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Abstract 

 
With the growth of the multimedia technology over the past decades, the demand for digital information 
increases dramatically. This enormous demand poses difficulties for the current technology to handle. One 
approach to overcome this problem is to compress the information by removing the redundancies present 
in it. Speech compression is the technology of converting human speech into an efficiently encoded 
representation that can later be decoded to produce a close approximation of the original signal. Recently, 
compression techniques using Wavelet Transform(WT) have received great attention, because of their 
promising compression ratio, Signal to Noise ratio (SNR),and flexibility in representing speech signals. 
This paper explores the major issues concerning the compression of speech using Wavelet based speech 
coder and the choice of an optimal wavelet for speech signals, decomposition level in the Discrete Wavelet 
Transform (DWT), threshold criteria for coefficient truncation and efficient encoding of truncated 
coefficients. In this paper we present the results obtained by compressing speech signals using DWT 
Techniques. More specifically we see the speech signal and approximations at different scales, analyze the 
performance measure which includes signal to noise ratio (SNR), peak signal to noise ratio(PSNR), 
normalized root mean square error(NRMSE) and retained signal energy. 
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1. Introduction 
 
Speech is a very basic way for humans to convey information to one another. With a 
bandwidth of only 4kHz, speech can convey information with the emotion of a human 
voice. People want to be able to hear someone voice from anywhere in the world. 
 
As a result a greater emphasis is being placed on the design of new and efficient speech 
coders for voice communication and transmission. Today applications of speech coding 
and compression have become very numerous. Many applications involve the real time 
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coding of speech signals, for use in mobile satellite communications, cellular telephony, 
and audio for videophones or video teleconferencing systems [1].  
 
This paper looks at a new technique for analyzing and compressing speech signals using 
wavelets. Very simply wavelets are mathematical functions of finite duration with an 
average value of zero that are useful in representing data or other functions. Any signal 
can be represented by a set of scaled and translated versions of a basic function called the 
mother wavelet. This set of wavelet functions forms the wavelet coefficients at different 
scales and positions and results from taking the wavelet transform of the original 
signal[2].  
 
The coefficients represent the signal in the wavelet domain and all data operations can be 
performed using just the corresponding wavelet coefficients. Speech is a non-stationary 
random process due to the time varying nature of the human speech production system. 
Non-stationary signals are characterized by numerous transitory drifts, trends and abrupt 
changes. The localization feature of wavelets, along with its time-frequency resolution 
properties makes them well suited for coding speech signals. In designing a wavelet 
based speech coder, the major issues explored in this paper are: 
 

i. Choosing optimal wavelets for speech,  
ii. Decomposition level in wavelet transforms, 
iii.        Threshold criteria for the truncation of coefficients, 
iv.        Efficiently representing zero valued coefficients and 
v.         Quantizing and digitally encoding the coefficients. 

 
The performance of the wavelet compression scheme in coding speech signals and the 
quality of the reconstructed signals is also evaluated. 
 
The wavelet analysis procedure is to adopt a wavelet prototype function, called an 
analyzing wavelet or mother wavelet. Temporal analysis is performed with a contracted, 
high-frequency version of the prototype wavelet, while frequency analysis is performed 
with a dilated, low-frequency version of the same wavelet. Because the original signal or 
function can be represented in terms of a wavelet expansion (using coefficients in a linear 
combination of the wavelet functions), data operations can be performed using just the 
corresponding wavelet coefficients [3]. And if you further choose the best wavelets 
adapted to your data, or truncate the coefficients below a threshold, your data is sparsely 
represented. This sparse coding makes wavelets an excellent tool in the field of data 
compression. Other applied fields that are making use of wavelets include astronomy, 
acoustics, nuclear engineering, sub-band coding, signal and image processing, 
neurophysiology, music, magnetic resonance imaging, speech discrimination, optics, 
fractals, turbulence, earthquake-prediction, radar, human vision, and pure mathematics 
applications such as solving partial differential equations[4]. 
 
The organization of the paper is as follows. Section 2, provides a brief overview of the 
related work on wavelet based speech compression and analysis. Section 3 presents  the 
discrete wavelet transform. Section 4 demonstrates the results obtained by using Matlab 



Toolbox for Wavelet Analysis and finally in Section 5, we provide concluding remarks 
followed by a discussion of opportunities for future research.   
 
2. Related Work 
 
A general overview of wavelet is given in [5-7].  
 
Amara Graps[8] provides an overview of wavelets that cut up data into different 
frequencies components and than study each component with a resolution matched to its 
scale. The paper introduces wavelets to the interested technical person outside of the 
digital signal processing field. It describe the history of wavelets beginning with Fourier, 
compare wavelet transforms with Fourier transforms, state properties and other special 
aspects of wavelets, and finish with some interesting applications such as image 
compression, musical tones, and de-noising noisy data. 
 
George Tzanetakis and Perry cook[9] gives a brief account of their work i.e. to analyze 
the temporal and spectral properties of non stationary signals like audio using the 
Discrete Wavelet Transform, they describe some application of Discrete Wavelet 
Transform to the problem of extracting information from non-speech audio. More 
specifically automatic classification of various types of audio using the Discrete Wavelet 
Transform is described and compared with other traditional feature extractor proposed in 
the literature. In addition, a technique for detecting the beat attributes of music is 
presented. 
 
M. L. Hilton and R. T . Ogden[10] propose a data adaptive scheme for selecting the 
threshold for wavelet shrinkage based noise removal. The method involves a statistical 
test of hypothesis based on a two dimensional cumulative sum of wavelet coefficients, 
which takes into account the coefficients magnitude and their positions. The amount of 
smoothing performed during the removal is controlled by the alpha attribute, which is the 
user supplied confidence level of the test. Simulated critical points for the statistical test 
are tabulated for a wide range of signals sizes and confidence levels.  
 
Goran Kronquist and Henrik Storm[11], have considered a thresholding technique on the 
wavelet coefficients in order to reduce the background noise in the speech signal. The 
reduction of the coefficients is made with a variant of soft thresholding, especially 
adapted to speech signals. The noise levels are determined with the help of a training 
sequence and are adaptively changed. It shows that their way of thresholding is 
particularly suitable when denoising speech signal does not change the characteristics of 
background noise, it just decreases its amplitude.  
 
3. Wavelet Analysis 
 
The fundamental idea behind wavelets is to analyze according to scale. The wavelet 
analysis procedure is to adopt a wavelet prototype function called an analyzing wavelet 
or mother wavelet. Any signal can then be represented by translated and scaled versions 
of the mother wavelet. Wavelet analysis is capable of revealing aspects of data that other 



signal analysis techniques such as Fourier analysis miss, aspects like trends, breakdown 
points, discontinuities in higher derivatives, and self-similarity. Furthermore, because it 
affords a different view of data than those presented by traditional techniques, it can 
compress or de-noise a signal without appreciable degradation [8]. 
 
The Fourier Analysis is Defined by the equation 

              (1) 
 
3.1 Continuous Wavelet Transform  
 
In continuous wavelet transform (CWT), information about a signal is obtained by 
manipulating the wavelet functions along the time axis. A wavelet prototype function 
ψs,x (x) at a scale s and a spatial displacement u is defined as: 

                         (2) 
 
Replacing the complex exponential in the Fourier Equation 1 with this function yields the 
continuous wavelet transform (CWT): 

                      (3) 
 
which is the sum over all time of the signal multiplied by scaled and shifted versions of 
the wavelet function. The results of the CWT are many wavelet coefficients C, which are 
a function of scale and position. Multiplying each coefficient by the appropriately scaled 
and shifted wavelet yields the constituent wavelets of the original signal.  
 
The basis functions in both Fourier and wavelet analysis are localized in frequency 
making mathematical tools such as power spectra (power in a frequency interval) useful 
at picking out frequencies and calculating power distributions.  
 
The parameter scale used in wavelet transformation is similar to the scale used in the 
maps. At high scale, the wavelet seeks for global information or low frequencies 
information about the signal. At low scale, the wavelet seeks for detailed information or 
high frequencies information about the signal. 
 
At high frequencies, this window will have a narrower width that corresponds to good time 
resolution and a longer height that corresponds to poor frequency resolution. At low 



frequencies, this window will have a wider width that corresponds to poor time resolution 
and a shorter height that corresponds to good frequency resolution.[12] Such analysis 
approach is suitable for most signals since most of the high frequencies occur for a small 
duration of time while low frequencies occur for long duration of time. 
 
3.2 The Discrete Wavelet Transform  
 
The Discrete Wavelet Transform (DWT) involves choosing scales and positions based on 
powers of two so called dyadic scales and positions. The mother wavelet is rescaled or 
dilated., by powers of two and translated by integers[13]. 
Specifically, a function f(t) ε.L2

 (R) (defines space of square integrable functions) can be 
represented as 

           (4) 
 
The function ψ(t) is known as the mother wavelet, while Ф(t) is known as the scaling 
function. The set of functions  
 

                     (5) 
 
where Z is the set of integers, is an orthonormal basis for L2

 (R). 
 
The numbers a(L, k) are known as the approximation coefficients at scale L, while d(j,k) 
are known as the detail coefficients at scale j. The approximation and detail coefficients 
can be expressed as: 

                     (6) 

                     (7) 
 
To provide some understanding of the above coefficients consider a projection fl(t) of the 
function f(t) that provides the best approximation (in the sense of minimum error energy) 
to f(t) at a scale l[14]. This projection can be constructed from the coefficients a(L, k), 
using the equation 

                       (8) 



As the scale l decreases, the approximation becomes finer, converging to f(t) as l -> 0. 
The difference between the approximation at scale l + 1 and that at l, fl+1(t) - fl(t), is 
completely described by the coefficients d(j, k) using the equation 

          (9) 
 
Using these relations, given by a(L, k) and {d(j, k) | j < L}, it is clear that we can build the 
approximation at any scale. Hence, the wavelet transform breaks the signal up into a 
coarse approximation fL(t) (given a(L, k)) and a number of layers of detail {fj+1(t)-fj(t)| j < 
L} (given by {d(j, k) | j L}). As each layer of detail is added, the approximation at the 
next finer scale is achieved 
 
3.3 The Fast Wavelet Transform Algorithm 
 
The Discrete Wavelet Transform (DWT) coefficients can be computed by using Mallat 
Fast Wavelet Transform algorithm. This algorithm is sometimes referred to as the two-
channel sub-band coder and involves filtering the input signal based on the wavelet 
function used[5]. 
 
3.3.1 Implementation Using Filters 
 
To explain the implementation of the Fast Wavelet Transform algorithm consider the 
following equations: 

                      (10) 
 
The first equation is known as the twin-scale relation (or the dilation equation) and 
defines the scaling function Ф(t)  . The next equation expresses the wavelet ψ. in terms 
of the scaling function Ф(t) . The third equation is the condition required for the wavelet 
to be orthogonal to the scaling function and its translates  
 
The coefficients c(k) or {c0, –., c2N-1} in the above equations represent the impulse 
response coefficients for a low pass filter of length 2N, with a sum of 1  
 
The high pass filter is obtained from the low pass filter using the relationship gk= (-
1)kc(1-k), where k varies over the range (1-(2N -1)) to 1. 
 



Equation 10 shows that the scaling function is essentially a low pass filter and is used to 
define the approximations. The wavelet function defined by equation 10 is a high pass 
filter and defines the details. Starting with a discrete input signal vector s, the first stage 
of the FWT algorithm decomposes the signal into two sets of coefficients. These are the 
approximation coefficients cA1 (low frequency information) and the detail coefficients 
cD1 (high frequency information)[15], as shown in the figure 1 below. 
 

 
 

Figure 1 Filtering Operation of the DWT 
 
The coefficient vectors are obtained by convolving s with the low-pass filter Lo_D for 
approximation and with the high-pass filter Hi_D for details. This filtering operation is 
then followed by dyadic decimation or down sampling by a factor of 2. 
 
Mathematically the two-channel filtering of the discrete signal s is represented by the 
expressions: 

         (11) 
 
These equations implement a convolution plus down sampling by a factor 2 and give the 
forward fast wavelet transform. If the length of each filter is equal to 2N and the length of 
the original signal s is equal to n, then the corresponding lengths of the coefficients cA1 
and cD1 are given by the formula: 
 

              (12) 
 
This shows that the total length of the wavelet coefficients is always slightly greater than 
the length of the original signal due to the filtering process used. 
 
3.3.2 Multilevel Decomposition 



 
The decomposition process can be iterated, with successive approximations being 
decomposed in turn, so that one signal is broken down into many lower resolution 
components. This is called the wavelet decomposition tree shown in figure 2 below. 
 

 
 
 

Figure 2. Decomposition of DWT Coefficients 
 
The wavelet decomposition of the signal s analyzed at level j has the following structure 
[cAj, cDj, –.., cD1].  
 
Looking at a signals wavelet decomposition tree can reveal valuable information. The 
figure 3 below shows the wavelet decomposition to level 3 of a sample signal S. 

 
Figure 3. Level 3 Decomposition of Sample Signal S 



 
Since the analysis process is iterative, in theory it can be continued indefinitely. In 
reality, the decomposition can only proceed until the vector consists of a single sample. 
Normally, however there is little or no advantage gained in decomposing a signal beyond 
a certain level. The selection of the optimal decomposition level in the hierarchy depends 
on the nature of the signal being analyzed or some other suitable criterion, such as the 
low-pass filter cut-off. 
 
3.4 Signal Reconstruction 
 
The original signal can be reconstructed or synthesized using the inverse discrete wavelet 
transform (IDWT). The synthesis starts with the approximation and detail coefficients 
cAj and cDj, and then reconstructs cAj-1 by up sampling and filtering with the 
reconstruction filters shown in figure 4 below. 
 

 
 

Figure 4. Wavelets Reconstruction 
 
The reconstruction filters are designed in such a way to cancel out the effects of aliasing 
introduced in the wavelet decomposition phase. The reconstruction filters (Lo_R and 
Hi_R) together with the low and high pass decomposition filters, forms a system known 
as quadrature mirror filters (QMF). 
 
For a multilevel analysis, the reconstruction process can itself be iterated producing 
successive approximations at finer resolutions and finally synthesizing the original signal. 
 
4. Results and Discussion 
 
The figure 5 below illustrates the different processes involved in compressing speech 
signals using wavelets. In the compression software  these different stages were designed 
and coded in software, using Matlab version 5.3[16], with the exception of the last two 
processes. 
 



 
 

Figure 5. Design Flow of Wavelet Based Speech Coder 
 
4.1 Performance Measures 
 
A number of quantitative parameters can be used to evaluate the performance of the 
wavelet based speech coder, in terms of both reconstructed signal quality after decoding 
and compression scores. The following parameters are compared: 
 

• Signal to Noise Ratio (SNR), 
• Peak Signal to Noise Ratio (PSNR), 
• Normalized Root Mean Square Error (NRMSE), 
• Retained Signal Energy 

 
The results obtained for the above quantities are calculated using the following 
formulas: 
 
4.1.1 Signal to Noise Ratio  

                        (13) 
 

σx
2 is the mean square of the speech signal and σe

2 is the mean square difference between 
the original and reconstructed signals[17]. 

Choose Wavelet Function 

Select Decomposition Level

Input Speech Signal 

Calculate Threshold 

Truncate Coefficients 

Encode Zero Valued 
Coefficients 

Transmit data Frame 

Quantize & Bit Encode 



4.1.2 Peak Signal to Noise Ratio  
 

                        (14) 
N is the length of the reconstructed signal, X is the maximum absolute square value of 
the signal x and ||  x-r|| is the energy of the difference between the original and 
reconstructed signals[17]. 
 
4.1.3 Normalised Root Mean Square Error  
 

            (15) 
x(n) is the speech signal, r(n) is the reconstructed signal, and µx(n) is the mean of the 
speech signal[17] 
 
4.1.4 Retained Signal Energy 
 

             (16) 
 
|| x(n)|| is the norm of the original signal and ) r(n is the norm of the reconstructed signal. 
For one-dimensional orthogonal wavelets the retained energy is equal to the L 2 -norm 
recovery performance. 
 
4.2 Performance Measure Results 
 
The original speech signal which was used to obtain the performance measure results is  
shown in figure 6. This speech was recorded using windows sound recorder for testing of 
speech coding software.  
 

 
         Figure 6. Original Speech Signal 



A male spoken speech signals was decomposed at scale 3 and level dependent thresholds 
were applied. Since the speech files were of short duration, the entire signal was 
decomposed at once without framing. The performance measure results are summarized 
in the following table for the different wavelets used.  
 
The sentence spoken was “ok this time we will do it” 
 
Wavelet Zeroes(%) Retained Energy(%) SNR PSNR NRMSE 

Haar 42.5067 99.9885 58.6709 66.4207 0.0012 
DB4 53.1152 99.9999 39.3795 47.1321 0.0108 
DB6 52.8592 99.9886 39.4174 47.1699 0.0107 
DB8 55.1680 99.9864 38.6610 46.4136 0.0117 
DB10 55.0480 99.9865 38.7040 46.4602 0.0116 

 
Table  Performance Measure Results 

 
The graphical comparison of performance measures is shown in the following Bar chart 
graph of figure 7.. The graph clearly demonstrates that the HAAR wavelet have a 
relatively high SNR as compared to the DAUBECHIE family                    
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Figure 7 .Signal to Noise Ratio Comparison Results 
 
Figure 8 shows the Peak Signal to Noise Ratio Performance Measure Results, and once 
again HAAR wavelet have a relatively high PSNR as compared to the DAUBECHIE 
family. 
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Figure 8 Peak Signal to Noise Ratio Comparison Results 
 
Figure 9 shows the Normalized Root Mean Square Error Performance Measure Results, 
and once again HAAR wavelet have a relatively low NRMSE values as compared to the 
DAUBECHIE family 
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Figure 9 Normalized Root Mean Squared Error Comparison 
 
5. Conclusion 
 
Speech coding is currently an active topic for research in the areas of VOIP and Mobile 
Communication Systems. The Discrete Wavelet Transform performs very well in the 
compression of recorded speech signals. The analysis was carried out on a recorded 
speech signal and performance measure results were obtained using the Haar and 
Daubechies wavelet families. More specifically, the results demonstrates that the Haar 
wavelet best suits the compression of speech signals due to their high SNR values of  
58.6709 and low NRMSE values of 0.0012 as compared with the other families of 
Daubechies wavelet. These parameter values are very significant in design of efficient 
wavelet based speech compression software for multimedia and mobile applications. In  



addition, using wavelets the compression ratio can be easily varied, while most other 
compression techniques have fixed compression ratios. 
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