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Abstract 
A Cluster of Workstations (COW) is network based multi-computer system, 
which is the most prominent distributed memory system aimed to replace 
supercomputers. A cluster of workstations can be viewed as a single machine in 
which one job is divided into n subtasks and delegated to n workstations in the 
COW architecture. To get the job completed, all subtasks assigned to component 
workstations must be completed.  Therefore, for satisfactory job completion, all 
workstations must be functional. However, a faulty node can suspend the over 
all job completion task until.  Therefore, a job can not be completed until a 
faulty node is recovered from fault. This paper presents a fault tolerant 
architecture for COW, which will allow a normally working workstation to 
perform the tasks of the faulty workstation in addition to its original 
assignments.  The Markov models are basic tools applied for availability 
modeling. This paper presents a Markov Availability model for estimating the 
availability of component workstations as a function of workstation failure rates.    
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I. Introduction 
 
The cluster of workstations (COWs) or network of workstations 
(NOWs) presents attractive alternatives to expensive 
supercomputers and parallel computers for high performance 
computing. This alternative has been possible due to the 
emergence of powerful workstations and high speed network 
solutions. In terms of performance, it has been observed that COW 
can rival or even exceed supercomputers for some applications [1]. 
Example of such COW systems include:  IBM SP2, DEC 
TruCluster, Hp, Intel/Sandia etc. According to Pfister, over 
100,000 computer clusters are in use worldwide [2]. The COWs 
provide platforms for high speed computing. In addition to 
handling large computational loads, COWs can accommodate high 
availability and scalability features. Due to its attractive features, 
the idea of COW based computing is also moving towards web-
based or internet based computing.   
 
In COWs, all networked workstations formulate the illusion of a 
single machine. In this single system image paradigm, a 
computational task is broken into n subtasks and delegated to n 
workstations. An ith computational job is considered as completed 
when all n subtasks of the main job are completed. The 
computational power of COWs is impeded due to the faulty nature 
of component workstations. A fault in any of n workstations may 
obstruct the job completion until the faulty workstation is 
recovered from the fault. A job can not be declared as completed 
until all subtasks are completed by the participating workstations. 
The features of fault tolerance in COWs must, therefore, be 
injected to avoid overall task failures. With ever increasing 
dependency on COW based distributed systems, the number of 
applications requiring fault tolerance is also increasing. As a 
solution for achieving fault tolerance in COW some backup 
workstations are introduced in the system [8]. In case of a primary 
workstation’s failure, the subtask is reassigned to the backup 
workstations. In this paper we present a fault tolerant scheme for 



COWs, in which no additional backup workstations will be 
required; rather normally a working workstation node can takeover 
the subtask assigned to a failed workstation node. This fault 
tolerant scheme will be managed by monitoring central control 
workstation (CCW).  This central workstation will be responsible 
for monitoring the performance of all of the workstations in the 
system. As soon as a failure is identified in a workstation node, the 
subtask of the failed node will be transferred to another 
workstation in the system.  The assigned node will carry on the 
assigned task in addition to its originally assigned subtask. We 
assume that the computational jobs will be submitted to the CCW, 
which will decompose the job into n subtasks and assign them to n 
workstations [8]. The paper is organized as follows. In section II, 
the features of the proposed fault tolerant cluster of workstations 
architecture is described, in which all components of the COW 
machine and central control workstation are connected to a single 
network backbone. The performance analysis of the proposed fault 
tolerant algorithm in terms of availability modeling of workstations 
is presented in section III. Finally, the conclusion is presented in 
section IV 
 
II Architecture of Fault Tolerant Cluster of Workstations 

(COW)  

A single bus based network provides many advantages over other 
kind of networks.  The main advantage is the easy upgrading of the 
systems. That is, in a COW size can be easily increased or 
decreased.  In this scheme the N component workstation nodes are 
connected to one common network.  A special workstation called 
central control workstation (CCW) performs the task distribution 
assignment.  The jobs are submitted to the central control 
workstation, which decomposes the job into n subtasks and assigns 
them to n workstations within the system. The assigned subtasks 
are performed by the workstations in parallel. After completing the 
subtask, each workstation reports back to the CCW. Once all the 



results of the subtasks are collected from all workstations, the main 
job is declared as completed by the central control workstation.  
Obviously, a main job is considered incomplete until the results of 
all subtasks are not returned back from all assigned workstations.   
Therefore, the main job will remain suspended until the failed 
workstation is not recovered. Besides the subtasks assignments to 
the participating workstation, the central control can also monitor 
the performance of the workstation nodes. To ensure the 
availability of an ith subtask executed by the ith workstation, we 
propose a fault diagnostic algorithm executed by CCW.  
 
The Fault Diagnostic Algorithm  
 
To obtain high availability and fault tolerance in COW, we 
propose that the central control workstation performs a supervisory 
algorithm in addition to the subtask allocation role. During this 
action, CCW perform a check pointing algorithm in which it sends 
periodic diagnostic or health check messages to component 
workstations on a periodic basis. If a jth workstation does not 
respond within a given time window, the failed workstation’s 
assigned subtasks are reassigned to another workstation in the 
system. The assigned workstation will continue its original 
assignment on a timesharing basis. For this purpose, we assume 
that each workstation is running a multi-processing operating 
system with sufficient computational power.  With this scheme, 
each workstation can handle n subtasks (its original job assignment 
plus the jobs of n-1 subtasks.). Therefore, according to the 
proposed fault tolerant scheme, all the subtasks assigned to n 
workstations can still be considered completed if at least one 
workstation in COW is functional. We assume all workstations in 
COW have equal probability of survivals. If p be the survival 
probability of any workstation and therefore are n workstations in 
the system then the probability that at least one workstation is 
functional at a given time will be np)1(1 −− .  Therefore, a job 
submitted to the central control workstation will be completed as 
long as at least one workstation in the system is in an operational 



state.  In other words, the probability of main task completion with 
n workstations is also np)1(1 −− .  
 
To implement the fault diagnostic algorithm, the CCW uses a 
variable called Workstation index (WINDX), which points to an ith 
surviving workstation at a given instance of time. The CCW sends 
a diagnostic message periodically to all workstations in the system 
indicated by WINDX. If an ith workstation is not faulty, it will 
respond back to the CCW’s diagnostic message by sending an 
acknowledgment message to it.  However, if the CCW does not 
receive the expected acknowledgment message within a predefined 
interval of time then, it will mark that workstation as “faulty.”  The 
CCW updates the list of surviving workstations and assigns the 
subtask of the faulty workstation to another workstation, which 
may be performing some frivolous subtasks in the system.  The 
assigned workstation will continue performing its original tasks in 
addition to this new assignment on a time sharing basis.  Figure 1 
summarizes the fault tolerant algorithm. 
 
II. Availability modeling 
The performance issue of cluster of workstation based system has 
drawn the interests of several researchers [2-7].  Availability is an 
important metric that is commonly used along with other metrics to 
evaluate a fault tolerant computer system. In this section, the 
availability of the proposed fault tolerant COW will be modeled 
and evaluated.  Misbahuddin and Al-Holou developed availability 
for high performance multi-computer systems with high 
availability solutions [10]. COW is special multi-computer system 
in which all computing nodes are homogenous; therefore the same 
availability model presented in [10] can be extended to COW 
architecture with the fault tolerant scheme.  
 



Figure 1 Fault tolerant algorithm 
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A. Definitions and Assumptions   
According to the proposed fault tolerant scheme, any workstation 
could be in one of two states. When the workstation is performing 
its original assignment, then it is called a processing node (PN). A 
workstation which is performing the tasks of the primary 
workstation is called the secondary processing node (SPN). The 
following assumptions are made in the availability modeling. 
• All faults occurring in the system are intermittent or transient 
• A processing node is subjected to random faults with a 

probability of failure λ1.  
• A processing node may recover from the intermittent or 

transient failure state with a probability λ2. 
• The transition from one state to another state occurs at a 

constant rate. 
• When a PN has a transient or intermittent fault, it is said to be 

in a “faulty state.” When the processor recovers from the fault 
it is said to be in a “recovered state.”   

• A future state is independent of all past states except the 
preceding one. 

According to the fault diagnostic algorithm in the proposed fault 
tolerant scheme, each processing node can be in one of the three 
states defined below: 
• S0:  Single operational state. The state in which the processing 

node is performing its own tasks only. 
• S1: Dual operational state. The state in which a primary 

processing node executes the tasks of another faulty processing 
node on a time sharing basis.   

• S2: Faulty state. The state in which the processing node is not 
available due to a fault 

 
B. Markov Model 
The Markov models provide convenient methods for reliability and 
availability estimation of computer systems [9, 11].  The basic 
assumption in the Markov model is based upon the notion that the 
probability of a next state transition of a system depends only on 



its current state. In the proposed fault tolerant algorithm, whenever 
a workstation in the COW system is failed, the central control 
workstation assigns the tasks of the failed workstation to another 
workstation in the system.  The workstation which has been 
assigned the tasks of the faulty workstation is said to be in the dual 
operational state. The workstation’s switching to the dual 
operational state (S1) depends only on the immediate preceding 
state (S0). Therefore, the behavior of the workstation can be 
represented by a Markov model. Figure 3 shows the Markov model 
of a workstation in the proposed fault tolerant COW. 
 
 

 

 

 

 

Figure 3: Markov model of a workstation with fault tolerant      
algorithm 

The state transitions shown in Figure 3 are defined as follows: 
 
• λ 1: Dual task rate. The rate at which a workstation is requested 

to switch its state 
into a dual operational mode. 

• λ 2:  Dual task recovery rate. The rate at which a faulty 
workstation recovers from  

       faults and therefore, the dual mode workstation transfers from 
a dual mode to a  
        single task mode. 
• λ 3: Failure rate. The rate at which a workstation becomes 

faulty.  
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• λ 4 : Repair rate. The transition rate of the workstation from a 
faulty state to             the correct state. 

• λ 5: Dual task failure rate. This rate is different from λ 3 
because in this case the failure rate has occurred while the 
workstation was in a dual task mode.  
  

The state transition from state S0 to state S1 occurs whenever the 
central control workstation identifies a faulty workstation and 
requests a workstation to take over the task assignments of the 
faulty workstation node.  If workstation failure rate is λ 1 then we 
can say that transition from S0 to S1 is also at the rate of λ 1. The 
transition from state S1 to state S0 occurs whenever a faulty 
workstation is recovered from fault. If the fault recovery rate is λ 2, 
then the transition from S1 to S1 is also at the rate of λ 2.  The 
transition from S0 to S2 is with rate λ3. This transition takes place 
when a workstation faces a failure. Similarly, the transition from S2 
to S0 occurs with rate λ4. This transition occurs whenever a 
workstation is recovered from a transient or intermittent failure. 
The transition from S2 to S1 doses not happens because a faulty 
workstation cannot go to a dual task state directly.  
 
A transition matrix S can be derived from the developed Markov 
model. The transition matrix is shown as shown below in Figure 4. 

 
             S0         S1  S2 

      S0        1-(λ1+λ3)          λ1 λ3 
 
                S=        S1       λ2          1-(λ2+λ5) λ5 
   
 
                                           S2         λ4            0  1-λ4  
 

Figure 4 Transition matrix obtained from Markov 
model. 



 
The state probabilities of states S0, S1 and S2 denoted by P(S0), 
P(S1) and P(S2) are   the unique non-negative solutions of the 
following formulae: 

P S P Sj i ij
i

( ) ( )= ∑ λ       (1) 

P S j
j

( ) =∑ 1       (2)  

Where λij is the transition rate from the ith state to the jth state and 
P(Sj) is the limiting probability of the jth state. The probability that 
a processing workstation is not faulty (State S0) can be derived 
from equations (1) and (2) and matrix S which is: 
 

 P(S0)  =
λ λ λ

λ λ λ λ λ λ λ
4 2 5

2 5 3 4 1 5 4

( )
( )( ) ( )

+
+ + + +

 (3) 

 

Similarly, the probability of a workstation in the dual operational 
mode (S1) is calculated as follows:  

 P(S1)  = 
λ λ

λ λ λ λ λ λ λ λ
1 4

2 5 4 1 3 1 4 2( )( ) ( )+ + + + −
  (4)  

  
The availability of a workstation is the probability that a 
workstation is available to continue its own tasks. This means that 
a workstation is available if it is either in state S0 or S1. An 
expression of availability can be represented by: 
     

A= P(S0) ∪   P(S1)      (5) 
 
A workstation working in state S0 will switch to state S1 only if 
another workstation in the system switches to state S2. Therefore, 
we can say that the transition rate from S0 to S1 is equal to the 
transition rate from S0 to S2. Similarly, a workstation in state S1 
switches back to S0 whenever a faulty workstation recovers from a 



fault. That is, the transition rate from S1 to S0 is equal to the 
transition rate from S2 to S0. Furthermore, λ5, the failure rate of a 
workstation in S1, will be equal to λ3 and λ1. This observation can 
be summarized in the following way: 

λ1= λ3= λ5= λ    (6)  

λ2= λ4=µ    (7) 

Using equations (6) and (7), in (3) and (4), we get: 
 

  P(S0) = 
µ
λ µ2 +

    (8) 

 

  P(S1) = 
µλ

µ λ µ λ( )( )+ + 2
   (9) 

 

  A = P(S0)  ∪  P(S1)=
µ

µ λ+
             (10) 

 
Equation 10 is also the availability metric of a system with repair.   
This means that the developed Markov model gives us the standard 
availability model with a repair facility. In other words, in the 
proposed fault tolerant algorithm, the assignment of a faulty 
workstation’s tasks to a normal working workstation is tantamount 
to the “repair” process. This result validates our developed model. 
 
In order to assess the fault tolerance capabilities of the proposed 
fault tolerant algorithm, it is important to compare the developed 
availability results with the availability results of a similar system 
without fault-tolerance capability.  In this case, a workstation will 
be either in a working state (S0) or in a faulty state (S2).  A faulty 
workstation can return to a working state after a repair process. A 
Markov model for a system without fault-tolerant capability is 
shown in Figure 5. 



  
 

 

 

Figure 5: Markov model of a workstation without the fault tolerant 
algorithm 

In this case, the workstation is available only when it is in the state 
S0. A simple state transition matrix can be established from Figure 
6 as shown below: 
            S0  S2 

   S0 

   

   S2 

 
Fig. 6:  Transition matrix obtained from Markov model shown in 
Fig. 5. 
 
The workstation's availability can be derived from the transition 
matrix as before and the result is: 

 P(S0) =
λ

λ λ
4

4 3+
     (11) 

 
If Awoft represents the availability of the workstation without the 
fault tolerant algorithm, then Awoft is equal to P(S0) as shown 
below: 
   

Awoft = P(S0)      (12) 
  

S0 S2 

λ3 

λ3 

1-λ3     λ3 
 
 
λ4  1--λ4 
 



C. Analysis of the Results 
To evaluate the fault-tolerance capability of the COW architecture 
with proposed fault tolerant algorithm, a metric called the 
Availability Improvement Factor (AIF) can be used [11]. AIF is 
defined in equation (13), which indicates the degree of availability 
of the proposed COW architecture compared with the degree of 
availability of the COW architecture with no fault tolerance 
capability.  If Awft represents the availability of the workstation 
with fault tolerance capable COW, then an expression for AIF can 
written as follows:  
 

  AIF =
A A

A
wft woft

woft

−
    (13) 

  
Using typical transition rates, Awft and  Awoft  and AIF are calculated 
and are summarized Table 1.  
λ 1  λ 2   λ 3  λ 4         λ 5   Awft        Awoft      AIF  
 
0.0010   0.0050   0.0010   0.0050   0.0010   0.8333     0.8333      0.0000 
0.0011   0.0050   0.0011   0.0050   0.0010   0.8218     0.8197      0.2546 
0.0012   0.0050   0.0012   0.0050   0.0010   0.8108     0.8065      0.5405 
0.0013   0.0050   0.0013   0.0050   0.0010   0.8004     0.7937      0.8553 
0.0014   0.0050   0.0014   0.0050   0.0010   0.7906     0.7812      1.1966 
0.0015   0.0050   0.0015   0.0050   0.0010   0.7813     0.7692      1.5625 
0.0016   0.0050   0.0016   0.0050   0.0010   0.7724     0.7576      1.9512 
0.0017   0.0050   0.0017   0.0050   0.0010   0.7639     0.7463      2.3611 
0.0018   0.0050   0.0018   0.0050   0.0010   0.7558     0.7353      2.7907 
0.0019   0.0050   0.0019   0.0050   0.0010   0.7481     0.7246      3.2386 
 
Table 1:  Awft, Awoft and AIF as a function of failure rate 
 
The results shown in Table 1 indicate that as the failure rate 
increases, the system availability decreases. However, the 
availability of the system with fault tolerant capability provides 
higher availability than a COW system with no fault tolerance.  
Furthermore, it is observed that the AIF increases as the failure rate 
increases.  This means that as the working conditions are 



worsened, the availability in the proposed COW system is 
improved.  Figure 7 and 8 show the graphical relationship between 
availability and AIF as a function of failure rate, λ1. 
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Figure 7 Availability (A) as a function of workstation failure rate 
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Figure 8: The Availability Improvement Factor as a function of 
workstation failure rate 
 
III. Conclusion 
A Cluster of workstation (COW) is an ensemble of desktop PC’s, 
which are connected to other computers by network technologies.  
COWs are intended to replace costly supercomputers.   COWs can 
give an illusion of a single computer machine to solve one 
common problem. However, this single machine image of COW is 
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impaired when one or more component workstations’ fail in the 
system. This paper presents a fault tolerant algorithm for COW. 
The algorithm allows a normally working workstation to replace a 
faulty workstation. In this way, no redundant backup workstations 
are needed. Markov modeling techniques have been used to 
evaluate the availability of the COW with and without fault 
tolerant shows.  Numerical results show that the algorithm 
improves the workstation availability to the assigned tasks by 
assigning the tasks of the failed workstations to the normally 
working workstations. The assigned workstations continue their 
original assignments in addition to the assigned tasks of the failed 
workstations. 
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