted CMC System. Unfortunately, as the accuracy increased the 
required time increased too. Boosted CMC System uses boosting algorithm that boosts 
the performance of learning algorithm. It has a computational complexity that is 
dependent on the number of iterations used for generating of boosted classifier, where in 
these experiments was ten. Otherwise, both have the same testing time and meta-data 
size. 

 

Table 2: Overall Average Performance of Un-Boosted and Boosted CMC System. 



 

 

 

 

 

 

 

 

 

 

5.3 Ensembles vs. Single Classifiers 

One of the main features of meta-learning is improving predictive accuracy by 
combining different inductive classifiers. It is expected to derive a higher level learned 
model that explains a large database more accurately than individual learner. C4.5 is 
tested on the four databases described in Table 1 without any splitting, in order to show 
its performance before applying the four meta-learning algorithms. Table 3 illustrates that 
by presenting the overall average performance of a single classifier (C4.5) and 
Combining Multiple Classifiers (CMC) using the four different meta-learning algorithms. 

 

Algorithm Accuracy 
(%) 

Error 
Rate (%) 

Precision 
(%) 

Training 
Time 
(Sec) 

Testing 
Time 
(Sec) 

Meta-
Data Size 

(KRA) 
C4.5 83.37 16.63 79.78 11.83 0.073 --- 

CMCMV 84.67 15.33 76.60 1.73 1.37 --- 
CMCS 95.5 4.5 90.29 89.49 1.55 1499.29 

CMCAS 89.25 10.75 83.19 4.36 1.166 36.5 
CMCDS 83.41 16.59 74.96 6.28 161.42 1.25 

The superiority of combining multiple classifiers is obvious from Figure 5. Most 
of the combined methods perform better (Accuracy and Precision) than the individual 
learner. By performing different initial classifiers and combining the outputs, the final 
classifier may provide a better approximation to the true class. Due to the limited amount 
of training data, the individual classifier may not represent the true class. Thus, through  
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Table 3: Overall Average Performance of Single and CMC. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Overall Average Performance of Single and CMC. 

Accuracy (%)

75
80
85
90
95

100

C4.5

CM
CM

V
CMCS

CMCAS

CM
CD

S

Accuracy (%)

Precision (%)

0

50

100

C4.5

CM
CM

V
CMCS

CMCAS

CM
CD

S

Precision (%)

Training Time (Sec)

0

50

100

C4.5

CM
CM

V
CMCS

CMCAS

CM
CD

S

Training Time
(Sec)

Testing Time (Sec)

0
50

100
150
200

C4.5

CM
CM

V
CMCS

CMCAS

CM
CD

S

Testing Time
(Sec)

Meta-Data Size (KRA)

0
500

1000
1500
2000

C4.5

CM
CM

V
CMCS

CMCAS

CM
CD

S

Meta-Data
Size (KRA)



considering different classifiers, it may be possible to expand the final classifier to an 
approximate representation of the true class.  

Also, it can be observed that the individual learner consumed more training time 
than others, except CMCS which uses the full outputs of local classifiers' predictions to 
generate a Global Classifier (GC) producing high accuracy up upon others. Furthermore, 
individual learner consumed less testing time than others because it has no meta-dataset 
and has one classifier to generate the final classification. 

5.4 Experimental Results Summary 

 The combination of various learned classifiers with multiple meta-learning 
techniques produces many ways for mining distributed databases. Through exhaustive 
experiments performed, several performance measures (i.e., Accuracy, Error Rate, True 
Positive Rate, False Positive Rate, Precision, Training Time (sec), Testing Time (sec), 
and Meta-Data size (KRA)) were evaluated to determine the usefulness and effectiveness 
of CMC System. Its limitation was exposed too. 

 The empirical evaluation revealed that no specific and definitive strategy gives 
best results in all cases. Thus, the results produced from the experiments can be very 
briefly summarized by the following statements: 

• CMC System could not consistently perform well over all the databases. The 
performance of the learning algorithms is highly dependant on the nature of the 
training data. 

• Combining Multiple Classifiers (CMC) perform better than the individual ones in 
terms of their predictive accuracy and precision. 

• Most of the time, the literature reports mention that a learning scheme performs 
better than another in term of one classifier’s accuracy when applied to a 
particular data set. This study showed that accuracy is not the ultimate 
measurement when comparing the classifier’s credibility. Accuracy is just the 
measurement of the total correctly classified instances. This measurement is the 
overall error rate. Thus, when comparing the performance of different classifiers, 
accuracy as a measure is not enough. Different measures should be evaluated 
depending on what type of question that the user seeks to answer (i.e, True 
Positive (TP), False Positive (FP), and Precision). 

• Boosted CMC System has better accuracy and precision than Un-Boosted CMC 
System. Unfortunately, as the accuracy increased the required time increased too. 

• Although CMCS has better (Accuracy, (TP-FP) Rate, and Precision) than others 
especially in large number of distributed nodes, it has a high computational 
complexity, a large meta-data size (large meta-classifier), and consumes a great 
amount of time for training phase. 

• CMCAS exhibits a reasonable classification accuracy and precision with low 
computational complexity, training time, and meta-data size (meta-classifier). 



• CMCDS dose not require a raw data being moved around the distributed nodes as 
a validation dataset (low meta-data size), and it scales up well with respect to 
large number of classifiers, but it produces a low accuracy and precision rate. 

• In general, as the number of distributed nodes increases, the performance of all 
the strategies decreases. 

6 Conclusion 

The main focus of this paper is on the Ensemble of Classifiers for Mining 
Distributed Databases using Meta-Learning Approaches, or in other words, on the design 
and implementation of a system that supports Combining Multiple Classifiers (CMC), 
efficiently and accurately, induced from large and distributed databases.  

With meta-learning to provide the means for combining information across 
separate data sources (by integrating individually computed classifiers), CMC system is 
developed using four meta-learning algorithms (Majority Voting (MV), Stacking (S), 
Average Stacking (AS), and Distributed Stacking (DS)), that facilitates the sharing of 
information among multiple sites without the need of exchanging or directly accessing 
remote data. Also, one of the most powerful learning ideas that boost any learning 
algorithm (Boosting) is used to increase the performance of this system, which helps to 
choose a suitable algorithm that has more advantages upon others. 

An empirical evaluation of CMC system on different databases is computed by 
detailing a comprehensive set of experiments. Also results achieved from these 
experiments and some discussions upon them are reported. The following summarizes 
briefly the contribution of this study: 

• The adaptation of current meta-learning techniques to combine classifiers 
computed over data collected from different sites. 

• The design of CMC System, a novel distributed data mining system that is based 
on meta-learning. 

• The implementation of a prototype of the CMC System. 
• A detailed account on the similarities and differences between several meta-

learning methods. The analysis examines and contrasts the applicability of the 
Boosting method on these techniques for combining classifiers (MV, S, AS, and 
DS). 

• The application of CMC System on the real-world datasets and the evaluation of 
its performance under different realistic metrics (Accuracy, Error Rate, True 
Positive Rate, False Positive Rate, Precision, Training Time (sec), Testing Time 
(sec), and Meta-Data Size (KRA)). 

• A thorough evaluation and comparison of the performance of the CMC System 
and its boosting, and a deep analysis of their strengths and weaknesses. 

Finally, it is believed that CMC System will be an important contributing 
technology to deploy mining knowledge facilities in global-scale, integrated distributed 
information systems. 



7 Future Work 

This study could be further extended in the following directions: 

• The implementation of CMC System is currently executed on a single machine, 
where the classifiers are induced sequentially from datasets. The next step is to 
implement a distributed computing architecture that will allow the parallel 
execution of the local and global model learning phases.  

• CMC System should be extended to mine distributed databases with different 
schema (Heterogeneous). 

• This research plans to explore the effectiveness of other meta-learning techniques 
and also intends to experiment with different learning algorithms than C4.5, 
which could potentially improve the performance of CMC System. 

 All in all, there are still many open questions and enormous opportunities to 
improve the suggested topic “Combining Multiple Classifiers for Mining Distributed 
Databases using Meta-Learning Approaches”. 
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