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Abstract

Recently, support vector machines (SVMs) have been proposed in dealing with the statistical pattern recogni-
tion within the framework of statistical learning theory and structural risk minimization. The idea of applying
SVMs multiclass classifier is still an ongoing research issue, especially when we deal with the large database,
the learning algorithm becomes computationally expense and NP hard problem. In this paper we propose
the conjugate gradient technique as an efficient algorithm to handle the complexity and running time for the
multiclass least squares SVMs classifier. We explained SVM classifier, how it can be used, and introduced the
most common kernel functions in the literatures. The performance of the new technique in both simulation
study and the real-world applications is proposed and compare its result with the old strategies. We test the
performance of the recent SVMs classifier using the common applications: Fisher Iris data, Fraud Detection,
and Bioinformatics. The performance of the new SVM classifier technique turns to be robust and efficient
with respect to the parameters of the algorithm.
Keywords: Pattern Classification; Kernel function; Neural networks; Radial Basis function network; Sup-
port vector machine; Statistical learning theory; Bioinformatics.

1 The Pattern Classification Meaning

Pattern classification is defined as a mapping from the matrix of predictor variables X ∈ Rp to a vector
of class categories, Y ⊆ R. This means that each pattern is given in terms of the independent predictors
X1, . . . , Xp, and the goal is to establish a rule that separates predictors belonging to different groups,
A1, A2, . . . , Ac. Without loss of generality, we can write the classes {A1, A2, . . . , Ac} as {0, 1, . . . , c− 1} and
Xj = (x1j , . . . , xnj)T , for all j = 1, 2, . . . , p as the jth predictor variable for more convenience.
We use D = {(x1, , . . . , xp, y)} as the given training set, and the lower case letters xi1, xi2, . . . , xip, for
i = 1, . . . , n to refer to the values of each observation of the feature variables, and y = k− 1 to the response
variable Y (class Ak), for k = 1, . . . , c. We use the symbol πik for the probability that observation i falls in
the class Ak, that is,

πik = P (yi = k | xi); k = 0, 1, . . . , c− 1,

such that πik ≥ 0;
c−1∑
k=0

πik = 1; ∀i = 1, . . . , n.
(1)

In most recent years, dealing with the pattern classification problem in high dimension is not an easy task.
The pattern recognition is critical in most human decision-making “the more relevant patterns at your
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prediction, the better your decision will be”, Ross (1998). The following are some of the common examples
that can be formulated as a pattern classification problems:

1. Intelligent Searching: An internet search engine that provides the most relevant content and banner
advertisements based on the users’ past behavior.

2. Fraud Detection: Detect fraudulent credit card transactions and automatically decline the charge.

3. Bioinformatics: Predicting gene function from expression profiles

4. Intelligent Searching: An internet search engine that provides the most relevant content and banner
advertisements based on the users’ past behavior.

2 Literature Review

Researchers started looking for some techniques that deal with the pattern classification problem, such
as the classical statistics techniques (Disciminant Analysis; Logistic Regression), Hosmer (2000); Artificial
Neural Networks (Multilayer Feedforward Neural Network; Radial Basis Function Networks; Probabilistic
Network); Machine Learning (Support Vector Machine; Decision Trees; K-Nearest Neighbor); and Data
Mining. However, the method of classification depends on the nature of the data and the question of interest.
Many developments and new materials are found in Gordon (1981, 1999), and the references therein.
Last two decades, the quick advance in information processing systems had directed both science and engi-
neering research towards the development of intelligent systems that can develop models of natural phenom-
ena automatically, Abbott (1997). In this respect, a wide range of machine learning techniques like decision
trees (Quinlan 1986, 1992), logistic regression, discriminant analysis, artificial neural networks, radial basis
function network, Bayesian Network, reinforcement learning, Watkins and Dyan (1992) and and Duda et al.
(2001). An important development in these areas was proposed by Vapnik and Chervonenskis (1974), their
results were extended and generalized to provide the subject currently known as statistical learning theory,
which serves as a basis of support vector machine (SVM) technique, further details can be found in Vapnik
(1995 and 1998).
Recently, support vector methods have been used in a variety of applications, such as, the statistical pattern
recognition, estimation and time series prediction. The SVM classification methodology and theory is well
documented and details can be found in a number of research papers, such as Gunn (1997); Burges (1998);
Luntz et al. (1969); Burges (1998); Cristianini et al. (2000); Scholkopf et al. (1995); Raudys (2000);
Burbidge et al. (2001); Jack and Nandi, 2002; Bao and Sun (2002); and Suykens et al. (2001).
In the machine learning literatures, there are several methods proposed to construct a multi-class classifier by
combining several binary SVM classifiers. As it is computationally more expensive to solve multi-class prob-
lems, comparisons of these methods using large-scale problems have discussed in Hsu and Lin (2002), such as
”all-together” methods, other methods based on binary classifications: ”one-against-all”,”one-against-one”,
and ”directed acyclic graph SVM” (DAGSVM). Their experiments indicate that the ”one-against-one” and
DAGSVM methods are more suitable for practical use than the other methods.
The structure of the paper can be summarized as: Section ( 1) proposes the pattern classification meaning,
and its importance. In section ( 2), we present the background and the literature review of both pattern
classification and SVM. Section ( 3) proposes the binary SVM classifier for both linear and non-linear
separable data. In section ( 4) we present the new large scale conjugate gradient algorithm to handle the
computational expense and running time complexity. Section ( 5) presents Multiclass Least squares SVMs
Classifier. Section ( 6) gives a briefly study about the performance of the recent technique using both
simulation study and some of the real-world applications in both computer science and engineering. We
draw our conclusion and future work in section ( 7).
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3 The Binary SVM Classifier

The basic idea in support vector machine is to map the inputs x to vectors ϕ(x) in some high-dimensional
feature space, Vapnik (1995, 1998). In this section, we present the the binary SVM classifier for both linear
and non-linear separable data.

3.1 The Binary SVM Classifier for Linear Separable Data

The hyperplane in the p dimensional space is determined by the pair (ω, b), where ω is a p dimensional
vector orthogonal to the hyperplane and b is the offset constant. The hyperplane (ω · x) + b separates the
given training set if and only if

(ω · x) + b > 0; if y = 1; and (ω · x) + b < 0; if y = −1.

If we additionally require that ω and b such that point closest to the hyperplane has a distance 1
‖ω‖ , then

we have
yi

(
ωT xi + b

) ≥ +1; for i = 1, 2, . . . , n.

To find the optimal separating hyperplane, we have to find the hyperplane that maximizes the minimum
distance between the hyperplane and any sample of the training set in hand. Consider the example for a
two-dimensional input space in Figure 3.1(a). There are many possible linear classifiers that can separate
the data, but there is only one that maximizes the distance between it and the nearest data point of each
class. The distance of a point xs from the above hyperplane d(ω, b;xs) is defined as:

d(ω, b;xs) =
| ωT xs + b |

‖ω‖ .

Therefore, the optimal hyperplane is then given by maximizing the margin, subject to the constraints
yi

(
ωT xi + b

) ≥ +1. As in Figure 3.1 (b), this margin can be computed as:

ρ(ω, b) =
min

{xi;yi = 1} d(ω, b;x)+
min

{xi;yi = −1} d(ω, b;x) =
2
‖ω‖ .
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|1|
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w

2
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Figure 1: (a) Optimal Linear Separating Hyperplane in a 2–dimensional space, (b) A separable classification
hyperplane.

Therefore, the hyperplane that optimally separate the data is the one that minimizes the function F (ω) =
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ωT ω
2 , subject to the constraints: yi

(
ωT xi + b

) ≥ +1; for i = 1, . . . , n, that is,

Min {‖ω‖
2

2
},

subject to
yi

(
ωT xi + b

) ≥ +1; i = 1, 2, . . . , n.

(2)

The corresponding Lagrange function is

L(ω, b, λ) =
‖ω‖2

2
+

n∑

i=1

λi{yi

(
ωT xi + b

)− 1}, (3)

where the λi are the Lagrange multipliers. The Lagrangian has to be minimized with respect to ω and b
and maximized with respect to λi ≥ 0. The Kuhn, Tucker (1961) conditions are:

∂L

∂b
= 0 ⇒

n∑

i=1

λ0
i yi = 0;

∂L

∂ω
= 0 ⇒ ω0 =

n∑

i=1

λ0
i yi xi.

In the practical application, we usually require a quadratic programming optimization problem (dual prob-
lem). Since the support vectors are the vectors that have non-zero coefficients λ0 in the expression of ω0, we
substitute for ω in the Lagrangian function, and after further simplification, then we obtain the dual form
of the function to be optimized, that is, we optimize the following problem:

Min {
n∑

i=1

λi − 1
2

n∑

i=1

n∑

j=1

λi λj yi yj xT
i xj},

subject to
n∑

j=1

λi yi = 0; and λi ≥ 0; i = 1, 2, . . . , n.

(4)

Once the solution has been found in the form of a vector λ0 = (λ0
1, λ

0
2, . . . , λ

0
n), the optimal separating

hyperplane is found, the decision can be build according to the sign of the following function:

f(x) = sign (ωT
0 x + b0) = sign (

n∑

i=1

λ0
i yi xT

i x + b0).

3.2 The Binary SVM Classifier for Non-Linear Separable Data

If the problem is not linearly separable, then slack variables ηi ≥ 0 are introduced, and the new constraint
can be written as

yi

(
ωT ϕ(xi) + b

) ≥ 1− ηi; i = 1, . . . , n.

The number of slack variables allowed can be controlled; a penalty term C
µ

∑n
i=1 ηµ

i is added to the objective
function, where C, µ > 0 are called the penalty coefficients, Cristiani (2000). The common values of
the parameter µ are 1 and 2, giving linear and quadratic slack penalties, respectively. The binary SVM
classification problem with the quadratic slack penalty becomes

Min J(ω, b, ηi) =
1
2

ωT ω +
C

2

n∑

i=1

η2
i ,

subject to
yi

(
ωT ϕ(xi) + b

) ≥ 1− ηi; ηi ≥ 0; i = 1, 2, . . . , n.

(5)
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Suykens and Vandewalle (1999a) replaced the inequality constraints by equality constraints, a squared error
term. The corresponding Lagrangian function, L(ω, b, λ, η, γ) for the system (5) is

L =
‖ω‖2

2
+

C

2

n∑

i=1

η2
i −

n∑

i=1

λi{yi

(
ωT ϕ(xi) + b

)− 1 + ηi} −
n∑

i=1

γi ηi, (6)

where 0 ≤ λi ≤ C and γi are the associated Lagrangian multipliers. The constant C is user-defined.
It is a regularizing parameter because it determines the balance between the complexity of the network,
characterized by the weight vector ω and the classification error of the data. For the normalized input
signals the value of C is usually much larger than one and adjusted by trials and errors, Cristiani (2000).
In practical application, the dual quadratic optimization problem to the optimization problem (5) needed
to be solved. This can be achieved by computing the Kuhn and Tucker (1961) necessary conditions:

∂L

∂b
= 0 ⇒

n∑
i=1

λi yi = 0;
∂L

∂ω
= 0 ⇒ ω =

n∑
i=1

λi, yi ϕ(xi);

∂L

∂ηi
= 0 ⇒ C ηi − λi = 0;

∂L

∂λi
= 0 ⇒ yi

(
ωT ϕ(xi) + b

)
− 1 + ηi = 0,

for i = 1, 2, . . . , n. This system can be written in a matrix format as, Gloub and Van Loan (1989)

yT λ = 0; ω = HT λ;

C I η = λ I; Hω + Y b + I η = 1,

By eliminating ω and η, we obtain the system
[

0 YT

Y HHT + C−1 I

] [
b
λ

]
=

[
0
1

]
. (7)

where H = [y1 φ(x1), . . . ,yn φ(xn)]T , Y = [y1, . . . ,yn]T , λ = [λ1, . . . , λn]T , and 1 = [1, . . . , 1]T . Thus, we
substitute for ω and η in the Lagrangian function, (6) with more simplification, the dual form of the function
to be optimized can be written as

Min {F(λ) =
n∑

i=1

λi − 1
2

n∑

i=1

n∑

j=1

λi λj yi yj κ(xi,xj)},

subject to
n∑

j=1

λi yi = 0; and 0 ≤ λi ≤ C; i = 1, 2, . . . , n,

(8)

where κ(xi,xj) = φ(xi)T φ(xj) is symmetric positive definite kernel function (satisfies the Mercer’s condition,
Boser et al. (1992). Once the solution has been found, the decision can be constructed according to the sign
of the following function:

f(x) = sign (ωT ϕ(x) + b) = sign (
n∑

i=1

λi yi κ(xi,x) + b). (9)

Figure 2 shows an example of the feature map from two dimensional space to a three-dimensional one:
ϕ(x1, x2) = (x2

1, x
2
2,
√

2x1 x2).
We note that the kernel function κ(x,y) for the function ϕ(x) in Figure 2 can be computed by squaring of
their inner product, that is,

κ(x,y) = (ϕ(x), ϕ(y))
=

(
(x2

1, x
2
2,
√

2x1 x2), (y2
1 , y2

2 ,
√

2y1 y2)
)

=
(
(x2

1 y2
1 , x2

2 y2
2 , 2x1 x2 y1 y2)

)
= (x,y)2.

(10)

The most common kernel functions in literatures are:
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Figure 2: Optimal non-linear separating hyperplane in a 2–dimensional space

• Linear: κ(xi,xj) =
(
xT

i xj + γ
)

• Polynomial: κ(xi,xj) =
(
δ + γ xT

i xj

)q; for q = 1, 2, . . . , . . .

• Gaussian or (Radial Basis Function): κ(xi,xj) = exp

(‖xi − xj‖2
−2Σ2

)
,

• Multilayer-Perceptron (Sigmoidal): κ(xi,xj) = tansh (γ(xi xj)− δ),

• Fourier Series: κ(xi,xj) =
sin(

2 n + 1
2

)(xi − xj)

sin((
1
2
)(xi − xj))

.

4 The Conjugate Gradient Algorithm

We note that for large number of observations, the matrix in ( 7) can not be stored, where we need an
iterative solution method. A new suggestion to handle the computational complexity and running time
for the system ( 7) using the large scale conjugate gradient algorithm, Gloub and Van Loan (1989). The
conjugate gradient method for solving the system AX = B with A ∈ Rn × Rn symmetric positive definite
and B ∈ Rn is given in exhibit 1. The advantage of the conjugate gradient method is that if the matrix A
is symmetric positive definite and it can be written as A = I + τ , where rank(τ) = δ, then the conjugate
gradient algorithm in Table (1) converges in at most δ + 1 steps. Now, we can write the system ( 7) in the
form: [

0 YT

Y Γ

] [
α1

α2

]
=

[
β1

β2

]
, (11)

where β1 = 0, β2 = 1̃, α1 == b, α2 = λ, and Γ = (HHT + C−1 I). We note that the coefficient matrices
in both systems ( 7) and ( 11) are not positive definite. On the other hand, we know that the conjugate
gradient technique can not be applied to non-positive definite matrix. Thus, we should rewrite both coefficient
matrices in ( 7) and ( 11) in a different format to be able to apply the conjugate gradient method. To get
around this problem, we write each of these coefficient matrices in the systems ( 7) and ( 11) in the following
equivalent systems: [

θ 0
0 Γ

] [
α1

α2 + Γ−1 Y α1

]
=

[
YT Γ−1 β2 − β1

β2

]
, (12)
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Table 1: Conjugate Gradient Algorithm
(1.) Begin Initialize: i = 0, x0 = 0, r0 = B
(2.) While ri 6= 0, for all i = 0, 1, . . . , n

i = i + 1
if i = 1

p1 = r0

else

βi = rT
i−1 ri−1

rT
i−2 ri−2

; pi = ri−1 + βi pi−1

end

λi = rT
i−1 ri−1

pT
i A pi

; xi = xi−1 + λi pi

ri = ri−1 − λi A pi

(3.) end
(4.) x = xi

where θ and Γ are positive definite matrices, such that θ = YT Γ−1 Y. Therefore, the solution of the system
( 12) can be determined as follows:

1. Solve the two systems: Γ u = Y, and Γ v = β2 for u and v using the conjugate gradient algorithm in
Table 1.

2. Determine the matrix θ from the relationship: θ = YT u.

3. Compute the desired learning parameters for the SVM classifier using equations: b = uT β2
θ , and

λ = v − u b.

Therefore, we conclude that the solution of each of the systems ( 7) and ( 11)is easy to compute, and there
is no need to store the matrix A. This new technique run faster, and the computational running time will
be O(n δ2) only. Moreover, we do not need to compute the inverse of n× n matrix, which is difficult when
n is very large. The Matlab code for least squares support vector machine for arbitrary Kernel to compute b
and λ is written as:

function [lambda,b]=svmls(Gamma,Y,C);
% Gamma n x m is n input data points from R^m: Assume n >> m
[n,m]=size(Gamma);
for i=1:n,

Gamma(i,:)=Y(i)*Gamma(i,:);
end
B=inv(eye(m)/C+Gamma’*Gamma);
W=B*Gamma’;
X=C*Y’-C*(Y’*Gamma)*W;
u=ones(n,1); b=(X*u)/(X*Y);
lambda=C*u-(C*Gamma)*(W*u)-b*X’;

5 Multiclass Least squares SVMs Classifier

Dealing with multiclass pattern classification by support vector machines, both combining several binary
classifiers or considering all classes at once is still an ongoing research issue, see Kulkarni et al. (2004) for
further details. Figure 5 shows the most common SVM architecture. In this graph, the results are linearly
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combined by weights νi, found by solving a quadratic program and computing ωi =
n∑

i=1

νi xi, where νi is

the support vectors, that is νi = yi λi in the pattern classification; and νi = λ?
i − λi in the regression

estimation. The linear combination is fed into the decision function σ(.) or f(.). In pattern classification,
f(x) = sign(ω x + b); and in regression estimation, f(x) = ω x + b. We explain two SVMs multi-class
techniques: The one-against-all technique.

Figure 3: The Architecture of Support Vector Machines Classifier.

Consider a training set D = {(xi, yi)}, for all i = 1, 2, . . . , n drawn from c categories; where the vector
xi ∈ Rp represents the ith observation of the given training set D. We use the symbol y

(k)
i to refer to the

ith output unit for the pattern (class k), for all k = 1, 2, . . . , c. Similarly, as in the binary case, the support
vector machines uses the least square technique to handle the pattern classification problem. Therefore, the
optimization problem can be written as:

Min J (k)(ωk, bk, ηi,k) = 1
2

c∑
k=1

ωT
k ωk + γ

2

n∑
i=1

c∑
k=1

η2
i,k,

subject to
y(1)

i

(
ωT

1 ϕ1(xi) + b1

) ≥ 1− ηi,1; ηi,1 ≥ 0; i = 1, 2, . . . , n,

y(2)
i

(
ωT

2 ϕ2(xi) + b2

) ≥ 1− ηi,2; ηi,1 ≥ 0; i = 1, 2, . . . , n,
...
y(c)

i

(
ωT

c ϕc(xi) + bc

) ≥ 1− ηi,c; ηi,1 ≥ 0; i = 1, 2, . . . , n.

(13)

The corresponding Lagrangian function can be formulated as:

L(k)(ωk, bk, ηi,k, λi,k) = J(k)(ωk, bk, ηi,k)−
n∑

i=1

c∑
k=1

λi,k{y(k)
i

(
ωT

k ϕk(xi) + bk

)− 1 + ηi,k}, (14)

for all k = 1, 2, . . . , c, where 0 ≤ λi,k ≤ γ are the associated Lagrangian multipliers. As before, in practical
real application, the dual quadratic optimization problem to the optimization problem in ( 13) needed to be
calculated. The necessary conditions of the Lagrangian function in ( 14)is given by:

∂L

∂bk
= 0 ⇒

n∑
i=1

λi,k y
(k)
i = 0;

∂L

∂ωk
= 0 ⇒ ωk =

n∑
i=1

λi,k y
(k)
i ϕk(xi);

8



∂L

∂ηi,k
= 0 ⇒ γ ηi,k − λi,k = 0;

∂L

∂λi,k
= 0 ⇒ y

(k)
i

(
ωT

k ϕk(xi) + bk

)
− 1 + ηi,k = 0,

for all i = 1, 2, . . . , n and k = 1, 2, . . . , c. As before, by eliminating ωk and ηi,k, the above optimality
conditions lead to (n + 1)2 × (n + 1)2 linear system of equations, that is,

[
0 YT

K

YK ΩK

] [
bK

λK

]
=

[
0
1̃

]
, (15)

where YK and ΩK are two diagonal matrices in the form:

YK =




Z(1) 0 . . . 0
0 Z(2) . . . 0
...

... . . .
...

0 0 . . . Z(c)


 ; Z(k) =




yk
1

yk
2

...
yk

n


 ; ΩK =




Θ(1) 0 . . . 0
0 Θ(2) . . . 0
...

... . . .
...

0 0 . . . Θ(c)


 ,

where Θ(k) = [θ(k)
ls ]n×n matrix with θ

(k)
ls = yk

l yl
s Ψk(xl, xs) + γ−1 I, for all k = 1, 2, . . . , c, and l, s =

1, 2, . . . , n. The function Ψk(xl, xs) is the kernel matrix: Ψk(xl, xs) = ϕk(xl)ϕk(xs), for all k = 1, 2, . . . , c,
and l, s = 1, 2, . . . , n. The solution vectors bK = [b1; b2; . . . , bc] and λK = [λ(1); λ(2); . . . , λ(c)]; where λ(k) =
[λ1,k, λ2,k, . . . , λn,k]; for all k = 1, 2, . . . , c.
Similarly as we did for the binary classification case, we can use the conjugate gradient least square technique
proposed in section 4 to solve the system ( 15). To achieve this goal, we need to modify the structure
of both matrices ΩK and YK , and we should avoid storage the matrix ΩK , due to its computational
cost and complexity. In addition, the matrices in ( 15) needed to be reformatted, so that the two linear
subsystems of equation have positive definite matrices. Therefore, we can determine the support vector
machines parameters as follows:

1. Solve the two systems: Γ(k) u(k) = Y(k), and Γ(k) v(k) = β
(k)
2 for uk and v(k), where k = 1, . . . , c using

the conjugate gradient algorithm in Table 1.

2. Determine the matrix θ(k) from the relationship: θ(k) =
(
Y(k)

)T
u(k).

3. Compute the desired learning parameters for the SVM classifier using equations: bk = (u(k))T
β

(k)
2

θ(k) , and
λk = v(k) − u(k) bk for k = 1, . . . , c,

and hence we can determine the c decision hyperplanes. These c separable hyperplanes are given by the
decision functions: ωT

k ϕ(x) + bk, for all k = 1, 2, . . . , c. We can classify the object x to the class k if the
class k has the largest value of the following decision function:

class of x = arg
[

max k=1,2,...,c

(
ωT

k ϕ(x) + bk
)]

.

6 Simulation Study and Real World Applications

In this section we illustrate the use of the support vector machine classifier with the new conjugate gradient
technique, by examining its applications in both simulation study and real-world problems.

6.1 Design of The Simulation Study

We carry out a simulation study and investigate the performance of the new multiclass SVM classifier
discussed in section 5 and handle all the implementation using MATLAB software. We generate both
feature variables and the response variable according to the following criterion:
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Table 2: Data Setups for Multivariate Feature Variables
Setup µ0 . . . µc−1 ρ n0 . . . nc−1

1 [0 . . . 0] . . . [0 . . . 0] 0.5 1000 . . . 1000
2 [0 . . . 0] . . . [0 . . . 0] −0.5 1000 . . . 1000

3 [0 . . . 0] . . . [0 . . . 0] 0.9 1000 . . . 1000
4 [0 . . . 0] . . . [0 . . . 0] −0.9 1000 . . . 1000

5
[
µ(0) . . . µ(0)

]
. . .

[
µ(c−1) . . . µ(c−1)

]
0.5 1000 . . . 1000

6
[
µ(0) . . . µ(0)

]
. . .

[
µ(c−1) . . . µ(c−1)

] −0.5 1000 . . . 1000

7
[
µ(0) . . . µ(0)

]
. . .

[
µ(c−1) . . . µ(c−1)

]
0.9 1000 . . . 1000

8
[
µ(0) . . . µ(0)

]
. . .

[
µ(c−1) . . . µ(c−1)

] −0.9 1000 . . . 1000

9
[
µ(0) . . . µ(0)

]
. . .

[
µ(c−1) . . . µ(c−1)

]
0.5 800 . . . 1200

10
[
µ(0) . . . µ(0)

]
. . .

[
µ(c−1) . . . µ(c−1)

] −0.5 800 . . . 1200

11
[
µ(0) . . . µ(0)

]
. . .

[
µ(c−1) . . . µ(c−1)

]
0.9 800 . . . 1200

12
[
µ(0) . . . µ(0)

]
. . .

[
µ(c−1) . . . µ(c−1)

] −0.9 800 . . . 1200

• Suppose that we generate p feature variables X1, . . . , Xp from a multivariate normal distribution with
mean vectors µ of size p× 1 and a common p× p covariance matrix, Σ, that is defined as follows:

µ =




µ0

µ1

...
µc−1


 ; Σ =




1 ρ1,2 ρ1,3 . . . ρ1,p

ρ2,1 1 ρ2,3 . . . ρ2,p

...
...

... . . .
...

ρp−1,1 ρp−1,2 ρp−1,3 . . . ρp−1,p

ρp,1 ρp,2 ρp,3 . . . 1




, (16)

where ρj1,j2 is the correlation coefficient between the two variables xj1 and xj2 , for all j1, j2 = 1, 2, . . . , p.
We use ρj1,j2 = ±0.5, and ρj1,j2 = ±0.9, and we generate nk observations from N(µk,Σ), where µk

is the mean for the observations in group k, for k = 0, 1, . . . , c − 1. So, we have a total of n =
c−1∑
k=0

nk

observations, which are denoted by an n × p matrix X, the ith row of which is denoted by xT
i . The

setup details for 1000× c observations is shown in Table 2. We can choose p feature variables drawn
from c classes with different correlation coefficients, that is, ρs, for s = 1, 2, . . . ,

(
p
2

)
distinct correlation

coefficients. Moreover, we can choose different variance, say σj , such that σj 6= σl, for l, j = 1, 2, . . . , p.

• One way to generate the response variable (either multi-categories or binary), y according to the
criterion: By setting the probability that observation i falls in a class Ak, πik as a function of xi, where
the chosen function is other than the logistic function, but satisfying the condition 0 ≤ f(xi) ≤ 1. The
form that we choose for πi can be written as follows:

πi = f(xi) =
1

1 + di
, (17)

where di = (xi − x̄)T Σ−1 (xi − x̄) is the squared Mahalanobis distance, i = 1, 2, . . . , n.

The next step in the development and implementation of the SVM classifier is the judgment and evaluation
of the quality and capability of the fitted support vector machine hyperplane. We investigate one of the
following quantities:

1. Number of parameters in the model, the more parameters is the more ability to perform better.
Therefore, it is important to know the number of parameters in the choice model, and check if this is
the best model or not. This will lead to the calculate the following measure, for each configuration:
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2. Compute the cost of computations (executable time), that is the time needed to execute the classifier
till obtaining the final classification model. The less computation cost is the better classifier.

3. Compute the correct classification rate (CCR) in both old and new SVM classifiers, the highest CCR
value is the better performance.

To evaluate the performance of the SVM classifier in both old and new computation, we use both internal
and external validation, that is summarized as follows:

• Internal Validation: For each method, we estimate the classification model and its parameters, and
then use the obtained estimated model to measure the correct classification rate by reapplying them to
the same data used during the estimation. This leads to a bias result, and a higher correct classification
rate, because the classifier benefits from the data on which it is used in estimating the same model.
Moreover, the performance is better than it would be in different simulated data set or in a real-world
applications. To get around this problem in each simulation, we generate a training set with a very
large number of observations, say 10, 000 observations to use it in building the classification model, and
measure the correct classification rate. This will lead to a small bias performance, and the simulated
data will be close enough to a real-world application.

• In the external validation, we first generate a data set (training set) with a very large number of
observations, say 10, 000 observations to build the classification model. Next we generate another data
set (validation set) from the same configuration as the training set, but with less number of observations
to validate the estimated model. For instance, suppose that the new sample (validation sample) has
5, 000 observations, that is used to validate the estimated model to compute the correct classification
rate of the new sample. This will lead to unbias results, and less correct classification rate, and the
simulated data will be close to a real-world application problem. In general, the real-world applications
have a data sat, say D = {(xi1, xi2, . . . , xip, yi)}, we use it to estimate the pattern classification model.
Next, we use the estimated model to predict ŷi as a future observation, and compute the correct
classification rate.

6.2 Real World ApplicationsFisher Iris Data

Most of the real-world application data are available and it can be downloaded from the machine learning
database site at the University of California, Irvine, ” ftp://ftp.ics.uci.edu/pub/machine-learning-databases”.

1. Fisher Iris data: We choose this Fisher Iris data, (1936) due to its important a known database
to be found in the pattern recognition literature. The entire data set contains four feature variables,
all of them are measured in centimeters, each one of the feature vectors is drawn from 3 classes of 50
observations each, where each class refers to a type of iris plant. We use the symbols x1, x2, x3 and
x4 to refer to the sepal length, sepal width, petal length and petal width, respectively. By looking at the
scatter plot of the data in Figure 1, we observe that one class is linearly separable from the other 2;
the latter are not linearly separable from each other.

To evaluate the performance of the support vector machine classifier on the iris data set, we use
80 % of the data to estimate the classification model (internal validation) and 20 % of the data for
external validation. As proposed in Turk (1990) and Cook (1986) to guarantee that we get the same
proportions from each group as in the original data, we use stratified random sampling technique, by
dividing the data set into non-overlapping samples, then we randomly hold a data of size m, such
that m = round(n

5 ) observations with mk = round(m nk

n ), where n is the number of instances in a
given data and nk is the number of instances in the group k. In the iris data, we have the training
set with 120 observations, and the validation set with 30 observations, such that m1 = m2 = m3 = 10
observations from class1, class2, and class3, respectively. We repeat the internal and external validation

11
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Figure 4: The three dimension plot of the Sepal Length, Sepal Width, and Petal Length.

processes for at least 100 runs, then compute the correct classification rate, its standard deviation, and
the variability coefficient for these 100 runs, and compute the same output. For the four explanatory
variables, and c = 3 category variables, then we obtain the best model with 5 parameters.

The results showed that SVMs classifier with the new computation algorithm produce a highly accu-
rate correct classification rate, with a 98% success versus 96.67% in the case of the old computation
technique. In addition, it was shown that the SVMs are significantly quicker than any other old SVM
computation classifier technique in both training and running phases as it is shown in Figure 1, where
the root mean square error (RMSE) reached to zero after 20 iterations only with the new technique,
but it takes more iterations and more time to get better accuracy with the old computation technique,
for instance, RMSE reached to 10−2 after a 100 iterations. The estimated decision classification model
is given by:

class of x = arg
[

max
(−0.001x2

1 + 0.001x2
2 + 0.01x2

3 + 0.0057x2
4 − 0.0011x1x2

)]
. (18)

2. Fraud Detection: Fraud is a critical problem for most businesses, and on-line shopping services.
The current explosion of the Internet and computer networks makes the issue even more difficult.
Detecting fraudulent patterns in masses of records is a challenging problem, not only because identifying
inconsistency may be looking for a spine in a haystack, but mostly because fraudulent activities are
all dissimilar and can change dramatically over time, Cahill et al. (2002). Most available intrusion
detection systems are based on methods that compare the network activity to a set of known attack
signatures provided by human experts. Such systems would therefore fail in detecting a new, yet
unknown, type of attack. Support vector machine method as one of the machine learning techniques
help address this challenge and allow the development of efficient, more adaptive and autonomous
intrusion detection systems.
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Figure 5: RMS Error versus the number of iterations n.

Mukkamala et al. (2002) are applying support vector machines to the data set used for the knowledge
discovery, where this contains 38 varieties of intrusion attack within 4,900,000 data instances simulated
in a military local-area network environment. Each data record is composed of 42 features describing
a network connection (e.g. duration, protocol type, port, super user access, guest login, etc.) and has
been flagged bad for intrusions or attacks or good for normal connections. The approach followed is
the ”supervised” learning approach for which the support vector machine system is first trained with
a subset of the data, including the good and bad label. Once the machine is trained, its efficiency at
predicting if a connection is fraudulent or not is assessed against the rest of the training set. Figure 6
shows that the support vector machines can detect network intrusions in order to protect a computer
system from fraudulent users. Generally, we observe that the shows that the support vector machines

Figure 6: Intrusion Detection on Computer Networks

can detect network intrusions in order to protect a computer system from fraudulent users.. These
outputs make SVMs adequate classifiers in such situations where the intrusion detection has to be
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performed in retraining needs to be carried out frequently and swiftly. We conclude that SVMs can
be successfully applied to fraud detection in many different types of activity, such as, master cards,
and bank card operations and computer network security. These SVM techniques perform better than
both classical and modern fraud detection classifiers, as they are more suited to the detection of new
unknown types of attack. In addition, as it is shown in Figure 1, we observe that the shows that the
support vector machines can detect network intrusions in order to protect a computer system from
fraudulent users.

3. Bioinformatics: The Gene expression analysis performed by SVMs is discussed in Eisen et al. (1998).
Gene expression data from DNA microarray hybridization experiments was used. The gold standard
applied is MIPS yeast genome database, see MYGD (1999) for more details. Support vector machines
with different similarity metrics as well as other machine learning approaches are used in the analysis
including Fishers linear discriminant, and two decision tree classifiers. SVMs showed the best per-
formance in accurately classifying genes into functional categories with respect to the other methods.
Among different types of SVM, the radial basis function support vector machine performed the best
for this task. Previous work in Eisen et al. (1998) had used a normalized dot product as similarity
metric. Apart from large amounts of RNA expression data, other sources of information about the
genes can be used including the presence of transcription factor binding sites in the promoter region
or sequence features of the translated protein.

The method shows potential to manage with the more complex problem of reconstructing complete
regulatory pathways within the cell. Detection of remote protein homologies by SVMs is discussed in
Jaakkola et al. (2000). The discriminative method is built on top of a generative model, for instance,
hidden Markov models (HMMs), built from multiple sequences and which provides appropriate features
for the identification of structural relationships. Accordingly, the protein sequences are mapped to
points of an Euclidian feature space with fixed dimension. The method provides with a significant
improvement in relation to previous approaches to classification of protein domains based on remote
protein homologies including approaches based on training of HMM parameters, Duan et al. (2003)
based on neural discrimination, Dubehak et al. (1997).

7 Conclusions

We conclude that the performance of the new SVM classifier technique turns to be robust and efficient with
respect to the parameters of the algorithm. The conjugate large scale algorithm involves solving a linear
system of equations instead of quadratic programming. Moreover, the conjugate gradient algorithm helps us
to minimize the complexity running time, and it becomes less expense. We do not need to store the entire
data, and hence the computational running time will be of O(n) only, which is more useful in the case of
multi-category problems.
Areas of application research discussed included bioinformatics, fraud detection, and text categorization.
These applications proved that SVMs can be successfully applied to fraud detection in many different types
of activity, such as, master cards, and bank card operations and computer network security. These SVM
techniques perform better than both classical and modern fraud detection classifiers, as they are more suited
to the detection of new unknown types of attack.
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