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Abstract

We estimate and characterize the edge congestion-sum measure for embeddings of

hypercubes into complete binary trees. Our algorithms produce optimal values of sum

of edge-congestions in linear time.
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1 Introduction and Terminology

Let G and H be finite graphs with n vertices. V (G) and V (H) denote the vertex
sets of G and H respectively. E(G) and E(H) denote the edge sets of G and H
respectively. A 1 − 1 mapping f : V (G) → V (H) is called an embedding of G
into H . H is normally called a host graph. The graph G that is being embedded
is sometimes called a virtual graph or a guest graph. Some authors use the name
labeling instead of embedding. We may use both terminologies here.

1This research is supported by King Fahd University of Petroleum and Minerals, Dhahran,
Saudi Arabia.

1



The Dilation Problem: The dilation bDf (G,H) of an embedding f of G into
H is defined as bDf (G,H) = max

(u,v)∈E(G)
dH(f (u), f(v)) (1)

where dH(x, y) denotes the distance between x and y in H. Then, the dilation
of G into H is defined as

bD(G,H) = min
f

bDf (G,H) (2)

where the minimum is taken over all embeddings f of G into H. The dilation
is also known as bandwidth when the host graph is a path [14, 17]. The dilation
problem [1, 3, 18] for a graph G into H is that of finding an embedding of G into

H that induces the dilation bD(G,H).
The Dilation-sum Problem: For an embedding f of G into H , the dilation-
sum of f is given by

eDf (G,H) =
X

(u,v)∈E(G)
dH(f (u), f(v)) (3)

Then, the minimum dilation-sum of G into H is defined as

eD(G,H) = min
f

eDf (G,H) (4)

where the minimum is taken over all embeddings f of G into H . The dilation-
sum problem for a graph G into H is that of finding an embedding of G into H
that induces the minimum dilation-sum eD(G,H).
The Congestion-sum Problem: The congestion of an embedding f of G into
H is the maximum number of edges of the guest graph that are embedded on
any single edge of the host graph. Normally an embedding f of G into H defines
a mapping of V (G) into V (H) and does not map the edges of E(G) into E(H).
In the congestion problem, we need the information as to how the edges of E(G)
are embedded into E(H). For every edge (u, v) of G, there are several paths
between its images f(u) and f (v) in H . Let us assume that the embedding f of
G into H defines a unique path between f(u) and f(v) in H for every edge (u, v)
of G. Let us say Pf (f(u), f(v)) denotes the path between f (u) and f(v) in H
for the edge (u, v) of G defined by f . This may be expressed in a mathematical
format. Let Cf(G,H(e)) denote the number of edges (u, v) of G such that e is
in the path Pf (f(u), f(v)) between f(u) and f (v) in H. In other words,

Cf(G,H(e)) = |{(u, v) ∈ E(G)|e ∈ Pf(f (u), f (v))}|



The congestion-sum of an embedding f of G into H is given by

eCf (G,H) =
X

e∈E(H)
Cf (G,H(e)) (5)

Then, the minimum congestion-sum of G into H is defined as

eC(G,H) = min
f

eCf(G,H) (6)

where the minimum is taken over all embeddings f of G into H. The congestion-
sum problem [5, 6] of a graph G into H is that of finding an embedding of G into

H that induces the congestion-sum eC(G,H).
We are also interested in the minimum congestion of an edge which is defined

as
Cmin(G,H(e)) = min

f
Cf (G,H(e)) (7)

where the minimum is taken over all embeddings f of G into H.

Remark 1 Subsequently, for the sake of simplicity Cf (G,H(e)) will be repre-
sented by Cf (e) and Cmin(G,H(e)) will be represented by Cmin(e). Notice that
the sum of Cmin(e) over all the edges e of H constitutes a lower bound for the

minimum congestion-sum eC(G,H). To solve the congestion-sum problem of a
graph G into H, we simply identify the embedding that yields Cmin(e) for every
edge e of H.

Remark 2 Notice that the congestion-sum problem and the dilation-sum problem
are the same.

The following lemma provides a key technique to estimate the congestion-sum
of an embedding. It will be used throughout this paper.

Lemma 1 [21] Let f be an embedding of a graph G into an arbitrary tree Tn.
Let e ∈ E(Tn) and T1 be a component of Tn − e. Then the congestion Cf (e) on
e is given by

Cf (e) =
X
v∈G1

dG(v)− 2|E(G1)| (8)

where G1 is the subgraph of G induced by the vertices {f−1(u)|u ∈ T1} and dG(v)
denotes the degree of v in G.

The dilation-sum of a graph embedding arises from VLSI designs, data struc-
tures and data representations, networks for parallel computer systems, biological
models that deal with cloning and visual stimuli, parallel architecture, structural
engineering and so on [17]. The dilation-sum problem of an arbitrary graph on
a path is called linear layout or the linear arrangement problem in VLSI litera-
ture [17]. The concept of embedding is widely studied in the literature of fixed
interconnection parallel architectures [18].



The dilation problem is NP -complete for two classes of ‘almost’ caterpillars
on a path [15] and trees of maximum degree 3 on paths [17, 24]. The dilation-sum
problem is expected to be harder than the dilation problem [24]. From the above
NP -complete results, it is easy to understand that these problems are in general
hard. That is why, even though there are numerous results and discussions on
the dilation-sum problem and the congestion-sum problem, most of them are
dealing only approximate results.
The dilation-sum problem is studied for binary trees into paths [8, 12], hy-

percubes into grids [5], complete graphs into hypercubes [16]. The bounded cost
of dilation and congestion has been estimated for the embedding on binary trees
[24]. Most of the works on the dilation-sum problem and the dilation problem
are on a particular case in which the host graph is a path, or a cycle [17]. There
are also other general results on embeddings [2].
The concept of congestion is similar to cutwidth in graph theory [23, 26, 11].

There are several results on the congestion problem of various architectures such
as trees into stars [25], trees into hypercubes [19], hypercubes into grids [5, 6],
complete binary trees into grids [20], ladders and caterpillars into hypercubes
[7, 10].
The embeddings discussed in this paper produce optimal congestion-sum.

We demonstrate that the congestion-sum problem of hypercubes into complete
binary trees is polynomially solvable. The nucleus part of this paper is the
estimation of the congestion-sum of hypercubes into complete binary trees in
linear time.
Here are a few definitions and notations we use in this paper.

Definition 1 For n ≥ 1 let Qn denote the graph of the n-dimensional hypercube.
The vertex set of Qn is formed by the collection of all n-dimensional vectors
with binary entries. Two vertices x, y ∈ V (Qn) are adjacent if and only if the
corresponding vectors differ exactly in one entry [4, 18]. For convenience, the
labels {0, 1, 2, . . . , 2n−1} of Qn are represented by {1, 2, . . . , 2n} respectively. See
Figure 2.

Notation 1 Let Sα denote a set of α vertices of a guest graph G and G [Sα]
denote the subgraph of G induced by Sα. Let Sα represent some Sα for which the
number of edges |E (G [Sα])| is maximum.

Notation 2 Tn denotes a complete binary tree. Let eα denote an edge of T n

such that |Teα | = α where Teα is a component of T
n − eα and Teα is rooted at an

end of eα. Let Ψ(eα) denote the number of eα’s in T n. In other words, Ψ(eα)
denotes the number of subtrees of T n with α vertices. See Figure 1 (a).



2 Embedding of Hypercubes into Complete Bi-

nary Trees

Throughout this section, we assume that an embedding f maps Qn into T n where
T n is a complete binary tree with 2n nodes.

2.1 Properties of Hypercubes and Complete Binary Trees

Here are a few properties of hypercubes and complete binary trees.

Property 1 [4, 18] The maximum subgraph of Qn induced by α vertices is
given by ¯̄

E(G[ Sα])
¯̄
=

(
m2m−1 if α = 2m

m(2m−1 − 1) if α = 2m − 1

Property 2 [4, 9, 20, 25, 26] The number of subtrees of T n with α vertices is
given by

Ψ(eα) =


1

2n−m − 1
2n−1

if α = 2m, m = 1, 2, . . . , n− 1
if α = 2m − 1, m = 2, 3, . . . , n− 1
if α = 1
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Figure 1: (a) Number of eα’s. (b) For each edge e, the value of Cmin(e) is marked.

2.2 An Estimation of the Congestion-sum of a Hypercube
on a Complete Binary Tree

We now estimate the congestion-sum of a hypercube on a complete binary tree.
Here we estimate Cmin(Qn, T n(e)) for each edge e of Tn (see Figure 1 (b)).



Lemma 2 For the guest graph Qn and the host graph Tn, the minimum edge-
congestion is estimated as

Cmin(eα) ≥
(
(n−m) 2m

(n−m) 2m + (2m− n)

if α = 2m

if α = 2m − 1

where eα is an edge of T
n such that |Teα| = α and Teα is a component of T

n−eα.
Proof. Let Sα be a maximal subgraph of Qn induced by α vertices as defined
in Property 1. Let f be an arbitrary embedding of Qn into Tn. By Lemma 1,
Property 1 and 2, if α = 2m, then

Cf(eα) ≥ n2m − 2(m2m−1)
= (n −m)2m

Therefore
Cmin(eα) ≥ (n −m)2m (9)

If α = 2m − 1, then

Cf (eα) ≥ n(2m − 1)− 2(m(2m−1 − 1))
= (n−m)2m + (2m− n)

Therefore
Cmin(eα) ≥ (n−m)2m + (2m− n) (10)

The lemma follows from equalities (9) and (10).

Now we estimate the congestion-sum of Qn into T n.

Lemma 3 For a hypercube Qn and a complete binary tree Tn, the minimum
congestion-sum is at least n2n−1+

Pn−1
m=2 (2

n−m − 1) ((n −m) 2m + (2m− n))+Pn−1
m=1 2

m(n−m).

Proof. By Property 2 and Lemma 2, we have

eC(Qn, T n) = Ψ(e1)Cmin(e1) +
n−1X
m=2

Ψ(e2m−1)Cmin(e2m−1)

+

n−1X
m=1

Ψ(e2m)Cmin(e2m)

> n2n−1 +
n−1X
m=2

¡
2n−m − 1¢ ((n−m) 2m + (2m− n))

+

n−1X
m=1

2m(n−m)



Hence the lemma.

Example 1 In Figure 2, the congestion-sum eC(Q5, T 5) of a hypercube Q5 on a
complete binary tree T 5 is 279. That is,

eC(Qn, Tn) = n2n−1 +
n−1X
m=2

¡
2n−m − 1¢ ((n−m) 2m + (2m− n))

+
n−1X
m=1

2m(n−m)

= 80 + 77 + 51 + 19 + 8 + 12 + 16 + 16

= 279

2.3 An Embedding Algorithm of Hypercubes into Com-
plete Binary Trees

Now we apply the well-known inorder traversal to construct an optimal embed-
ding of Qn into Tn. Inorder traversal on a tree is a widely known technique
[13]. This traversal is used to read the labels of the tree and output the inorder
listing of the labels. Here we use this technique to assign labels {1, 2, . . . , 2n−1}
to the internal nodes of the tree Tn. The remaining labels {2n−1 + 1, . . . , 2n} are
assigned to the leaves of Tn.
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Figure 2: Embedding F of hypercube Q5 into complete binary tree with minimum

congestion-sum.



2.3.1 Embedding Algorithm

Input: A hypercube Qn with vertex set {1, 2, . . . , 2n} and a complete binary
tree Tn.

Algorithm: The leaves of the complete binary tree T n are assigned labels {2n−1+
1, 2n−1+2, . . . , 2n} from left to right. The internal nodes of Tnare assigned
labels {1, 2, . . . , 2n−1} by inorder traversal from left to right (see Figure 2).

Output: An embedding F ofQn into the complete binary tree Tn with minimum
congestion-sum eC(Qn, Tn).

Proof of Correctness: The subtree Teα is a component of T − eα such that
|Teα| = α and Teα is rooted at eα. Let Πα denote the number of edges of Q

n

being embedded into Teα by the algorithm. In other words, Πα = |E (Gα)| where
Gα is a subgraph of Qn induced by the vertices {F−1 (u) |u ∈ Teα}. It is enough
to show that

Πα =

(
m2m−1 if α = 2m

m(2m−1 − 1) if α = 2m − 1 (11)

Let eki , i = 1, 2, . . . , 2
n−k−1 and 0 ≤ k ≤ n− 2, denote the edges of T n which are

at a distance of n− k − 2 from the root of T n (see Figure 3). Even though the
notations eki and eα carry different meanings, they are related to each other as
given below:

eki =

(
e2k+1−1 if i 6= 1
e2k+1 if i = 1

(12)

This is true because Teki , the subtree of Tn rooted at eki has 2
k+1 − 1 vertices if

i 6= 1 and Teki has 2
k+1 vertices if i = 1.

Case (i = 1): First we consider the case i = 1. The internal nodes of the subtree
Tek1 are assigned the labels of consecutive integers from 1 to 2k. The leaves of

Tek1 are assigned the labels of consecutive integers from 1+ 2n−1 to 2k + 2n−1. In
other words, the internal nodes of Tek1 are assigned the labels

©
1, 2, . . . , 2k

ª
and

the leaves of Tek1 are assigned the labels
©
1 + 2n−1, . . . , 2k + 2n−1

ª
. The labels of

Tek1 are {1, 2, . . . , 2k}∪{1+2n−1, . . . , 2k+2n−1}. Now the subgraph of Qn induced

by {1, 2, . . . , 2k} ∪ {1 + 2n−1, . . . , 2k + 2n−1} is a sub-hypercube on 2k+1 vertices.
The subgraph of Qn induced by

©
1, 2, . . . , 2k

ª ∪ ©1 + 2n−1, . . . , 2k + 2n−1ª has
(k + 1)2k edges. Moreover, Tek1 has 2

k+1 vertices. Thus Π2k+1 = (k + 1)2k. In
other words,

Πα = m2m−1 if α = 2m (13)

Case (i 6= 1): The internal nodes of Teki are assigned the labels of consecutive

integers from x + 1 to x + 2k − 1 where x = 2k(i − 1) + 1, k = 0, 1, . . . , n − 2.



The leaves of Teki are assigned the labels of consecutive integers from x+2n−1 to
(x + 2k − 1) + 2n−1. In other words, the internal nodes of Teki are assigned the
labels {x+1, x+2, . . . , x+2k−1} where x = 2k(i−1)+1. The leaves of Teki are
assigned the labels {x+2n−1, (x+ 1) + 2n−1, . . . , (x+ 2k − 1) + 2n−1}. Let Λ de-
note the labels of Tekiwhich is the set union of

©
x+ 1, x+ 2, . . . , x + 2k − 1ª and©

x+ 2n−1, (x+ 1) + 2n−1, . . . , (x+ 2k − 1) + 2n−1ª. It is true that the subgraph
of Qn induced by Λ ∪ {x} is a sub-hypercube of 2k+1 vertices in Qn. Thus the
subgraph of Qn induced by Λ has (k + 1)2k − (k + 1) edges. Moreover, Teki has
2k+1− 1 vertices. Thus Π2k+1−1 = (k+1)2k − (k+1) = (k+1)(2k − 1). In other
words,

Πα = m(2m−1 − 1) if α = 2m − 1 (14)

The equation (11) follows from equations (13) and (14). Hence the proof.
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Figure 3: Definition of eki .

Theorem 3 The above embedding algorithm gives minimum congestion-sum in
linear time.

Since the algorithm performs inorder traversal, with O(1) time per node, the
overall running time is linear.

3 Conclusion

We have solved the congestion-sum problem for an embedding of hypercubes into
complete binary trees. The embeddings we constructed in this paper produce



minimum congestion-sum in linear time. This technique can be extended to any
guest graphG and any tree T . For application of the method one should estimate
the minimum edge-cut for a set of vertices Sα of G for only certain values of α.
These values correspond to the sizes of the components of T −{e} for e in E(T ).
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