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ABSTRACT

Pervasive telerobotics aims at providing portable computer
aided assistance using small, light, and highly interactive
client-server telerobots. A reliable real-time multithreaded
interface between a master arm and a slave arm is pro-
posed usingDistributed Components .NET Remoting. The
advantages are (1) automatic handling of the network re-
sources and transfer while isolating the components from
network protocol issues, and (2) compiling into platform-
independent bytecode. The functionalities of master and
slave arms are independently designed. The operator maps
his hand motion to the remote tool making abstraction of
the structure of master and slave arms. Force feedback
measured at the tool tip is transmitted and displayed on
operator hand. Real-time streaming of stereo vision pro-
vides stereoscopic views of remote tool. Design and per-
formance of proposed multi-threaded execution is presented
to effectively realize multi-streaming of force, command,
and stereo data in a distributed and modular framework.

Keywords: DCOM, Distributed Application Frame-
work, Force Feedback, Stereo Vision, Telerobotics.

1. INTRODUCTION

Telerobotics [1] is needed for minimally invasive surgery
for enhancing dexterity, precision, and stability. The sur-
geon moves a dexterous master arm (client station) that is
scaled down to a slave arm (server station) located inside
the patient’s body. Pervasive telerobotics aims at provid-
ing portable computer aided assistance using small, light,
and highly interactive telerobots. The integration of real-
time streaming of stereo vision, haptic feedback, and com-
puter assisted telerobotics are targeted. An effective com-
munication interface is needed to enable operations using
portable platforms making telerobotics an effective tool for
remote surgery. Reliable real-time streaming of force feed-
back and stereo vision are critical in many telerobotic ap-
plications.

A distributed component for telerobotic DCOM [2] al-
low integrating web technologies and telerobotics. DCOM-
ActiveX based supervisory control is a server operating
over the Internet as backbone. Operator views 3-D model,
control paths, and issue commands through supervisory

control which provides reduced human attendance, robust-
ness control, and flexibility to ease the task of upgrading
the system. MS VM (Microsoft Virtual Machine) is used
to bridge the gap between JAVA andDCOM.

In[3] VB 6.0 and TCP ActiveX based client-server frame-
work is proposed. TCP read/write operations are slow be-
cause of the many software layers involved such as appli-
cation, custom protocol, TCP ActiveX control, and Win-
dows Sockets. Ho[4]’s JAVA based fame-grabbing soft-
ware takes about 1 s for camera-DRAM transfer with a
video rate 0.33 Fps.

Internet produces random transmission delays which
degrades the quality of streaming force feedback and stereo
data. TCP/IP sockets [5, 6] and VxWorks real-time multi-
tasking OS are used for reliable streaming over Internet
using task prioritization to control CPU time. However,
packet arrival delay varies from 50 ms to 100 ms, for small
packets, over the US. UDP packets do not preserve their
chronological order. TCP/IP can be reasonably used for
packet with 256 bytes with a 10Hz sampling rate.

Telerobotic systems using TCP/ATM [6] provide QoS
specification of timing, criticality, clock synchronization,
and reliability. The sampling intervals reported are 0.4,
0.3, and 0.2 s for TCP/IP, raw ATM, and TCP/IP over
ATM, respectively. Augmented reality [7, 8], consists of
overlaying virtual graphics over real images of remote scene
to allow the operator to see how his action fits into the
scene before executing his commands.

We propose a reliable real-time connection between
master and slave stations using.NET based Distributed
Components. For this we designed various telerobotic com-
ponents, interaction methods, and secure communication
support while isolating the components from network pro-
tocols. We designed the functionalities of the master and
slave arms based on hiding the details of each and direct
mapping of operator hand motion to the remote tool, stream-
ing of tool stereoscopic views, and displaying force feed-
back measured at the tool tip on operator hand.

The organization of the rest of the paper is as follows.
Section 2 presents our client server telerobotic framework
and its functionalities. In Section 3 we compares our ap-
proach to others. We conclude in Section 4.



2. A TELEROBOTIC DISTRIBUTED
FRAMEWORK

In this section we describe the server and client telerobotic
components and their interactions with each other in a dis-
tributed application.

2.1. Telerobotic server components

The server components are: (1) PUMA component and its
functionalities, (2) Force Sensor Component and its func-
tionalities , and (3) Decision Server Component. In addi-
tion we have three interfaces known as (1) Proxy Robot In-
terface (2) Force Sensor Interface, and (3) Decision Server
Interface which will be presented in the following sub-
sections.

2.1.1. PUMA Component

PUMA component acts as a software proxy of the robot
for which commands are issued to the component as they
are issued to the robot. Whenever robot changes its states,
the component updates itself automatically to reflet these
changes.

Some important public methods exposed by PUMA
component allow operating the robot as an independent
agent capable of moving the robot in a variety of motion
modalities and exception handling. The PUMA compo-
nent accepts a user defined tool frame of reference as (1)
robot base frame (world), (2) robot wrist frame, or (3)
robot tool frame. Some of the robot statuses are (1) con-
nection to robot is not detected or robot not initialized, (2)
robot is connected but not initialized, (3) initialization is
pending, (4) robot is ready to receive a motion parameter,
(5) robot is moving, etc. The events invoked by PUMA
component include: (1) Data received from PUMA, (2)
some error occurred with PUMA, (3) Robot moved to a
new location, and (4) PUMA status changed.

2.1.2. Functionality of PUMA component

Operating and positioning tools in small areas poses ac-
cess constraints as well as unexpected contact forces. 3D
anatomical models (MRI or CT-scan) are guide the tool to
the organ location. There is pressing need to map the sur-
geon hand to the operating tool both in position and force
control which is presented here as augmented functionali-
ties to the server and client stations.

The kinematics of slave arm is represented by means of
three frames: (1) a fixed world frame (Rw) at arm origin,
(2) an effector frame (Re) located at arm terminus, and (3)
a user defined tool frame (Rt). The controllable frameRe

is represented by its3 × 1 position vector (Ew(θ)) and its
(3×3) orientation matrix (Me

w(θ)), whereθ is the slave arm
joint vector andw refers toRw. The tool frameRt is user
or system defined by its position vectorTt and orientation
matrixM t

e of tool frameRt with respect to frameRe. The
position of the tool point is defined by:

Tw = Ew + Me
w(θ)M t

eTt (1)

The slave station receives a command to translate the
tool frameRt by ∆Tw and to rotate it by∆Mt. The oper-
ator motion can be efficiently mapped onto the tool frame
when the translation is specified in tool frame, i.e.∆Tt.
The new arm controllable position vector (controllable) is:

∆Ew = M t
w(I−∆Mt)Tt+

{
∆Tw Operator-tool
M t

w∆Tt Operator-world
(2)

whereM t
w = Me

wM t
e. The new effector orientation

matrix (controllable)is:

∆Me = M t
e∆MtM

e
t (3)

The PUMA component reads current robot jointθ as
a 6 × 1 vector which allows computing current effector
positionEw(θ) and orientationMe

w(θ). The target effec-
tor position and orientation areE+

w = Ew(θ) + ∆Ew

andMe+
w = Me

w(θ)∆Me. The inverse kinematic model
θ+ = G−1(E+

w ,Me+
w ) of the slave arm allows finding

the joint vectorθ+ that moves the tool by the commanded
translation∆T and rotation∆M . The new joint vectorθ+

is sent to slave arm motion controller.

2.1.3. Force Sensor Component

The force sensing component (FSC) reads the robot wrist
force sensors and creates a stream of reflected force feed-
back directed to the master station. FSC is implemented
as a separate thread, the priority of which can be adjusted
during runtime to allow for the management of CPU usage.

A new instance of FSC creates a new thread with a
defaultnormalpriority and waits until the sensing is trig-
gered. After the reading has started, it continues sensing
the force information at a pre-specified, alterable, default
frequency. The public properties exposed by FSC are: (1)
SensorThreadPriority used to set the thread priority that is
one out of five OS levels. (2) TimerValue used to set a time
interval between two successive readings.

2.1.4. Force sensor component functionality

A 6 dof force sensor is implemented at the wrist of the
slave arm to provide (1) measurement of external forces,
and (2) passive compliance of the tool. The sensor con-
sists of two parallel platesp1 (frameRe) and p2 (frame
Rs) interconnected by three elastic links. The elementary
motion of p2 with respect top1 is measured by a differ-
ential (1) translation vector∆Se of the origin ofRs, and
(2) orientation matrix∆Me of Rs measured inRe. The
sensor structure allows finding∆Se and ∆Me as func-
tions of the six sensing signals. The sensor frameRs is
located between the effector frameRe and the tool frame
Rt. An external force applied to the tool causes a deflec-
tion vector∆Te = ∆Se + (∆Me − I)M t

sTt to the tool
frame origin as well as a change∆Mt in Rt orientation
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Figure 1. Integrated Scheme - Server Side

as∆Mt = Ms
t ∆MM t

s . SinceM t
e = ∆MM t

s we can
compute the tool deflection vector in its frameRt:

∆Tt = Ms
t ∆M−1∆Te (4)

The force (Ft) and moment (Ct) vectors applied to the
tool are computed using the tool linear and rotational com-
pliance vectors∆Tt andMs

t ∆MM t
s . Using the passive

compliance matrices for linear (Kl) and rotational (Kr)
motion of the tool we compute the forceFt = (fx, fy, fz)t

= Kl∆Tt and momentCt = (cx, cy, cz)t = Kr∆Mt

vectors. The tool force and moments vectorsFt andCt

are used to: (1) display the reflected force feedback at the
client station, and (2) implement active compliance mech-
anism at as supervisory functions at the slave arm level.

2.1.5. Decision Server Component

DecisionServeris a component that provides an autonomous
loop on the server to support supervisory telerobotic con-
trol. It belongs to a higher abstraction layer which is used
as an agent to implement local robot automation functions.
A block diagram describing the hierarchy of the server sys-
tem including DecisionServer. The human operator is at
the highest level of hierarchy and interacts with the system
using a UI(user interface).

2.1.6. Server Side Interfaces and.NET Remoting

An interface is a set of definitions of public methods and
properties. It servers as a contract for any component that
implements this interface. This scheme allows hiding the
actual component or assembly from the client which in-
creases security from potentially unsafe clients as well as
gives the developers, freedom to easily amend the logic of
the server methods while the interface remains unchanged.

In order to communicate with both the PUMA and Force
Sensor components, we define two interface namedIProx-
yRobotand IForceSensor. IDecisionServerinherits both
of these interfaces. This allows defining a unified set of
public members (methods, properties and events) that are
required to be implemented in the form of DecisionServer
component. Now.NET Remotingis used to publish an in-
stance of DecisionServer component on the LAN that is
identified to the client by a unique object identifier..NET
Remotingenables us to access objects using SOAP(Simple
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Figure 2. Integrated Scheme - Client Side

Object Access Protocol) which isolates the network proto-
col issues from the development of a distributed applica-
tion.

2.2. Telerobotic client components

The client contains theIDecisionServerinterface to refer-
ence the server side component through.NET Remoting.
In addition toIDecisionServer, there are instances of.NET
Remotingand client GUI(Graphic User Interface).

Decision Server interface named asIDecisionServer
contains all the definitions to execute methods on PUMA
and Force Sensor components. Following the initialization
of the client, the system carries an empty un-referenced
copy of IDecisionServer. Once a network connection with
the server is established, the client gets the reference to the
server side instance of DecisionServer. NowIDecision-
Serverrefers to the published instance of DecisionServer
and the client side can access the server side instance of
DecisionServer as a local component throughIDecision-
Server.

The integrated scheme incorporating all the compo-
nents on client and server side is shown in Figures 1 and
2.

The DecisionServer is inherited fromIDecisionServer
and in turn from IProxyRobot and IForceSensor interfaces.
In order to use an event handler on client side for any
event invoked by DecisionServer, we must provide Deci-
sionServer, access to the client assembly. This introduces
severe deployment limitations. To overcome this problem,
we useshim classes as intermediatory agents to forward
DecisionServer events over to the client orIDecisionServer
interface. Shim classes are thin assemblies visible to both
the server and the client.

2.2.1. Functionalities of the client station

The operator handing the master arm may easels exit a ge-
ometric area which he can efficiently teleoperate the slave
arm, i.e. dexterity area. In this case the teleoperation be-
comes very difficult. One needs to shift the master arm to
operator dexterity area without affecting the current posi-
tion of slave arm. This defines the master-shift function
which must be activated by the operator hand handling the
master arm in an optimized man-machine interface.
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Figure 3. Server side of the distributed framework
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Figure 4. Client side of the distributed framework

Denotes by(E,M) the previous operator position vec-
tor and orientation matrix at the master arm andp a boolean
that is 0 during the active periods of the master-shift func-
tion, i.e. when connection between master and slave arms
is disabled. The client must send motion increments to
map the slave arm(∆E, ∆M) = (E+ − E,M−1M+)
when the connection is active.

The operator may need to scale-down his motion in
the neighborhood of a critical task location to increase the
motion accuracy. In this case the increment in master po-
sition vector (∆E) and orientation matrix (∆M ) need to
be scaled-down before being mapped to those of the slave
arm. We evaluate three orientation angles for the opera-
tor hand frame. The operator orientation matrixM can
be seen as made of three euler angles, i.e.M = Rx(αx)
Ry(αy)Rz(αz) = Rxyz(M), whereRu is a rotation ma-
trix about axisu andRxyz is the product of three rotation
matrices sets forM . Since∆M is known we inverse the
above equation and find the three angles as(αx, αy, αz) =
R−1

xyz(∆M). Using a user defined scale factors the scale
function becomes:

(∆E, ∆M) = ((E+ − E) ∗ s,Rxyz((R−1
xyz(∆M)) ∗ s)))

(5)

2.3. A Distributed Telerobotic System

The multi-threaded distributed telerobotic system (Fig. 3
and 4) allows simultaneous activation of many threads like
grabbing and transfer of stereo video data, reading force
sensors, sending and receiving robot control signals over
the LAN to one or more clients.

Two digital cameras generate stereo pictures which are
sent to the client. Both the stereo data and the distributed

component calls share the same LAN using different ports
for data transfer. The client uses the GUI as well as a 6 dof
master arm to issue commands to the slave arm on remote
site. The vision client receives the synchronized stereo data
from the LAN through windows sockets and provides a
stereo display of the remote scene to the operator using
eye-shuttering glasses.

3. EVALUATION

The client station is interfaced to: (1) a locally made mas-
ter arm, and (2) an HMD, both are used to interface the
operator to the client station. The slave station consists of
a PUMA 560 arm with 6 dof arm and a wrist force sen-
sor. The operator hand motion is mapped to the tool held
by the slave arm (PUMA). Using our distributed frame-
work three streams are actives: (1) a stereo video (not de-
scribed here) stream, (2) a reflected force feedback trans-
mitted from server to client and displayed on operator hand
through the master arm, (3) a stream of operator motion
commands flowing from client to server.

The server is 2.0 GHZ P-IV which is connected to 100
Mbps LAN. Each force packet is48 bytes. Each video pic-
ture is288 × 360 pixels and each pixel is 3 bytes. Each
stereo frame (two pictures) is 0.6 MB and requires a band-
width of 5 Mbps/Frame. The server throughput on network
of streaming only force packets is about 1 KHz. Multi-
streaming of Force and video leads to a force packet rate
of 250 Hz which drops to 76 Hz during active video in-
tervals. Optimized video transfer provides a throughput of
58.94 ms per stereo frame rate (17 fps).

Typical telerobotic experiments are carried out: (1) task-
1 consists of setting up the slave tool in a given position
by direct command from the operator hand motion, (2)
task-2 consists of object manipulation and stacking, and
(3) task-3 consists of manipulation of bottled liquid. The
distributed framework has been shown to be reliable dur-
ing the above tasks. The GUI and .NET remoting proved
to be useful in mirroring the state of slave arm at the client
station.

4. COMPARISON

Compared to[4] our camera-DRAM transfer and video rate
are 25 ms and 12 Fps using DirectX image acquisition, re-
spectively. Compared we proposed.NET Frameworkfor
development of all GUIs and core system components thus
freeing us from using any intermediatory services like MS
VM within the framework. Compared to [3] the compo-
nents directly communicate with each other through win-
dows sockets using.NET Remotingproviding shorter round-
trip time. For example a command takes 55 ms in the
case of the cited framework as compared to around 1 ms
in our case. .NET has embedded type signatures which al-
lows component debugging across different languages, a
missing feature in Java and Corba. .NET is highly rec-
ommended for mission-critical applications running under
Windows.



5. CONCLUSION

A portable real-time telerobotic interface between master
and slave arms is proposed using.NET Remoting based
Distributed Components. The advantages of .NET are (1)
ease of deployment to work across firewalls,(2) compiles
the source code into platform-independent bytecode [9],
and provides highly optimized data transfer [10] for sym-
metric configuration for the client and server. Design inde-
pendency in the master and slave modules lead to mapping
the operator hand motion and force feedback to the the re-
mote tool. Overall distributed framework and design in-
dependence improves the portability and modularity of the
proposed telerobotic system. Thread engineering proved
to be effective in achieving a sampling rate of 17 Hz for
stereo video, 76 Hz for force feedback, and 50 Hz for op-
erator commands.
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