
A PROOF AND IMPROVEMENT ON
BURROWS-WHEELER TRANSFORM

M. R. Kabiri, S. Moavenat, H. Amindavar

Amirkabir University of Technology,
Department of Electrical Engineering, 424 Hafez, Tehran , Iran
mrkabiri@yahoo.com, moavenat@yahoo.com,

hamidami@cic.aut.ac.ir

ABSTRACT

One of the lossless compression methods make use of a transform proposed by Burrows and
Wheeler (BWT)[1]. This transform is based on sorting of all cyclic shifts of the input sequence.
In this paper we prove that the original sorting by BWT is unique for one large class of sorting
methods that consider all characters in the input sequence for sorting. Our proof is based on a
general algorithm for generating a contrary example for the other sorting methods in this class.
Also we improve the compression ratio utilizing BWT by presenting a new method.

1. INTRODUCTION

BWT transformation proposes a simple method for lossless data compression.It assumes that
the preceding characters of similar sequences are the same with great probability. It generates all
the cyclic shifts of the input sequence, then it sorts these shifts lexicographically. By so doing,
two cyclic shifts come together when some of their first characters are similar.By noticing that,
if two substrings have same characters at the beginning, then the probabilityof their preceding
characters to be the same will be high, the sequence consisting of the last characters has the
property that the similar characters will be grouped together. After these steps, the methods
such as Move To Front coding (MTF)[1] can be used to prepare the data for an entropy coder
such as Huffman or Arithmetic coders [1]. Eventually, this causes better compression ratios
than the traditional methods such as Lempel-Ziv [7]. One way to improve compression ratio
is to consider the second step of the BWT[2]. It is also possible to improve thecompression
ratio by modifing the sort that BWT is based on (see [3], [6]). Although Burrows and Wheeler
present a method for finding input sequence from the output sequence, there has not been a
proof of why in BWT, no two input sequences will map onto the same output. Inthis paper we



prove, two different sequences will not map onto the same output under BWT transform. Also
there has been no successful attempt to change the order of sorting method used in BWT. In this
paper we prove that BWT sorting method is the only reversible method that canbe used among
the class of sorting methods that make use of all characters in a sequence.Also we provide
a new method in sorting order of BWT that makes use of an undiscovered notion in the first
characters of the cyclic shifts of the input sequence in BWT matrix. This notion is the existence
of a discontinuity in the sorting order of BWT. We show that this new method increases the rate
of compression in text files, and we suggest a way to optimize it. This paper consists of the
following sections. In section 2 we prove the uniqueness of BWT sorting method, in section 3
we propose a method to improve compression ratio utilizing BWT and at the end weprovide
conclusions.

2. UNIQUENESS OF BWT SORTING METHOD

Now, we discuss why changing the sorting method may improve the compressionratio. Also
we prove that the only sorting strategy that can be used at the first step is the one used in [1].
Subsequently we prove that the other methods which make use of all characters for sorting,
are not reversible. We first show that there are no two sequences thatwill map onto the same
output under the BWT transform. And also we provide a general approach for obtaining two
sequences that will map onto a same output, for any other sorting method rather than the one
used in BWT. In [6] a sorting method that uses some characters of a streamand still is reversible
is considered.

BWT transform puts each cyclic shift as a row of a matrix and sorts these rows lexicograph-
ically. This transform is based on the notion that if we have two similar substrings in a string,
the probability that the preceding characters of these substrings are the same is high. However,
it is probable that there exist two similar substrings that their preceding characters are not the
same. For increasing the probability of similarity, we bring together characters whose preceding
and consequent substrings are the same. In fact, for sorting, we make use of the first character
and then one to the last character, and therefore, we consider one character from the first of the
sequence of each cycle and one from the last, and thereof. We call this method MKT. As an
example of MKT MKT(mississippi)=pssmpissiii (see Figure 1). If we do this, we come to
the results that is shown in Table 1 (in this Table the column BWT94 is the results ofBWT in
bit/character that mentioned in [1] and MKT is the above method).

We see that the compression ratio is increased considerably. The example presented in
Figure 1 is one reason to provide an incentive to consider changing the sort order of BWT for
an improvement. However, this method of sorting is not reversible. In this section we prove
that the sorting method used in BWT is the only reversible sorting that is possible. For this we
prove the following theorems. We prove that the sorting method used in BWT is reversible and
then we prove that for every other sorting method in the specified class, there exist at least two
input sequences that will map onto the same output, thus, this sorting method is not reversible.

In providing the following theorems we define:S1
rot
= S2 if and only if S1 is equal toS2 or S1



sort order 99K 13 ··· 42

mississippi• i•mississipp
•mississippi ippi•mississ
i•mississipp issippi•miss
pi•mississip ississippi•m
ppi•mississi mississippi•
ippi•mississ

MKT
pi•mississip

sippi•missis =⇒ ppi•mississi
ssippi•missi sissippi•mis
issippi•miss sippi•missis
sissippi•mis ssissippi•mi
ssissippi•mi ssippi•missi
ississippi•m •mississippi

Figure 1:Example of MKT algorithm for ‘mississipi’

is a cyclic shift ofS2.

2.1. Theorem 1

If S1 andS2 are two strings that will map onto the same output under BWT, thenS1
rot
= S2.

2.1.1. Proof :

SupposeS1 = anan−1 . . . a1 andS2 = bnbn−1 . . . b1. We construct the following matrices:

M1 =











an an−1 . . . a1

a1 an . . . a2

. . .

. . .

. . .

an−1 an−2 . . . an











for S1

M2 =
(

b(n+i)b(n+i)−1 · · · b(n+i)−n−1

)
for S2

where i is the row number and0 6 i 6 n − 1, andM2 is a matrix likeM1 that is shown in a
vector form. The above matrices have the property that the first row is the main stream and each
other subsequent row is the right shifted version of the row above by one character. We sort
the above matrices according top = ωnωn−1 . . . ω1 sorting order. This order is to mean that
when sorting, we first comparen-th characters and if they are equal, we compare the (n−1)-th
characters and so on. After sorting we have the following matrices:

N1 =
(

ami
ami−1 · · · ami−n−1

)
for S1



N2 =
(

bki
bki−1 · · · bki−n−1

)
for S2

Here, the summation in the indices is done modulus n, i.e.(ki +j, mi +j) modn, for 1 6 i, j 6

n, 1 6 ki, mi 6 n, and fori 6= j mi 6= mj andki 6= kj . The last columns of these matrices
are the output of BWT transform, i.e.ami+n ami+1+n · · · ami+n−1+n andbki+n bki+1+n · · ·

bki+n−1+n. We now prove that if these two sequences are equal thenS1
rot
= S2. For proving

this, we first note that ifN1 = N2 thenS1
rot
= S2; becauseS1 is one row ofN1 andS2 is a

row of N2 and alsoN1 = N2, thus,S2 is a row ofN1, since each row inN1 is a cyclic shift

of every other row,S1
rot
= S2. Now we prove that if the last column ofN1 andN2 is equal

thenN1 = N2. Since the last column ofN1 is equal to the last column ofN2 and the first
column of each matrix is constructed from sorting the last column lexicographically, the first
column of the two matrices are equal. Thus, the pairs[ami+n ami

, bki+n bki
], [ami+1+n ami+1 ,

bki+1+n bki+1 ], . . . which are the sequential pairs ofS1 andS2, are also similar . Since each
row of N1 andN2 starts with a pair, and rows of the two matrices are sorted, the starting pairs
of their rows are also sorted, and since the pairsS1 andS2 are equal, so the first two columns
of the two matrices are the same. And because the last columns of two matrices are similar,
hence, the following triplets[ami+n ami

ami+1, bki+n bki
bki+1], [ami+1+n ami+1 ami+1+1,

bki+1+n bki+1 bki+1+1], . . . are the same. By using induction and the above method, we come
to this conclusion that all rows in two matrices are equal one by one thusN1 = N2. Because

we proved that if the two matricesN1, N2 are equal thenS1
rot
= S2. Now we can conclude

S1
rot
= S2. (It is obvious that for every input stream we have only one matrix, and each matrix

has one last column, so each input stream maps into exactly one output). Hence, this method of
sorting is reversible. �

2.2. Theorem 2

Here, we prove that when sorting of two matrices are done according top = ωkn
ωkn−1 . . . ωk1

(this means that in comparing two rows, we first comparekn-th characters thenkn−1-th and
etc.) so that k1, . . . , kn ∈ {1, . . . , n}, kn = n,

∀i, j, i 6= j : ki 6= kj , ∃i : ki+1 6= ki + 1
holds, then there exist two inputs such that the last column of their BWT matricesare the same.
We prove this theorem in the following three parts.

2.2.1. Part 1

Suppose the sorting order is of the formp = ωnω1ωkn−2ωkn−3 . . . ωk1 . Now, let’s consider the
following two strings:

S1 = a1a2 . . . akBa1a
′

2 . . . a′kakC,

S2 = a1a2 . . . akCa1a
′

2 . . . a′kakB

andi 6= j : ai 6= aj , i 6= j : a′i 6= a′j and no substring ofB is in C and vice versa.S1

rot

6= S2,
because of the distance between‘B’ to ‘C’ is K+1 in S1 andK in S2. But in S1 andS2 strings



all pairs in one string is present in the other one, and no two pairs in a streamwith the same
starting character has the same second character then the sorting order isdetermined by the first
and the last column. Since the pairs of two strings are equal, therefore, thelast column of the
two matrices are equal; thus, we have determined two strings that will map onto thesame string
with the sort orderp.

2.2.2. Part 2

Let’s suppose that the sort order is of the form
p = ωnωkn−1ωkn−2 . . . ωk1 , kn−1 6= n − 1.

i.e. for comparison purposes we first consider then-th column of the BWT matrix with the
sort orderp, then on the condition of the equivalence of the two characters in then-th column,
we consider another column other thann−1-th. Under this circumstance, let’s assumeS1 =
a1a2a3Aa1a4a3B, S2 = a1a4a3Aa1a2a3B and the length ofA is equal to the length ofB
where non ofa1,a2,a3,a4 are inA, B and also no substring ofA is found inB and vise versa,
also all the characters ofA is higher in lexicographical order compared to each character ofB.
For example considerS1 = mikymake andS2 = makymike in Figure 2. If we construct
BWT matrices forS1 andS2 sequences, only under the following conditions may their last
column character differ in the two matrices:
I. {

a1a2a3Aa1a4a3B

a1a4a3Ba1a2a3A , in the first matrix
{

a1a4a3Aa1a2a3B

a1a2a3Ba1a4a3A , in the second matrix

We can always selectA, B such that the sort is determined in the underlined columns shown
above, and so thatA, B are in the same order in the two matrices, then the two ending characters
of these rows will be similar in the two matrices.
II. {

a3Ba1a2a3Aa1a4

a3Aa1a4a3Ba1a2 , in the first matrix
{

a3Aa1a2a3Ba1a4

a3Ba1a4a3Aa1a2 , in the second matrix

Under this circumstance, we can also selectA, B such that the result of the sort is determined
in the first column that hasa2, a4 (underlined columns), and if we sort this column, then the
ending characters in the two rows of the matrices are similar.
III. {

a2a3Aa1a4a3Ba1

a4a3Ba1a2a3Aa1 , in the first matrix
{

a4a3Aa1a2a3Ba1

a2a3Ba1a4a3Aa1 , in the second matrix



S1 S2

akemikym akymikem

emikymak emakymik

ikymakem ikemakym

I. kymakemi kemakymi

kemikyma kymikema

II. makemiky mikemaky

mikymake makymike

ymakemik ymikemak

Figure 2:Example of part2 forS1=mikymake andS2=makymike

Under this circumstance, because the last columns of each matrices are the same, then the last
characters of the two rows are similar without the need to consider how theserows are sorted.
Therefore, we have found two sequencesS1, S2 that will end up to the same output under this

sorting strategy, butS1

rot

6= S2.

2.2.3. Part 3

In this part, let’s suppose that the sorting order is:
p = ωnωn−1 . . . ωn−kωpn−(k+1)

. . . ωp1

i.e. in this sorting we first compare the firstk-columns and then we compare another col-
umn other thank+1. Now, let’s consider two sequencesS1 = a1A1a2B1a1A2a2B2, S2 =
a1A2a2B1a1A1 a2B2 whereA1, A2 are two sequences such that only their firstK characters
are the same and each substring with the length ofK+1 in one of them exist in the other
one, and also, all characters ofA1 andA2 are upper in lexicographical order compared to each
character ofB1 andB2, andB1 andB2 have the properties ofA1 andA2 respectively, and
A1, B1, A2, B2 do not containa1, a2. The above were our assumptions, now we start the proof;
between the rows of BWT matrix the following pair of the rows in the two matrices mayhave
dissimilar last characters:
I. {

a1A1a2B1a1A2a2B2

a1A2a2B2a1A1a2B1 , in the first matrix
{

a1A2a2B1a1A1a2B2

a1A1a2B2a1A2a2B1 , in the second matrix

Under this circumstance, because theK first characters are similar in the two adjacent rows,
comparison will move to another character. We can always selectA1 andA2 such that the
comparison will occur in the column containing the characters ofB1 andB2, and therefore, the
last column will be the same in the two matrices.



II. {
a2B2a1A1a2B1a1A2

a2B1a1A2a2B2a1A1 , in the first matrix
{

a2B1a1A1a2B2a1A2

a2B2a1A2a2B1a1A1 , in the second matrix

Under this circumstance, we also can chooseB1 andB2 such that the comparison depends on
the column inA1 andA2, so that the sort of the last characters in the two matrices will be equal.
III. {

A2a2B2a1A1a2B1a1

A1a2B1a1A2a2B2a1 , in the first matrix
{

A2a2B1a1A1a2B2a1

A1a2B2a1A2a2B1a1 , in the second matrix

In this case because the last column of the two rows has the same character,the similarity of
the two ending columns in the two matrices dose not depend on the sort order.Therefore, we

introduced the two sequencesS1 andS2 andS1

rot

6= S2 that maps into the same output under
this sort order. �

Next, we provide our improvement over BWT transform by introducing a new sorting strategy.

3. AN IMPROVEMENT OVER BWT

3.1. Method A

In BWT transform we put each cycle as a row of a matrix [1]. These rowswill sort lexico-
graphically and this brings similar substring at the beginning of different rotations together, and
so the probability of similarity of the previous characters of these rotations (the last characters
of those rotations) increases. But we note, there is a discontinuity betweentwo rows that are
different at the first character but come together. For example ifN rows have‘A’ at the first
character (A-group ) andM rows have‘B’ at the first character (B-group ), the discontinuity
occurs between rowN and rowN+1. RowN that has‘A’ at the first character and its second
character is lower in lexicographical order with great probability, but thesecond character of
row N+1 which has‘B’ at the first character is upper in lexicographical order. Therefore,the
probability of similarity of the last characters of these two rotations is low in lexicographical
order. Now, let’s consider thatA-group is the same as before andB-group is inverted. This
means that the first row of theB-group after these operation, is the last row of this group in the
previous configuration. In this case, rowN, the last row ofA-group whose its second charac-
ter, is lower in lexicographical order is adjacent to rowN+1, the first row ofB-group whose
its second character is lower in lexicographical order too, and this increases the probability of
similarity of the last characters. Also, rowN +M that is the last row of theB-group is adjacent
to row N + M+1 which is the first row of the next group. In both of these rows, the second
character probably is upper in lexicographical order. Thus, the chance of similarity of the last



File Size BW94 MKT Mtd[A] Mtd[B]

bib 111261 2.07 1.47 62 100
book1 768771 2.49 1.88 314 823
book2 610856 2.13 1.56 356 443
geo 102400 4.45 5.12 -6 82
news 377109 2.59 2.17 116 199
obj1 21504 3.98 3.05 * *
obj2 246814 2.64 2.26 * *
paper1 53161 2.55 1.85 -34 5
paper2 82199 2.51 1.59 -51 9
pic 513216 0.83 0.83 * *
progc 39611 2.58 1.65 -6 -9
progl 71646 1.80 0.91 -15 -11
progp 49379 1.79 1.33 2 18
trans 93659 1.57 1.05 18 15

Table 1:Comparison of compression algorithms

characters will become larger. If we continue reversing the sort orderon the basis of one-by-one
groups, we will arrive at a higher rate of compression which is shown in Table 1 (the results are
in the column Mtd[A] and show the reduced bytes compared to BW94).

3.2. Method B

In the next stage we use the fact that there are many substrings in a text that vary only in their
last characters, such as:

mak
︸︷︷︸

e − mad
︸︷︷︸

e or ability
︸ ︷︷ ︸

− abiliti
︸ ︷︷ ︸

es

In the cyclic shifts that these different characters come at the beginning of the rows, they cause
an increase in the similarity probability of their previous characters. We must next use some
manipulations to bring these rows closer to each other. We denote the probability of occurrence
of such characters byP (ai, aj)(the constant probability of occurrence of two substrings which
only differ in their last charactersai andaj in any text).
If we have the values of these probabilities, we can create an alphabet order with the property
that it maximizes the following sum:

n−1∑

i=1

P (ai, ai+1)



wheren is the number of characters in the alphabet. Now, if we use this order for sorting of the
first characters of the rows and the previous order for sorting the rest of the characters, and then
we use method [A], in rows which differ in the first character but they areadjacent to each other,
probability of existence of the similar characters at the end of rows will reach a maximum, and
method [A] will be optimum. For example, the result for the following order shown in Table 1
(the results are in the column Mtd[B] and show reduced bytes compared to BW94)

[q, c, v, o, u, a, e, i, y, r, s, t, w, h, g, l, j, p, m, n, b, f, k, d, z, x]
will improve compression ratio, because we have increased the probability that the substrings
that differ in their last characters come closer to each other. In general,we can use this new
order to sort all of the rows.

4. CONCLUSIONS

In this paper we considered that the sorting in BWT may result in better compression ratios; and
we proved for a general class of sorting methods that the only sorting which is reversible is the
one used in BWT. We also provided a new generalizable method for improvingthe compression
results.

5. REFERENCES

[1] M. Burrows, D.J. Wheeler, “A block-sorting lossles data compression algorithm”, Digital
Equipment Corporation(SRC Research Report 124), 1994.

[2] S. Deorowicz,“An analysis of second step algorithm in the Burrows-Wheeler compression
Algorithm”, Software-Practice and Experience, 2002; 32(2):99-111

[3] B. Chapin, S.R. Tate, “Higher Compression from the Burrows-Wheeler Transform by Mod-
ified Sorting”,in Proceednig Data Compression Conference. Snowbird,UT, 1998, p.532.

[4] P. Fenwick. “Block sorting text compression.”,Proceeding. 19th Australasian Computer
Science Conference, pages 193-202, January 1996. ACM Press.

[5] P. Fenwick, “The Burrows-Wheeler Transform for Block SortingText Compression: Prin-
ciple and Improvments”,The Computer Journal, 1996; 39(9):731-740.

[6] M. Schindler, “A Fast Block-Sorting Algorithm for lossless Data Compression”,Proceed-
ing of the IEEE Data Compression Conference, 1997; 193-202.

[7] J. Ziv and A. Lempel, “A Universal Algorithm for Sequential Data Compression”,IEEE
Transactions on Information Theory, 1977; IT-23:337-343.


	Button4: 
	Button2: 
	Button1: 


