
Development and Performance Analysis of a
Fault Tolerant Algorithm for Cluster of

Workstations

Abstract
A Cluster of Workstations (COW) is network based multi-computer system,
which is the most prominent distributed memory system aimed to replace
supercomputers. A cluster of workstations can be viewed as a single machine in
which one job is divided into n subtasks and delegated to n workstations in the
COW architecture. To get the job completed, all subtasks assigned to component
workstations must be completed. Therefore, for satisfactory job completion, all
workstations must be functional. However, a faulty node can suspend the over
all job completion task until. Therefore, a job can not be completed until a
faulty node is recovered from fault. This paper presents a fault tolerant
architecture for COW, which will allow a normally working workstation to
perform the tasks of the faulty workstation in addition to its original
assignments. The Markov models are basic tools applied for availability
modeling. This paper presents a Markov Availability model for estimating the
availability of component workstations as a function of workstation failure rates.

Keywords: COW, Availability modeling, Markov modeling,
Distributed computing

Syed Misbahuddin, Dr. Eng.
Department of Computer Science and Software

Engineering
Hail Community College

King Fahd University of Petroleum and Minerals
PO Box 2440, Hail, Saudi Arabia

Nizar Al-Holou, PhD
Department of Electrical and Computer Engineering

The University of Detroit Mercy
4001 West Mc Nicholas, Detroit MI 48219, USA

alholoun@udmercy.edu

I. Introduction

The cluster of workstations (COWs) or network of workstations
(NOWs) presents attractive alternatives to expensive
supercomputers and parallel computers for high performance
computing. This alternative has been possible due to the
emergence of powerful workstations and high speed network
solutions. In terms of performance, it has been observed that COW
can rival or even exceed supercomputers for some applications [1].
Example of such COW systems include: IBM SP2, DEC
TruCluster, Hp, Intel/Sandia etc. According to Pfister, over
100,000 computer clusters are in use worldwide [2]. The COWs
provide platforms for high speed computing. In addition to
handling large computational loads, COWs can accommodate high
availability and scalability features. Due to its attractive features,
the idea of COW based computing is also moving towards web-
based or internet based computing.

In COWs, all networked workstations formulate the illusion of a
single machine. In this single system image paradigm, a
computational task is broken into n subtasks and delegated to n
workstations. An ith computational job is considered as completed
when all n subtasks of the main job are completed. The
computational power of COWs is impeded due to the faulty nature
of component workstations. A fault in any of n workstations may
obstruct the job completion until the faulty workstation is
recovered from the fault. A job can not be declared as completed
until all subtasks are completed by the participating workstations.
The features of fault tolerance in COWs must, therefore, be
injected to avoid overall task failures. With ever increasing
dependency on COW based distributed systems, the number of
applications requiring fault tolerance is also increasing. As a
solution for achieving fault tolerance in COW some backup
workstations are introduced in the system [8]. In case of a primary
workstation’s failure, the subtask is reassigned to the backup
workstations. In this paper we present a fault tolerant scheme for

COWs, in which no additional backup workstations will be
required; rather normally a working workstation node can takeover
the subtask assigned to a failed workstation node. This fault
tolerant scheme will be managed by monitoring central control
workstation (CCW). This central workstation will be responsible
for monitoring the performance of all of the workstations in the
system. As soon as a failure is identified in a workstation node, the
subtask of the failed node will be transferred to another
workstation in the system. The assigned node will carry on the
assigned task in addition to its originally assigned subtask. We
assume that the computational jobs will be submitted to the CCW,
which will decompose the job into n subtasks and assign them to n
workstations [8]. The paper is organized as follows. In section II,
the features of the proposed fault tolerant cluster of workstations
architecture is described, in which all components of the COW
machine and central control workstation are connected to a single
network backbone. The performance analysis of the proposed fault
tolerant algorithm in terms of availability modeling of workstations
is presented in section III. Finally, the conclusion is presented in
section IV

II Architecture of Fault Tolerant Cluster of Workstations

(COW)

A single bus based network provides many advantages over other
kind of networks. The main advantage is the easy upgrading of the
systems. That is, in a COW size can be easily increased or
decreased. In this scheme the N component workstation nodes are
connected to one common network. A special workstation called
central control workstation (CCW) performs the task distribution
assignment. The jobs are submitted to the central control
workstation, which decomposes the job into n subtasks and assigns
them to n workstations within the system. The assigned subtasks
are performed by the workstations in parallel. After completing the
subtask, each workstation reports back to the CCW. Once all the

results of the subtasks are collected from all workstations, the main
job is declared as completed by the central control workstation.
Obviously, a main job is considered incomplete until the results of
all subtasks are not returned back from all assigned workstations.
Therefore, the main job will remain suspended until the failed
workstation is not recovered. Besides the subtasks assignments to
the participating workstation, the central control can also monitor
the performance of the workstation nodes. To ensure the
availability of an ith subtask executed by the ith workstation, we
propose a fault diagnostic algorithm executed by CCW.

The Fault Diagnostic Algorithm

To obtain high availability and fault tolerance in COW, we
propose that the central control workstation performs a supervisory
algorithm in addition to the subtask allocation role. During this
action, CCW perform a check pointing algorithm in which it sends
periodic diagnostic or health check messages to component
workstations on a periodic basis. If a jth workstation does not
respond within a given time window, the failed workstation’s
assigned subtasks are reassigned to another workstation in the
system. The assigned workstation will continue its original
assignment on a timesharing basis. For this purpose, we assume
that each workstation is running a multi-processing operating
system with sufficient computational power. With this scheme,
each workstation can handle n subtasks (its original job assignment
plus the jobs of n-1 subtasks.). Therefore, according to the
proposed fault tolerant scheme, all the subtasks assigned to n
workstations can still be considered completed if at least one
workstation in COW is functional. We assume all workstations in
COW have equal probability of survivals. If p be the survival
probability of any workstation and therefore are n workstations in
the system then the probability that at least one workstation is
functional at a given time will be np)1(1 −− . Therefore, a job
submitted to the central control workstation will be completed as
long as at least one workstation in the system is in an operational

state. In other words, the probability of main task completion with
n workstations is also np)1(1 −− .

To implement the fault diagnostic algorithm, the CCW uses a
variable called Workstation index (WINDX), which points to an ith
surviving workstation at a given instance of time. The CCW sends
a diagnostic message periodically to all workstations in the system
indicated by WINDX. If an ith workstation is not faulty, it will
respond back to the CCW’s diagnostic message by sending an
acknowledgment message to it. However, if the CCW does not
receive the expected acknowledgment message within a predefined
interval of time then, it will mark that workstation as “faulty.” The
CCW updates the list of surviving workstations and assigns the
subtask of the faulty workstation to another workstation, which
may be performing some frivolous subtasks in the system. The
assigned workstation will continue performing its original tasks in
addition to this new assignment on a time sharing basis. Figure 1
summarizes the fault tolerant algorithm.

II. Availability modeling
The performance issue of cluster of workstation based system has
drawn the interests of several researchers [2-7]. Availability is an
important metric that is commonly used along with other metrics to
evaluate a fault tolerant computer system. In this section, the
availability of the proposed fault tolerant COW will be modeled
and evaluated. Misbahuddin and Al-Holou developed availability
for high performance multi-computer systems with high
availability solutions [10]. COW is special multi-computer system
in which all computing nodes are homogenous; therefore the same
availability model presented in [10] can be extended to COW
architecture with the fault tolerant scheme.

Figure 1 Fault tolerant algorithm

Begin

Initialize WINDX

WINDX>N

Yes

No

Send message to a
workstation pointed

by WINDEX

Response

Yes

WINDEX= WINDEX+1

No

Mark a workstation pointed by
WINDEX as unavailable

Assign the task of unavailable
workstation to another

workstation

A. Definitions and Assumptions
According to the proposed fault tolerant scheme, any workstation
could be in one of two states. When the workstation is performing
its original assignment, then it is called a processing node (PN). A
workstation which is performing the tasks of the primary
workstation is called the secondary processing node (SPN). The
following assumptions are made in the availability modeling.
• All faults occurring in the system are intermittent or transient
• A processing node is subjected to random faults with a

probability of failure λ1.
• A processing node may recover from the intermittent or

transient failure state with a probability λ2.
• The transition from one state to another state occurs at a

constant rate.
• When a PN has a transient or intermittent fault, it is said to be

in a “faulty state.” When the processor recovers from the fault
it is said to be in a “recovered state.”

• A future state is independent of all past states except the
preceding one.

According to the fault diagnostic algorithm in the proposed fault
tolerant scheme, each processing node can be in one of the three
states defined below:
• S0: Single operational state. The state in which the processing

node is performing its own tasks only.
• S1: Dual operational state. The state in which a primary

processing node executes the tasks of another faulty processing
node on a time sharing basis.

• S2: Faulty state. The state in which the processing node is not
available due to a fault

B. Markov Model
The Markov models provide convenient methods for reliability and
availability estimation of computer systems [9, 11]. The basic
assumption in the Markov model is based upon the notion that the
probability of a next state transition of a system depends only on

its current state. In the proposed fault tolerant algorithm, whenever
a workstation in the COW system is failed, the central control
workstation assigns the tasks of the failed workstation to another
workstation in the system. The workstation which has been
assigned the tasks of the faulty workstation is said to be in the dual
operational state. The workstation’s switching to the dual
operational state (S1) depends only on the immediate preceding
state (S0). Therefore, the behavior of the workstation can be
represented by a Markov model. Figure 3 shows the Markov model
of a workstation in the proposed fault tolerant COW.

Figure 3: Markov model of a workstation with fault tolerant
algorithm

The state transitions shown in Figure 3 are defined as follows:

• λ 1: Dual task rate. The rate at which a workstation is requested

to switch its state
into a dual operational mode.

• λ 2: Dual task recovery rate. The rate at which a faulty
workstation recovers from

 faults and therefore, the dual mode workstation transfers from
a dual mode to a
 single task mode.
• λ 3: Failure rate. The rate at which a workstation becomes

faulty.

S0 S1

λ 1

λ 2

λ 3 λ 5

λ 4

S2

• λ 4 : Repair rate. The transition rate of the workstation from a
faulty state to the correct state.

• λ 5: Dual task failure rate. This rate is different from λ 3
because in this case the failure rate has occurred while the
workstation was in a dual task mode.

The state transition from state S0 to state S1 occurs whenever the
central control workstation identifies a faulty workstation and
requests a workstation to take over the task assignments of the
faulty workstation node. If workstation failure rate is λ 1 then we
can say that transition from S0 to S1 is also at the rate of λ 1. The
transition from state S1 to state S0 occurs whenever a faulty
workstation is recovered from fault. If the fault recovery rate is λ 2,
then the transition from S1 to S1 is also at the rate of λ 2. The
transition from S0 to S2 is with rate λ3. This transition takes place
when a workstation faces a failure. Similarly, the transition from S2
to S0 occurs with rate λ4. This transition occurs whenever a
workstation is recovered from a transient or intermittent failure.
The transition from S2 to S1 doses not happens because a faulty
workstation cannot go to a dual task state directly.

A transition matrix S can be derived from the developed Markov
model. The transition matrix is shown as shown below in Figure 4.

 S0 S1 S2

 S0 1-(λ1+λ3) λ1 λ3

 S= S1 λ2 1-(λ2+λ5) λ5

 S2 λ4 0 1-λ4

Figure 4 Transition matrix obtained from Markov
model.

The state probabilities of states S0, S1 and S2 denoted by P(S0),
P(S1) and P(S2) are the unique non-negative solutions of the
following formulae:

P S P Sj i ij
i

() ()= ∑ λ (1)

P S j
j

() =∑ 1 (2)

Where λij is the transition rate from the ith state to the jth state and
P(Sj) is the limiting probability of the jth state. The probability that
a processing workstation is not faulty (State S0) can be derived
from equations (1) and (2) and matrix S which is:

 P(S0) =
λ λ λ

λ λ λ λ λ λ λ
4 2 5

2 5 3 4 1 5 4

()
()() ()

+
+ + + +

 (3)

Similarly, the probability of a workstation in the dual operational
mode (S1) is calculated as follows:

 P(S1) =
λ λ

λ λ λ λ λ λ λ λ
1 4

2 5 4 1 3 1 4 2()() ()+ + + + −
 (4)

The availability of a workstation is the probability that a
workstation is available to continue its own tasks. This means that
a workstation is available if it is either in state S0 or S1. An
expression of availability can be represented by:

A= P(S0) ∪ P(S1) (5)

A workstation working in state S0 will switch to state S1 only if
another workstation in the system switches to state S2. Therefore,
we can say that the transition rate from S0 to S1 is equal to the
transition rate from S0 to S2. Similarly, a workstation in state S1
switches back to S0 whenever a faulty workstation recovers from a

fault. That is, the transition rate from S1 to S0 is equal to the
transition rate from S2 to S0. Furthermore, λ5, the failure rate of a
workstation in S1, will be equal to λ3 and λ1. This observation can
be summarized in the following way:

λ1= λ3= λ5= λ (6)

λ2= λ4=µ (7)

Using equations (6) and (7), in (3) and (4), we get:

 P(S0) =
µ
λ µ2 +

 (8)

 P(S1) =
µλ

µ λ µ λ()()+ + 2
 (9)

 A = P(S0) ∪ P(S1)=
µ

µ λ+
 (10)

Equation 10 is also the availability metric of a system with repair.
This means that the developed Markov model gives us the standard
availability model with a repair facility. In other words, in the
proposed fault tolerant algorithm, the assignment of a faulty
workstation’s tasks to a normal working workstation is tantamount
to the “repair” process. This result validates our developed model.

In order to assess the fault tolerance capabilities of the proposed
fault tolerant algorithm, it is important to compare the developed
availability results with the availability results of a similar system
without fault-tolerance capability. In this case, a workstation will
be either in a working state (S0) or in a faulty state (S2). A faulty
workstation can return to a working state after a repair process. A
Markov model for a system without fault-tolerant capability is
shown in Figure 5.

Figure 5: Markov model of a workstation without the fault tolerant
algorithm

In this case, the workstation is available only when it is in the state
S0. A simple state transition matrix can be established from Figure
6 as shown below:
 S0 S2

 S0

 S2

Fig. 6: Transition matrix obtained from Markov model shown in
Fig. 5.

The workstation's availability can be derived from the transition
matrix as before and the result is:

 P(S0) =
λ

λ λ
4

4 3+
 (11)

If Awoft represents the availability of the workstation without the
fault tolerant algorithm, then Awoft is equal to P(S0) as shown
below:

Awoft = P(S0) (12)

S0 S2

λ3

λ3

1-λ3 λ3

λ4 1--λ4

C. Analysis of the Results
To evaluate the fault-tolerance capability of the COW architecture
with proposed fault tolerant algorithm, a metric called the
Availability Improvement Factor (AIF) can be used [11]. AIF is
defined in equation (13), which indicates the degree of availability
of the proposed COW architecture compared with the degree of
availability of the COW architecture with no fault tolerance
capability. If Awft represents the availability of the workstation
with fault tolerance capable COW, then an expression for AIF can
written as follows:

 AIF =
A A

A
wft woft

woft

−
 (13)

Using typical transition rates, Awft and Awoft and AIF are calculated
and are summarized Table 1.
λ 1 λ 2 λ 3 λ 4 λ 5 Awft Awoft AIF

0.0010 0.0050 0.0010 0.0050 0.0010 0.8333 0.8333 0.0000
0.0011 0.0050 0.0011 0.0050 0.0010 0.8218 0.8197 0.2546
0.0012 0.0050 0.0012 0.0050 0.0010 0.8108 0.8065 0.5405
0.0013 0.0050 0.0013 0.0050 0.0010 0.8004 0.7937 0.8553
0.0014 0.0050 0.0014 0.0050 0.0010 0.7906 0.7812 1.1966
0.0015 0.0050 0.0015 0.0050 0.0010 0.7813 0.7692 1.5625
0.0016 0.0050 0.0016 0.0050 0.0010 0.7724 0.7576 1.9512
0.0017 0.0050 0.0017 0.0050 0.0010 0.7639 0.7463 2.3611
0.0018 0.0050 0.0018 0.0050 0.0010 0.7558 0.7353 2.7907
0.0019 0.0050 0.0019 0.0050 0.0010 0.7481 0.7246 3.2386

Table 1: Awft, Awoft and AIF as a function of failure rate

The results shown in Table 1 indicate that as the failure rate
increases, the system availability decreases. However, the
availability of the system with fault tolerant capability provides
higher availability than a COW system with no fault tolerance.
Furthermore, it is observed that the AIF increases as the failure rate
increases. This means that as the working conditions are

worsened, the availability in the proposed COW system is
improved. Figure 7 and 8 show the graphical relationship between
availability and AIF as a function of failure rate, λ1.

0.66
0.68
0.7
0.72
0.74
0.76
0.78
0.8
0.82
0.84

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 X10-3

λ1
Figure 7 Availability (A) as a function of workstation failure rate

0
0.5
1

1.5
2

2.5
3

3.5

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
X10-3

Figure 8: The Availability Improvement Factor as a function of
workstation failure rate

III. Conclusion
A Cluster of workstation (COW) is an ensemble of desktop PC’s,
which are connected to other computers by network technologies.
COWs are intended to replace costly supercomputers. COWs can
give an illusion of a single computer machine to solve one
common problem. However, this single machine image of COW is

AIF

λ1

With Fault Tolerance

Without fault tolerance

 A

impaired when one or more component workstations’ fail in the
system. This paper presents a fault tolerant algorithm for COW.
The algorithm allows a normally working workstation to replace a
faulty workstation. In this way, no redundant backup workstations
are needed. Markov modeling techniques have been used to
evaluate the availability of the COW with and without fault
tolerant shows. Numerical results show that the algorithm
improves the workstation availability to the assigned tasks by
assigning the tasks of the failed workstations to the normally
working workstations. The assigned workstations continue their
original assignments in addition to the assigned tasks of the failed
workstations.

References
 [1] Cristiana Amza, et al “Tread Marks: shared memory
computing on networks of
 workstations,” IEEE Computers, Feb 1996, pp. 18 – 28.

[2] G. F. Pfister, “Clusters of computers: Characteristics of an
invisible architecture,” keynote address presented at IEEE Int’l.
Parallel processing Symp., Honolulu, April 1996.
[3]. R. P. Martin et al., “Effect of communication latency,
overhead and band width in a cluster architecture, “ Proc. of
24th Int’l Symp, Computer Architecture, pp. 85-96, June 1997.
[4]. Garasoulis and T. Yang, “A comparison of clustering
heuristics for scheduling directed acyclic graphs in
multiprocessor, “ Journal of Parallel and Distributed
computing, Vol. 16, pp. 276-291, 1992.
[5]. A. Mortiz and M.I. Frank, “ LoGPC: Modeling network
contention in message-pasing programs”, IEEE Trans. Parallel
abd distributed syst. Vol. 12, pp. 404-4155, 2001.
[6]. J. Kim and D.J Lilja, “Performance-based path
determination for inter processor communication in distributed
computing system.” IEEE trans. Parallel and distributed syst.
Vol. 10, pp. 372-384, 1996.
[7]. R. Davoli, L. Giachini, O. Bbaoglu, A. Amorso, and L.
Alvisi, “Parallel computing in networks of workstations with

parlex, “ IEEE Trans. Parallel and Distributed Syst. Vol. 7,
ppp. 371-384, 1996.
[8]. Sameer Bataineha and Jamal Al-Karaki, “Fault Tolerant
computing on cluster of workstations”, ACS/IEEE Int’l conf.
on computer systems and applications, Tunis, Tunisia, July 14-
18, 2003.
[9]. B.W Johanson, “The design and analysis of fault tolerant
digital systems,” Addison Wesley, 1988.
[10]. Syed Misbahuddin, Nizar Al-Holou, “An Availability
model of high performance Computing Systems,” Proceedings
IASTED International conference on simulation and Modeling,
Marina Del Ray, CA, USA, May, 2002, pp. 80-84.
[11]. Salim Hariri, “A hierarchical modeling of availability in
distributed systems,” Proceedings International conference on
distributed systems, May, 1991, pp. 190-197.

	Button4:
	Button2:
	Button1:

