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Abstract

Dynamic Power Management (DPM) is a technique to dynamically adjust mobile devices for optimum power
consumption. One of the ways of implementing it is by dynamically scaling the voltage supply and in turn
varying the clock cycle, and thus resulting in changing the energy-state of the device. In this paper we
qualitatively compare the most popular voltage scaling systems that exist in literature. We first survey and
describe the various systems for voltage scaling and then present various criteria to analyze them. These
criteria include energy state classification, task scheduling algorithm, task CPU usage, and CPU speed scaling
policy. This paper yields insight into analyzing the various parameters that influence the composition of these
systems. We also propose extensions to existing ideas to enhance the flexibility and optimality of existing DVS

systems.
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1. Introduction

Mobile computing has come a long way since its start. The primary challenge that was faced lied in designing
the various soft-wares that would function while prioritizing the three essential features of mobile computing,
namely: communication, mobility and portability, as discussed in [1]. Research prospects were identified in
areas such as cashing metrics, semantic callbacks and validators, resource revocation, adaptation and global
estimation based on local observations [2]. Others classified these areas as mobility, scalability, bandwidth and
energy management [3]. Optimizing energy usage in mobile systems, which are running on local battery, is of
great importance [4]. Optimal energy management can be done with respect to several components including
the hard disk, communication device, display device, the processor etc. Prior research has proved that it is the
processor that consumes the maximum power. Thus, temporarily putting the CPU in low-power state can save
energy [5]. Hence, the primary objective is to design a low-power-energy consumption technique.

The techniques to achieve power management can be broadly classified as static and dynamic [6]. Static
techniques are applied at design time whereas dynamic techniques are applied at run-time. Dynamic techniques



use the run-time behavior of the system to reduce power. Managing power using the dynamic techniques is
known as dynamic power management (DPM). DPM can be done in various ways. These include frequency
reduction, voltage scaling, capacitance reduction or reducing switching activity [7]. These techniques are
primarily used to reduce the power dissipation. The average power dissipation can be described by the
following equation:

P avg = P dynamic + Ps'horl + Pleakage + Pslal/c (1)
where, Py, ... is the dynamic power consumption, P, is the short-circuit power consumption, £, is the

leakage consumption and P,

static

is the static power consumption.

The most dominant factor is the dynamic power consumption. Hence, considering 7" denotes the clock period,
Cou denotes the output capacitance, V,, denotes the power supply, K is the average number of transitions in a
clock cycle and fis the clock frequency; the following formula for average dynamic power consumption can be
formulated [7].

2
— KCnurVdd = KC Vdi’f (2)

dynamic out

Of the various variables present in the above equation; only Vai, can be altered at run-time. The other variables

are fixed at design time. Thus they are related to static power management. Changing Vdi is known as

Dynamic Voltage Scaling (DVS). When the voltage is changed during run-time, the clock cycles of the device
is reduced. This results in reduced heat dissipation. In effect; the device is switched to a lower energy-
consumption state. From this we deduce that scaling the voltage results in a change of state of the device.

Changing the state of the device can be implemented in various ways. These implementations have been
discussed in the following section along-with the algorithms that will be compared. The rest of the paper is
organized as follows. Section 2 introduces the concept of DVS and the components that constitute a complete
DVS system. It also summarizes the systems that will be compared. Section 3 proposes and discusses the
comparison criteria used to compare the algorithms. Section 4 compares the DVS systems based on the criteria
developed in Section 3. Finally, Section 5 concludes the comparison and identifies areas for future work.

2. Dynamic Voltage Scaling (DVS)
Dynamic Voltage Scaling (DVS) is one of the most effective techniques to save energy in mobile devices. DVS
implies a set of techniques that can adjust the clock speed of the processor at the run time depending on the

nature of task executing and doing this without missing the job performance deadline.

This takes advantage of the fact that in CMOS logic, the energy required per task is directly proportional to the
product of speed and voltage squared. This can be mathematically expressed as follows:
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o Voltage® x speed 3)
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The term speed can be expressed as a relation of task and sec. Replacing this value gives us the
following relation.

Lnergy oc Voltage® x task 4)
sec sec
o, Energy o« Voltage® 5)
task

If assumed that voltage may be decreased in direct proportion to speed [4]; we can substitute speed in place of
voltage in equation (5). This gives us equation (6).

Energy
task

o Speed” (6)

It is also evident from equation (5) that Energy is quadratically proportional to Voltage . The above relation

explains that if we reduce speed, it will reduce energy consumption quadratically. Thus,
Energy « Voltage® (7

When peak performance is not needed, the frequency and voltage can be reduced, and hence energy dissipation
is also greatly reduced. Since reducing the voltage results in the quadratic decrease in the energy consumption,
that’s why if an effective way to predict workload is found then it would be better to spread the task by
reducing cycle time instead of running the CPU at full speed for short bursts and then sitting idle [4]. This is
described in Figure 1 [8]. It shows different runs of the same workload; comparing them on performance and
time parameters. In A, the CPU functions at full throttle and hence finishes the task well in advance of the
deadline and thus wastes the remainder of the time. However, in B, the task is stretched to its deadline. This
reduces the performance but allows for energy savings as the voltage scaling has been applied to the
processors.
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\
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Figure 1. Performance scaling
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Dynamic Voltage reduction is not possible without scheduling algorithm that could determine the operating
speed of the processor at run time. The scheduler needs a profiler that could tell how many clock cycles each
job would need. The performance and specially responsiveness of a DVS algorithm also depend upon how well
it estimates and utilizes the idle time. This is also called as ‘Slack time analysis.” But for mobile systems,
which are usually hard or soft real time systems, this analysis can only be afforded when it is composed of
some simple heuristics otherwise doing this analysis for every job will be a big overhead. In order to implement
DVS, a speed setting policy is needed that would determine how to adjust the task execution in the coming
clock cycle and a scheduling algorithm that schedules real time tasks so that there is minimum slack time and
minimum missed deadlines.

2.1 Existing DVS Systems

This section discusses five of the various existing DVS systems. These systems are GRACE-OS, Real Time
Hopping Algorithm (RVH), Low Power Fixed Priority Scheduling (LPFPS), Episode Based Algorithm and
Low-Power scheduling using Slack Estimation Heuristic (Ip/SEH.) These systems will then be compared based
on criteria defined in the next section.

GRACE-OS. GRACE-OS [9] is a system that uses the “Application runtime CPU usage” strategy to predict
the CPU demands of different applications. This in integrated with SRT scheduling to support quality-of-
service. The combination of SRT scheduler and DVS algorithms result in an enhanced scheduler (GRACE-OS)
which decides how fast to execute applications in addition to how long to execute them. Thus, the system
supports dynamic time-quantum policies. The system employees a stochastic approach to allocate cycles based
on the statistical performance requirements and probability distribution of cycle demands of individual
application tasks. The system also supports task-level energy saving mechanism by implementing a speed
controller for each task based on the previous cycle demands of the process. This enables each task to start
slowly and then accelerate as the job continues. The system reduces CPU idle time and spends more busy time
in low-power speeds.

There are three main components of GRACE-OS. They are the profiler, SRT scheduler and the speed adaptor.
The profiler monitors the cycle usage of individual tasks and automatically derives the probability distribution
of their cycle demands from the cycle usage. The SRT scheduler is responsible for allocating cycles to tasks
and scheduling them to deliver performance guarantees. It performs soft real-time scheduling based on the
statistical performance requirements and demand distribution of each task. Scheduling is dependent on the
prediction of task cycle demands. This is a two step process which includes profiling the cycle usage and
deriving the probability distribution of usage. The speed adaptor adjusts CPU speed dynamically to save
energy. It adapts each task’s execution speed based on the task’s time allocation, provided by the SRT
scheduler, and demand distribution, provided by the profiler. A cycle counter is added into the process control
block of each task. As a task executes, its cycle counter monitors the number of cycles the task consumes. In
particular, this counter measures the number of cycles elapsed between the task’s switch-in and switch-out in
context switches. The sum of these elapsed cycles during a job execution gives the number of cycles the job
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uses. A speed schedule for each task is defined. The speed schedule is a list of scaling points. Each point (x, )
specifies that a job accelerates to the speed y when it uses x cycles. Among points in the list, the larger the
cycle number x is, the higher the speed y becomes. The point list is sorted by the ascending order of the cycle
number x (and hence speed y ). According to this speed schedule, a task always starts a job at the speed of the

first scaling point. As the job is executed, the scheduler monitors its cycle usage. If the cycle usage of a job is
greater than or equal to the cycle number of the next scaling point, its execution is accelerated to the speed of
the next scaling point. The speed schedule construction, for each task is to find a speed for each of its allocated
cycles, such that the total energy consumption of these allocated cycles is minimized while their total execution
time is not more than the allocated time.

Real Time Voltage Hopping Algorithm. Real Time Voltage Hopping Algorithm (RVH) [10] is a run-time
dynamic voltage scaling scheme for low-power real-time systems. It employs software feedback control of
supply voltage, which is applicable to off-the shelf processors. It provides efficient power reduction by fully
exploiting slack time arising from workload variation. Using software analysis environment, the proposed
scheme is shown to achieve 80~94% power reduction for typical real-time multimedia applications.

In real time systems, the utilization of the processor is frequently less than 1 even if all the tasks are executing
at their worst-case execution time (WCET), implying that there is always some slack time. This slack time is
exploited to lower the supply voltage. Most of the approaches only exploit the worst case slack time since they
assume the task to be running at its WCET. However, this approach cannot fully take advantage of workload
variation slack time because it controls voltage supply on task by task basis. Moreover in DVS systems, system
clock frequency can have arbitrary values, which may cause interface problems to exchange data. Especially,
this interface problem becomes serious for peripherals or other systems at different clock frequency

Real Time Voltage Hopping algorithm remedies this problem by utilizing the workload slack time of the tasks.
This algorithm has the following features (1) relationship between clock frequency and supply voltage is
measured by experiment and is stored as a look up table in the device driver (2) it controls clock frequency and
supply voltage by software feedback which can be easily adopted for various targets (3) it avoids interface
problems by exploiting discrete levels of clock frequency as fo fon /2 fuic /3...... where fy is the highest clock
frequency and (4) it fully utilizes workload-variation slack time by partitioning a task into several pieces, which
we call time slots then dynamically controlling supply voltage on timeslot by timeslot basis.

Voltage scaling is done by the device driver. It has two lookup tables: one for voltage-frequency relationship of
the target processor, and the other for transition delay to change clock frequency and supply voltage. These
lookup tables are established by measuring the physical characteristics of the chips. Hardware operation of the
proposed system architecture is described as follows.
1. Desired clock frequency is determined by the proposed voltage scheduling method, which is to be
explained in the next section.

2. Desired supply voltage is looked up from the device driver.
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3. Target processor sets these values into power controller by sending control codes. After that, target
processor stops running, and waits while clock frequency and supply voltage are settling down to
steady state. Duration of this transition time is looked up from the device driver.

4. Power controller changes clock frequency and supply voltage. After that, target processor restarts

running

Low Power Fixed Priority Scheduling. Low Power Fixed Priority Scheduling (LPFPS) [11] is the power
efficient version of the fixed priority scheduling which is widely used in hard real time design. This method
obtains power reduction of a processor by exploiting the slack times inherent in the system and those arising
from variations of execution times of task instances. This algorithm uses a runtime mechanism to use these
slack times efficiently for power reduction for processors that supports a power down mode and can change the

clock frequency and supply voltage dynamically.

LPFPS exploits both execution time variation and idle time intervals to obtain a power saving for a processor
while ensuring that all tasks adhere to their timing constraints. To obtain the maximum power saving, LPFPS
dynamically vary the speed of the processor whenever possible, and bring the processor to a power down mode
when it is predicted to be idle for a sufficiently long interval. Specifically, if there is only one task eligible for
execution and its required execution time is less than its allowable time frame, the clock frequency of the
processor along with the supply voltage is lowered. If it is detected that there is no task eligible for execution
until the next arrival of a task, the processor enters power-down mode. Both these mechanisms are made
possible by a slight modification of the conventional fixed priority scheduler.

The fixed priority preemptive scheduler in the kernel can be implemented easily using runtime queues. Because
most information about the tasks is available through queues and LPFPS depends on this information, the
scheduler for LPFPS can be implemented with a slight modification of the conventional scheduler. The pseudo
code for the LPFPS scheduler is shown below.

if current frequency < maximum frequency then
increase the clock frequency and the supply voltage to the maximum value;
exit;
end if
while delay queue.head.release time < current time do
enqueue delay queue.head in the run queue;
end do
if run queue.head.priority > active task.priority then
set the active task.executed time;
perform context switch;
end if
if run queue is empty then
if active task is null then
set timer (delay queue.head.release time - wakeup delay):;
enter power down mode;
else speed ratio = Compute speed ratio();
find a minimum allowable clock frequency
/* this frequency must be greater or equal to the ratio: speed ratio * max frequency*/
adjust the clock frequency along with the supply voltage;
end if
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Episode Based Algorithm. This algorithm [8] is implemented in the Linux kernel and requires no
modification of user programs. Unlike previous automated approaches, this method works equally well with
irregular and multiprogrammed workloads. In order to determine the right level of CPU performance (or CPU
speed) this algorithm uses processes information (e.g. deadline) and process classification information
(background, periodic, foreground) automatically from OS kernel. The algorithm focuses primarily on
interactive applications.

This algorithm divides the application execution into episodes. There are two types of episodes: interactive and
periodic, with producer and consumer subcategories, where the communications between these episodes
determine their performance level. Episodes are triggered by communication events with specific tasks but
multiple tasks may be involved during episode execution. All other processor activity is classified as
background activity. It is important to note that during its lifetime a task can fall into more than one of these
classifications. For example, a music playback process may be part of an interactive episode when it is
updating the GUI and be a producer when it is decoding music data. These classifications can be used to drive
deadlines for the execution episodes and guides performance-setting decisions on a per-task and per-episode
basis.

To find interactive episodes, algorithm keeps track of the set of tasks that communicate with each other as a
result if a user initiated a GUI event e.g pressing a mouse button or a key. GUI controller is responsible of
starting an interactive episode.

Producer and Consumer episodes form a special subcategory of periodic episodes, where the distance from
producer to consumer establishes the performance level. The producer episodes can be stretched to the
beginning of their associated consumer episodes.

This algorithm predicts performance differently for each type of episode. For interactive algorithms, the
predictor computes the performance factor, which is the ratio of the desired execution speed and the
processor’s maximum speed. Incase of interactive episode, it is difficult to find the optimum performance since
it depends on the user not on some event. So, the performance factor predictor for interactive episode works by
starting with initial value, set to minimum performance factor of the processor, then refining its value. The
algorithm uses the following three steps:
1. Starts running the episode at the predicted performance factor.
2. At the end of episode, find the duration that corresponds to executing at full performance. Use this
information to compute the optimal performance factor for the episode.
3. Uses the weighted average of optimum performance factor (PF) as a prediction for future performance
factors.

Based on the estimate of the episode execution time at full performance, the optimum performance level can be

estimated for an interactive episode. For periodic episodes, the optimum performance factor can be computed
by stretching the periodic episode’s execution to the beginning of the next episode or to the beginning of the
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associated consumer. An important consideration is to find the performance factor when interactive episodes
are present in addition to the periodic activity. The algorithm works as following:
1. When there is no interactive episode executing on the processor, the performance factor is set to the
one computed for the periodic activity.
2. At the beginning of an interactive episode, the performance factor is switched to the one that was
predicted for the task’s interactive episodes, if it is higher than periodic performance factor.

Low-Power scheduling using Slack Estimation Heuristic. The system [12] emphasizes improving the on-
line slack estimation part of a DVS algorithm and proves that a good slack estimation method can
significantly improve the energy efficiency. The system proposes an on-line DVS algorithm for periodic real-
time tasks that are scheduled under the FEarliest-Deadline-First (EDF) algorithm. The system uses two
notations to keep track of the available slack times of each task. U*" denotes the unused execution time and

W™ denotes the remaining WCET of the task. The system assumes that a real-time scheduler has two queues:
waitQueue and readyQueue . The waitQueue and the readyQueue contain the completed tasks and the
currently activated tasks, respectively. All the tasks are initially queued in waitQueue , in which the tasks are
sorted by their next arrival time. When a task is activated, the task is moved from waitQueue to

readyQueue . At each task activation, both are set to w, ie., U™ =W™= w,. Among the tasks in

1

readyQueue , the active task with the earliest deadline is scheduled to run under the EDF scheduling policy.
As T, executes, its W ™" decreases and consumes its available execution time. 7, may complete its execution
or be preempted by a higher-priority task instance. When 7, is preempted by a newly activated higher-priority
task instance, 7 is requeued into readyQueue while waiting for the resumption. When 7, completes its

execution, its remaining WCET W " is reset to 0, and 7, is inserted into waitQueue . It should be noted that

rem

the unused time is not reset. U™ is used to estimate the slack time available for other task instances.

o

3. Comparison Criteria

To enable us discuss and assess existing systems of operating systems supporting power management in mobile
devices, we propose the following general attributes for assessing, classifying, and comparing these systems.
These are analyzing which type of state change strategy is supported by the system, the type of scheduling
algorithm employed, the speed setting policy used, the CPU utilization prediction approach used and the type
of tasks the system is optimized for. These criteria have been proposed based on the components of the DVS
system. These criteria have been explained in the following lines.

3.1 State Change Implementation Class

The different levels of energy that can be consumed by a device are categorized as states. Applying DPM
techniques results in the change of the state. A device can be made to enter any of the possible states. Thus,
power conservation can be optimized by adjusting power parameters on-the-fly while ensuring realtime
deadlines of running software are met [13]. In other words, it dynamically determines power states according to
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workloads. Power usage is minimized by putting a device in idle state if it is not required by any task. The idle
state has been referred to by other names including sleeping state and stand-by-state [14]. Power managers
(PM) [14] determine transitions between power states according to the power management policies (also
known as algorithms / policies) [15]. Power management can also be generalized for more than two states,
besides the sleep and awake states. Each of these states has a different performance level and a corresponding

power consumption level [14]. Changing the states requires time. 7., and 7, have been defined as shutdown
and wakeup delays. A device should sleep only if the saved energy is more than the energy required to make

the change. This is determined by the policies being used. Figure 2 gives an example of power management
form the perspectives of the various factors involved in state change.

Workload Requests Requests
Device Busy Idle Busy
Power State Working T, Sleeping T, | Working
T T2 T3 T4
Time >

Figure 2. Power management and state change

The change of states can be done through implementation in hardware or device drivers i.e. at the system level.
It can also be done entirely through operating system. A third approach is to implement them by employing a
combination of the two techniques. These techniques have been described below.

System-Level Dynamic Power Management. The power managers observe the requests at devices and
predict the future workload. Using the estimated workload a suitable state is decided for the device and then the
device is switched to that particular state. The components can be managed either infernally or externally.
Internally-managed devices, also called self-managed components, use conservative policies. Greedy policy
shuts down the processor as soon as an idle period is detected. These policies can be classified as predictive or
stochastic. Predictive techniques can be further classified as static or adaptive techniques. This technique can
be diagrammatically depicted as in Figure 3 [16]. It is evident that the power manager does not distinguish
between requesters. Instead, it simply honors the requests it gets from the various requesters / tasks.
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Figure 3. System-level power management

Operating System Directed Power Reduction. One of the techniques for managing the power of the system
is through the OS [14]. The management depends on the requesters (currently running tasks), for changing the
state of a device. Initial research has been conducted based on the observation of requests for a specific device.
This mechanism is known as the device-level power management (DLPM). A better strategy proposed is to
change the state according to the information provided by the requesters. This strategy has been referred to as
the task based power management (TBPM). This strategy excels based on the fact that the processes provide
more information about future requests to a specific device as different tasks can have different request
patterns. Tasks can be created or terminated. Some tasks may have tighter performance requirements. TBPM
considers the CPU time of tasks while deciding the power state changes. TBPM uses a two-dimensional data
structure called the device-requester utilization matrix, U. It also uses a vector called the processor utilization

vector, P. The elements of U are denoted by U(d,r) where d is the utilization by a requester r. Also, P is the
processor utilization for each process and P(7)represents the percentage of processor time used by the

requester . Figure 4 shows the states in which a process can be at any time [17].

exit

admitted

1/0O or event

completion /O or event wait

Figure 4. Process states

Whenever a new requester is created, a new column is added to the data structures and the respective column is
deleted upon deletion or termination of the requester. The utilization is initially set to zero and is updated as
and when required. The power manager periodically evaluates the utilization and makes appropriate changes.
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The utilization for any specific device is the sum of the utilization values for all the requesters of that device.
Figure 5 shows the incorporation of TBPM into the process state diagram. This incorporation depicts

allocating, deleting the column and updating the U(d,r)and P(r) data structures.

Delete
column

Allocate
column

Update U(d,r) Update P(r)

Figure 5. Incorporation of TBPM into process state diagram

Figure 6 shows the relationship between the requesters/tasks, the device driver and the hardware. It depicts the
implementation in which the requester sets the power state of the device [16]. It is evident that the fasks or the
requesters do not play any part in setting the state of the device.

! requester ! ! requester !
" Jpower “[power
state state

Device Driver

A4
Hardware Device

Figure 6. Tasks controlling the power state of the device
Requester-Aware Power Reduction. The requesters / tasks actively specity the devices they will require for
execution. This is done through implementing an API [9,11]. The API is defined below.
RequireDevice(device,type, period,wait) , 8)

where, device denotes the hardware device, fype specifies the nature of access of the device. This can be always
or periodic or once or delete. The term period specifies the length of the time for which the device will be
required in milliseconds and wait specifies the time that is allowed to wait.
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We can visualize the implementation of this technique in Figure 7 The power manager receives information
from the scheduler and the process management module and based on this information determines the state of
the device.

Process Management

requester creation

"
equest request and termination

performance
requirement

Device Driver

observe
request

estimate length
of idle periods

> Scheduler

Y Y
P determine power state
‘

Hardware Device Power Manager

Figure 7. Power manager utilizing information from the scheduler and process manager

The design of the power management policies can determine the level of power consumption. Efficient policies
optimize the power consumption of the system. The problem of finding an optimal policy to maximize the
average performance level can be formulated as a stochastic problem [15]. And policy optimization can be
solved in polynomial time. The most aggressive policy turns off every system component as soon as it becomes
idle and is known as the eager policy.

Research has also been done to manage the power through the operating system [14]. Designing efficient
policies for 8 have also been studied [15]. Templates have also been designed for controlling power
management through software [18]. The template is implemented as a kernel-level filter driver (FD) that is
attached to the device drivers from the vendors. The software that controls implements the policies/algorithms
is known as the power manager (PM). These policies are sent to the FD to be implemented.

3.2 Scheduling Algorithms

Scheduling algorithms can be categorized on the basis of tasks they are supposed to schedule. We can classify
the tasks as being either aperiodic or periodic. Aperiodic tasks are single tasks activated at irregular intervals
whilst periodic tasks are a group of identical tasks activated at regular intervals.

Early Due Date (EDD). This algorithm selects tasks with earlier due date first. It has a complexity of
O(nlogn), If after the application of the EDD algorithm, a feasible solution exists and unused slack is available,
then the following algorithm is invoked to decrease the energy consumption. In each iteration, the voltage of
the critical task (or task m) is decreased, the voltages of the other tasks adjusted, and the finishing time of the

Top



task, f, compared with its deadline. If there is a violation of task j at step £, i.e. there is a violation in the
assignment V7j (k), then the previous voltage value (Vj(k - 1)) is the optimal voltage value, here V is the voltage
supplied. Furthermore, since all tasks with earlier due date than task j could have caused deadline violation of
task j, all these tasks are assigned voltages corresponding to iteration k-1,V; = V; (k-1) for [ = I to j. The
algorithm continues until voltages for all the tasks are determined. The worst case complexity of the algorithm

is O(nk

max

) . This is because there are at most k,_iterations, and in each iteration, at most n task voltages are

calculated. The pseudo code for this algorithm is given below.

for k = 1 to Kkpax
update Vg(k), Tn(k) for the critical task
for each unscheduled task
update Vj(k), Ty (k) for the tasks
£y = fyo0 + Ty(k)
if £y > dj(k) /* dy is the deadline of task j*/
for i = 1 to j
Schedule: V; = V;(k-1).
return /* end, if all the tasks are scheduled*/
end if

Aperiodic Earliest Deadline First (EDF). This is a dynamic scheduling algorithm that at any instant executes
the task with the earliest absolute deadline among all the ready tasks. In this algorithm, whenever a new task
arrives, the voltage values of the unscheduled tasks are updated provided that the deadline constraints are not

violated. In each cycle, the task with the earliest deadline is scheduled with complexity O(nlog(k, . )), using a

binary search. The overall complexity of the algorithm is O(n’(log(k,,)) -

Rate Monotonic (RM). This is a scheduling algorithm assigns priorities to tasks according to their request

rates. In addition, deadline of a task (d ;) is equal to its period. The sufficient but not necessary guarantee test

isU<U,, = n(2""" —1). In this algorithm, the voltage values of the unscheduled tasks are updated according

to the minimum energy equation provided U —U,,, Here ‘U’ is the utilization factor and it is calculated by the

following equation.
U=>Y" (Til P)<1, 9)
where, p is the period of the task 7, n is the number of tasks and (7, / P) is the fraction of processor time spent

in executing of task i. The worst case complexity of the algorithm is O(nlog(k, . )). This is because at most

ax

log(k,, )iterations are needed, and in each of the iterations at most n calculations are done.

The Greediness Technique. According to [5], techniques are possible to identify and forcibly block processes
that are not doing useful work for a set of period time. This is known as the greediness technique. Identification
of process acting greedily is a major issue. Researchers have used three factors to decide if a process is not
involved in active computing,

e Ifadevice performs no I/O device read or write,
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¢ Does not have a sound chip on and

e Does not have the cursor appear as a watch.

When O.S. determines that a process is acting greedily, it blocks it for period called forced sleeping period, the
issue here is a short sleep period saves insufficient power, while long sleep period may block a process that
actually doing some thing useful.

3.3 Speed Setting Policies

Any DVS algorithm must consider speed setting policies that could strike balance between performance and
energy efficiency. A speed setting policy must first predict the utilization of the processor in near future and
then must take a decision regarding speed adjustment. In general, there are three prediction techniques 1)
monitoring average CPU utilization at periodic intervals 2) using application worst case CPU demands 3) using
application runtime CPU utilization. Below, we have summarized some of the speed setting policies that are
widely discussed in the literature.

FLAT<speed>. This implies that voltage scaling would not be done. The operating voltage is fixed at a
constant level scaling and further scheduling is disabled. It sets speed fast enough to complete the predicted
new work plus the excess-cycles being pushed into the coming interval. This is subject to the limit of fullspeed
= 1. This policy is weak on prediction because it simply tries to smooth speed to a global average. The
parameter speed is the input variable and the range should be between 0 and 1. The speed is normally set fast
enough to complete at least the excess-cycles so that no work takes more than one interval.

COPT. This is the theoretical optimum operating point generated by post-simulation trace analysis and is used
for comparison with realizable algorithms. COPT (clipped optimal) is the minimum energy at which a system
can obtain a given delay.

PAST. PAST calculates how busy the last completed interval was (including excess-cycles brought into that
interval). It then predicts that the coming interval will be equally busy. If the prediction is for a busy interval,
PAST increases speed; if for a mostly idle interval, PAST decreases speed. Some smoothing is accomplished
by limiting the amount by which speed can change (except that speed may be increased to 1 if excess- cycles
rises particularly high).

AVG<weight>. This algorithm computes an exponentially moving average of the previous intervals. At each
interval the run-percent from the previous interval is combined with the previous running average, forming a
long-term prediction of system behavior. The term weight is the relative weighting of past intervals relative to
the current interval (larger values mean a greater weight on the past) using the equation. Empirical comparison
of the performance of these scheduling algorithms has also been done in [19].

weight = (weight x old + newweight +1), (10)
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3.4 Prediction Approach

As discussed earlier, DVS systems can be classified to be comprised of three main parts. One of these is the
component that determines the demand of the processor by various tasks. Its main job is to predict the usage of
the processor by the task. This prediction must be very accurate otherwise the system might suffer from over-
prediction or under-prediction. For this purpose, the prediction approach can be categorized into two main
types. These are static and adaptive. The static techniques can be further classified into fixed timeout and
predictive shutdown. The timeout strategy has two main advantages. They are very general and the level can be
altered by changing the values of the timeout factor. This feature can also work against the strategy in the sense
that large timeouts will cause a higher degree of under-prediction or over-prediction. Two predictive schemes
have been proposed in [20]. The first approach develops a nonlinear regression equation based on the past
history. The second approach is based on a threshold. The adaptive techniques can be distinguished between
using simple average of the CPU utilization at regular intervals or using the application’s worst-case CPU
demands or using the application runtime CPU usage. The first two approaches are heavily dependent on
dynamic input.

3.5 Type Of Tasks Optimized

Tasks can be classified as periodic and aperiodic. Periodic tasks are a group of tasks that occur at regular
intervals while aperiodic tasks do not follow any fixed interval. Scheduling for these two types is slightly
different as some algorithms look at the interval of time in which the tasks arrive. Based on this interval the
algorithm calculates the priority of the tasks. Aperiodic tasks can be selected using an arbitrary queuing
discipline. The periodic tasks are normally of higher priority as compared to the aperiodic tasks. Also, the
priority of aperiodic tasks constantly changes as these tasks get scheduled. This is because aperiodic tasks
utilize the processor for different lengths of time in different time quantum. Aperiodic tasks are also known as
sporadic tasks.

4. Comparison

The qualitative comparison of the DVS systems described in Section 2 has been done based on the parameters
discussed in Section 3. Each system was evaluated based on the criteria and the results have been summarized
in Table 1. Since in this paper we have discussed operating system role in energy state adjustment, we have
only considered systems that employs operating system directed power management. We have also judged the
DVS systems according to the scheduling algorithms they use. Two of the systems use EDF, one uses offline
scheduling, whereas two use their modified versions of EDF. Speed scaling policy is also considered in the
comparison table and algorithms are considered according to the speed scaling policy they employ. Three of
the systems are designed for hard real time systems while the remaining three are for soft real time systems. All
the systems except LPFPS use adaptive approaches for predicting the future clock cycle requirements of the
task. LPFPS on the other hand uses static prediction technique. The systems are also analyzed according to the
type of tasks that they expect. We have categorized these tasks as periodic and aperiodic.
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5. Conclusion

This study compares the DVS systems by considering the components that constitute a complete DVS system.
The most important components are the components that implement the scheduling algorithm and the
component that implements the speed scaling policies. We have analyzed the presented systems according to
these components. Grace OS system implements function schedule (x,y) to change the speed and uses the
application runtime CPU usage. It uses stochastic model to predict the idle time. Tasks in Grace OS are
periodic (occur after specific time periods.) Also it supports state change to make the processor run at low
power. RVH controls the speed of processor by using device driver lookup tables which are established by
measuring the physical characteristics of the chips. It supports periodic and not periodic tasks and predicts the
idle time by utilizing the workload slack time of the tasks. The mechanism of scheduling algorithm used in
RVH is partitioning a task into several pieces and then dynamically changing the voltage on timeslot basis for
SRT. LPFPS system controls the task scheduling by exploiting the slack times inherent in the system and those
arising from variations of execution times of task instances for HRT. This system supports state change and use
periodic tasks. To predict the idle time it uses the exact value known beforehand. Episode-based algorithm
schedules the tasks by monitoring their online usage for SRT and use a factor called performance factor (PF) to
predict idle time that is the ratio of the desired execution speed and the processor’s maximum speed. It can
work for periodic and not periodic tasks. Lp/SEH system uses EDF, Hard Real Time and preemptive
techniques for scheduling and also supports periodic tasks. The system has its own algorithm for estimating
online slack time due to dynamic workload variation. The preference of one system over the other depends on
factors specific to the type of tasks the device is scheduling and also the usage of the device. It also depends on
some hardware parameters. Based on these observations, no system can be classified to be the best.

Our comparison provides a clear view of the components used to configure a complete DVS system. This
analysis can be employed to tailor new DVS systems that correspond to specific need. It has been studied that
most of the systems use EDF algorithm or a variant of it to schedule tasks. It has been noted in literature that
RM algorithm also fares well and hence can be used instead of the EDF algorithm.

The technique of the tasks requesting specific devices by sending certain parameters can also be extended. For
this purpose, the scheduling algorithms and the speed scaling policies should be optimized to determine states
corresponding to the processor provided states. The parameters in Require Device(device,type, period,wait)
API can be used to compute the time for which a specific task would execute and based on that the
corresponding state of the processor can be chosen. The scheduler would then schedule together all
tasks requiring the same state.

The concept of a software template being used to control power state changes can be extended to enable the
user to select the scheduling algorithm, the speed setting policy and also the prediction approach. A matrix
should be implemented that proposes the optimal system. A weight should be associated with each solution.
This weight should be periodically re-calculated based on stochastic Markov techniques. The proposed speed
should have a direct mapping with the states supported by the processor. This will be very useful in case there
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are tasks running which have either fixed or dynamic priority, i.e. the set of tasks is a combination of realtime
tasks and normal tasks.
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