Table of Contents Author Index

A PROOF AND IMPROVEMENT ON
BURROWS-WHEELER TRANSFORM

M. R Kabiri, S. Moavenat, H. Amindavar

Amirkabir University of Technology,
Department of Electrical Engineering, 424 Hafez, Tehran, Iran
nT kabi ri @ahoo. com nopavenat @ahoo.com
ham dam @i c.aut.ac.ir

ABSTRACT

One of the lossless compression methods make use of a transform proposed by Burrows and
Wheeler (BWT)[1]. Thistransformis based on sorting of all cyclic shifts of the input sequence.
In this paper we prove that the original sorting by BWT is unique for one large class of sorting
methods that consider all charactersin the input sequence for sorting. Our proof is based on a
general algorithmfor generating a contrary example for the other sorting methods in this class.
Also we improve the compression ratio utilizing BWT by presenting a new method.

1. INTRODUCTION

BWT transformation proposes a simple method for lossless data comprel$sissumes that
the preceding characters of similar sequences are the same with glediipty 1t generates all
the cyclic shifts of the input sequence, then it sorts these shifts lexidugedly. By so doing,
two cyclic shifts come together when some of their first characters are siBylaoticing that,
if two substrings have same characters at the beginning, then the probatiligir preceding
characters to be the same will be high, the sequence consisting of thedsattelns has the
property that the similar characters will be grouped together. After theps,sthe methods
such as Move To Front coding (MTF)[1] can be used to prepare ttzefdaan entropy coder
such as Huffman or Arithmetic coders [1]. Eventually, this causes bettapi@ssion ratios
than the traditional methods such as Lempel-Ziv [7]. One way to improve @ssion ratio
is to consider the second step of the BWT[2]. It is also possible to improvedimpression
ratio by modifing the sort that BWT is based on (see [3], [6]). Althoughr8us and Wheeler
present a method for finding input sequence from the output sequigrece has not been a
proof of why in BWT, no two input sequences will map onto the same outpuhidrpaper we

prove, two different sequences will not map onto the same output untfdr tBansform. Also
there has been no successful attempt to change the order of sortinglmaséitbin BWT. In this
paper we prove that BWT sorting method is the only reversible method théiecased among
the class of sorting methods that make use of all characters in a sequdsoexe provide
a new method in sorting order of BWT that makes use of an undiscovet&mhno the first
characters of the cyclic shifts of the input sequence in BWT matrix. Thism@ithe existence
of a discontinuity in the sorting order of BWT. We show that this new methoeasas the rate
of compression in text files, and we suggest a way to optimize it. This papsist® of the
following sections. In section 2 we prove the uniqueness of BWT sortingadeth section 3
we propose a method to improve compression ratio utilizing BWT and at the epdowigle
conclusions.

2. UNIQUENESS OF BWT SORTING METHOD

Now, we discuss why changing the sorting method may improve the compreasimnAlso
we prove that the only sorting strategy that can be used at the first stepdase¢hused in [1].
Subsequently we prove that the other methods which make use of all wharfmr sorting,
are not reversible. We first show that there are no two sequencesithaiap onto the same
output under the BWT transform. And also we provide a general apprimat obtaining two
sequences that will map onto a same output, for any other sorting methodtretheéhe one
used in BWT. In [6] a sorting method that uses some characters of a sarehstill is reversible
is considered.

BWT transform puts each cyclic shift as a row of a matrix and sorts thegelexicograph-
ically. This transform is based on the notion that if we have two similar substimg string,
the probability that the preceding characters of these substrings a@ntiedshigh. However,
it is probable that there exist two similar substrings that their precedingcteas are not the
same. For increasing the probability of similarity, we bring together chasasterse preceding
and consequent substrings are the same. In fact, for sorting, we realkse the first character
and then one to the last character, and therefore, we consider araeteindrom the first of the
sequence of each cycle and one from the last, and thereof. We call ttiisddKT. As an
example of MKT MKT(nississippi)=pssmpissiii (See Figure 1). If we do this, we come to
the results that is shown in Table 1 (in this Table the column BWT94 is the resuB@/dfin
bit/character that mentioned in [1] and MKT is the above method).

We see that the compression ratio is increased considerably. The examgdmtpd in
Figure 1 is one reason to provide an incentive to consider changingrtherder of BWT for
an improvement. However, this method of sorting is not reversible. In thitosewe prove
that the sorting method used in BWT is the only reversible sorting that is pasBilr¢his we
prove the following theorems. We prove that the sorting method used in BWéTéssible and
then we prove that for every other sorting method in the specified class,dRist at least two
input sequences that will map onto the same output, thus, this sorting methddesersible.

In providing the following theorems we defingj ot So if and only if Sy is equal toS, or Sy

Top

sort order --» 13 .. 49

Mmississippé iemississipp
eMississippi ippeMississ
iemississipp issippimiss
piemississip ississippim
ppiemississi mississippi

ippiemississ .., Piemississip
sippiemissis = ppieMmississi

Ssippemissi sissippimis
issippiemiss sippemissis
sissippemis ssissippimi
ssissippsmi ssippemissi
ississippem emississippi

Figure 1:Example of MKT algorithm for ‘mississipi’

is a cyclic shift ofSs.

2.1. Theorem 1

rot

If S; andS; are two strings that will map onto the same output under BWT, fes S,.

2.1.1. Proof:

Supposed; = apa,_1...a1 andSy = b,b,_1 ... b1. We construct the following matrices:

(079 an—-1 . . . Qa
aj Qp, N ¢]

M = for Sy
ap—-1 Ap—2 . . . QAp

My = (binsiybintiy—1- - Dntiy—n—1) for S
where i is the row number arl< 7 < n — 1, and M5 is a matrix like M; that is shown in a
vector form. The above matrices have the property that the first row is timestneam and each
other subsequent row is the right shifted version of the row above bycbaracter. We sort
the above matrices according o= wyw,_1 ...w; sorting order. This order is to mean that
when sorting, we first compareth characters and if they are equal, we compareshelj-th
characters and so on. After sorting we have the following matrices:

Ny = (Qm;Gm;—1 " Gm;—n—1) for Sy

Top

No = (bpbg—1+ bgy—n—1) for Sy

Here, the summation in the indices is done modulus n(kgt j, m; + j) modn, for 1 < i,j <
n, 1 < k;,m; < n, and fori # j m; # m; andk; # k;. The last columns of these matrices
are the output of BWT transform, i.@u,,; +n Gm;y14n * @y y+n @Ak, 1 b,y in -+

bk;y._1+n- We now prove that if these two sequences are equalsmeréét Ss. For proving

this, we first note that ifV; = N5 then S, ot Ss; becauseS; is one row of Ny and.S; is a
row of Ny and alsoN; = N, thus,S; is a row of Ny, since each row iV, is a cyclic shift

of every other row,5; ot Ss. Now we prove that if the last column df; and V5 is equal

then Ny = N,. Since the last column aW; is equal to the last column a¥, and the first
column of each matrix is constructed from sorting the last column lexicogralphithe first
column of the two matrices are equal. Thus, the p@iss . anm,, bk, +n Ok,], [Gm14+n Gmis s
bis14n briyq)s - - - Which are the sequential pairs 8f and S, are also similar . Since each
row of V7 and N, starts with a pair, and rows of the two matrices are sorted, the starting pairs
of their rows are also sorted, and since the p&irand.S, are equal, so the first two columns

of the two matrices are the same. And because the last columns of two matacaEmdar,
hence, the following triplet$a,,, 1n @m; @m;+1, bki4n bk, Ok;+1]s [@misrtn Gy Gmg 41
bkisr4n kipy bkiy11]s- .- @re the same. By using induction and the above method, we come

to this conclusion that all rows in two matrices are equal one by oneXhus N>. Because

we proved that if the two matrice¥,, N, are equal therb; ot Ss. Now we can conclude

rot

S1 = Ss. (It is obvious that for every input stream we have only one matrix, @cti enatrix
has one last column, so each input stream maps into exactly one outputk, lttda method of
sorting is reversible. n

2.2. Theorem 2

Here, we prove that when sorting of two matrices are done according=tay, wi,, , - .. wk,
(this means that in comparing two rows, we first compareh characters theh,,_;-th and
etc.) so that kiy... kn€{1,...,n}, k, =n,

Vi,j,i#j:ki#kj, Jickig1FE ki +1
holds, then there exist two inputs such that the last column of their BWT matniedbe same.
We prove this theorem in the following three parts.

221 Partl

Suppose the sorting order is of the fopm= w,wiwk, ,wk, 5 ---wk, . NOw, let’'s consider the
following two strings:
S1=araz...apBayal . .. apa,C,

So =araz...aCaraly ... apapB
rot

andi # j : a; # aj, i # j : a; # ajand no substring dB is in C and vice versaS; # So,
because of the distance betweédhto ‘C’ is K+1 in .S; andK in Ss. Butin S; and.S, strings

Top

all pairs in one string is present in the other one, and no two pairs in a sishrthe same
starting character has the same second character then the sorting deternsined by the first
and the last column. Since the pairs of two strings are equal, therefodastrelumn of the
two matrices are equal; thus, we have determined two strings that will map orgartteestring
with the sort ordep.

222 Part2

Let's suppose that the sort order is of the form

D= WnpWk, Wk, 5 Wy, kn—1 #n — 1.
i.e. for comparison purposes we first consider thlh column of the BWT matrix with the
sort orderp, then on the condition of the equivalence of the two characters in-thecolumn,
we consider another column other than1-th. Under this circumstance, let's assufe=
airasazAaiagazB, So = ajagazAayiasaszB and the length of is equal to the length dB
where non ofuy,a2,a3,a4 are inA, B and also no substring & is found inB and vise versa,
also all the characters @fis higher in lexicographical order compared to each charactBr of
For example conside$; = mikymake and Ss = makymike in Figure 2. If we construct
BWT matrices forS; and S, sequences, only under the following conditions may their last
column character differ in the two matrices:
l.

a1a2a3Aa1a4agB
ajasas3Bajasas A , in the first matrix

a1a4a3Aa1a2agB
ajasas3Bajagas A , in the second matrix

We can always seled, B such that the sort is determined in the underlined columns shown
above, and so tha&, B are in the same order in the two matrices, then the two ending characters
of these rows will be similar in the two matrices.

I.
azBajazazAaiay
azAajasazBaias , in the first matrix

azAajazazBaiay
azBaiasazAaias , in the second matrix

Under this circumstance, we can also seledB such that the result of the sort is determined
in the first column that has,, a4 (underlined columns), and if we sort this column, then the
ending characters in the two rows of the matrices are similar.

1l.
agagAa1a4agBa1
asaszBajasasAaq , in the first matrix

a4a3Aa1a2agBa1
asazBajasazAaq , in the second matrix

Top

S So
akemikym akymikem
emikymak emakymik
tkymakem ikemakym

I. kymakemsi kemakymi
kemikyma kymikema
. makemiky mikemaky
mikymake makymike
ymakemaik ymikemak

Figure 2:Example of part2 folS;=mikymake and So=makymike

Under this circumstance, because the last columns of each matrices aaentheltsen the last
characters of the two rows are similar without the need to consider how ithwesere sorted.
Therefore, we have found two sequenégs .S, that will end up to the same output under this

rot

sorting strategy, bu; # Ss.

223. Part3

In this part, let's suppose that the sorting order is:
P = WnWn—1 .- -WnkWp, 1) Wp

i.e. in this sorting we first compare the firktcolumns and then we compare another col-
umn other thark+1. Now, let’'s consider two sequenc8s = ayAjasBiaiAsasBs, So =
a1Asa9 Bra1 A1 as B Where Ay, Ay are two sequences such that only their fitstharacters
are the same and each substring with the lengtliefl in one of them exist in the other
one, and also, all characters 4f and A, are upper in lexicographical order compared to each
character ofB; and B,, and B; and B, have the properties ofl; and A; respectively, and
A1, By, As, By do not contairu, as. The above were our assumptions, now we start the proof;
between the rows of BWT matrix the following pair of the rows in the two matrices nasg
dissimilar last characters:
.

{ a1 ArasBraiAsas By

a1AsazBaai Aras By , in the first matrix

aléagBlalAlang
, in the second matrix

a1 ArasBoay Azas By
Under this circumstance, because thdirst characters are similar in the two adjacent rows,
comparison will move to another character. We can always sele@nd As such that the

comparison will occur in the column containing the characte®0and B,, and therefore, the
last column will be the same in the two matrices.

Top

0;2&&1141@2310/1142
asBiayAsaz Baay Ay , in the first matrix

asBiayAyaz Baay As
agﬁalAgagBlalAl s in the second matrix

Under this circumstance, we also can chofseand B, such that the comparison depends on
the column ind; and A, so that the sort of the last characters in the two matrices will be equal.

Il.
AgangalAlagBlal
AlagBlalAgangal , in the first matrix

A2a231a1A1a232a1
AjasBoaiAsas Bray , in the second matrix

In this case because the last column of the two rows has the same chahacsemilarity of
the two ending columns in the two matrices dose not depend on the sort dtagefore, we

rot

introduced the two sequencés and S, andS; # S5 that maps into the same output under
this sort order. n
Next, we provide our improvement over BWT transform by introducingwa s@rting strategy.

3. ANIMPROVEMENT OVER BWT

3.1. Method A

In BWT transform we put each cycle as a row of a matrix [1]. These nevlissort lexico-
graphically and this brings similar substring at the beginning of differaatioms together, and
so the probability of similarity of the previous characters of these rotatioeddth characters
of those rotations) increases. But we note, there is a discontinuity betweemows that are
different at the first character but come together. For examp¥erifws have' A’ at the first
character A-group) andM rows have B’ at the first characterB-group), the discontinuity
occurs between ro and rowN+1. RowN that has A’ at the first character and its second
character is lower in lexicographical order with great probability, butséaeond character of
row N+1 which has B’ at the first character is upper in lexicographical order. Therefbee,
probability of similarity of the last characters of these two rotations is low in |gxipohical
order. Now, let's consider that-group is the same as before afdgroup is inverted. This
means that the first row of tH&group after these operation, is the last row of this group in the
previous configuration. In this case, rd\y the last row ofA-group whose its second charac-
ter, is lower in lexicographical order is adjacent to rdi-1, the first row ofB-group whose
its second character is lower in lexicographical order too, and this isesdhe probability of
similarity of the last characters. Also, raW + M that is the last row of thB-group is adjacent
to row N + M+1 which is the first row of the next group. In both of these rows, thersgco
character probably is upper in lexicographical order. Thus, thecghahsimilarity of the last

Top

File Size BW94 MKT Mtd[A] Mtd[B]

bib 111261 2.07 1.47 62 100
bookl 768771 2.49 1.88 314 823
book2 610856 2.13 1.56 356 443
geo 102400 4.45 5.12 -6 82
news 377109 2.59 2.17 116 199
objl 21504 3.98 3.05 * *
obj2 246814 2.64 2.26 * *
paperl 53161 2.55 1.85 -34 5
paper2 82199 251 1.59 -51 9
pic 513216 0.83 0.83 * *
progc 39611 2.58 1.65 -6 -9
progl 71646 1.80 0.91 -15 -11
progp 49379 1.79 1.33 2 18
trans 93659 1.57 1.05 18 15

Table 1:Comparison of compression algorithms

characters will become larger. If we continue reversing the sort orddre basis of one-by-one
groups, we will arrive at a higher rate of compression which is showmlrerl (the results are
in the column Mtd[A] and show the reduced bytes compared to BW94).

3.2. Method B

In the next stage we use the fact that there are many substrings in a texdrhanly in their
last characters, such as:

mak e — made or ability — abiliti es
~—~ ~— N R

In the cyclic shifts that these different characters come at the beginhthg cows, they cause
an increase in the similarity probability of their previous characters. We nax$tuse some
manipulations to bring these rows closer to each other. We denote the itplodiloccurrence

of such characters b¥(a;, a;)(the constant probability of occurrence of two substrings which
only differ in their last characters anda; in any text).

If we have the values of these probabilities, we can create an alphaleetvaith the property
that it maximizes the following sum:

n—1
Z P(aiv aiJrl)
i=1

Top

wheren is the number of characters in the alphabet. Now, if we use this orderrtimgof the
first characters of the rows and the previous order for sorting thetése characters, and then
we use method [A], in rows which differ in the first character but theyaajacent to each other,
probability of existence of the similar characters at the end of rows wilhreanaximum, and
method [A] will be optimum. For example, the result for the following order smawTable 1
(the results are in the column Mtd[B] and show reduced bytes compared 821BW
[,c,v,0,u,a,e,i,y,1,s twh,qg,ljp mn,bfKkdzX]
will improve compression ratio, because we have increased the probaldlitthéhsubstrings
that differ in their last characters come closer to each other. In genezatan use this new
order to sort all of the rows.

4. CONCLUSIONS

In this paper we considered that the sorting in BWT may result in better caesipreratios; and
we proved for a general class of sorting methods that the only sortindnighieversible is the
one used in BWT. We also provided a new generalizable method for imprthaérgpmpression
results.

5. REFERENCES

[1] M. Burrows, D.J. Wheeler, “A block-sorting lossles data compressigorithm”, Digital
Equipment Corporatio(SRC Research Report 124), 1994.

[2] S. Deorowicz,“An analysis of second step algorithm in the Burrowseder compression
Algorithm”, Software-Practice and Experience, 2002; 32(2):99-111

[3] B.Chapin, S.R. Tate, “Higher Compression from the Burrows-Vi#réeransform by Mod-
ified Sorting”,in Proceednig Data Compression Conference. Showbird,UT, 1998, p.532.

[4] P. Fenwick. “Block sorting text compressionProceeding. 19th Australasian Computer
Science Conference, pages 193-202, January 1996. ACM Press.

[5] P. Fenwick, “The Burrows-Wheeler Transform for Block Sortifext Compression: Prin-
ciple and ImprovmentsThe Computer Journal, 1996; 39(9):731-740.

[6] M. Schindler, “A Fast Block-Sorting Algorithm for lossless Data Coegsion”,Proceed-
ing of the IEEE Data Compression Conference, 1997; 193-202.

[7] J. Ziv and A. Lempel, “A Universal Algorithm for Sequential Data i@pression”,|EEE
Transactions on Information Theory, 1977; IT-23:337-343.

Top

	Button4:
	Button2:
	Button1:

