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Abstract 

The paper presents the hardware implementation of basic building blocks of viterbi decoder. Different 
architectures can be created by using these basic building blocks. A novel design of programmable Viterbi 
Assist is presented by using these basic building blocks that optimizes both the area and power using a folded 
ACS unit and a special trace back mechanism based on zig-zag shift registers. The design can be used with any 
DSP processor for MIMD architecture. The host processor provides different address pointers and parameters 
through shared memory and configuration registers. The Viterbi Assist reads the symbols from the memory, 
performs Viterbi algorithm and writes decision back in the memory area specified by the host. The architecture 
can also be used as a standalone Viterbi decoder for a variety of other applications as well. The FPGA 
implementation of presented architecture is attractive because of the flexibility and efficient parallel 
architectures available in FPGAs. 

Key Words: Add Compare Select (ACS), Multiple Instruction Multiple Data (MIMD), 
Branch Metric Unit (BMU), Register Exchange Architecture (REA), Folded ACS. 

1 Introduction 
Viterbi decoders are widely used as forward error correction devices in many digital 
communication and multimedia products, including mobile phones, video and audio 
broadcasting receivers, voice over packet gateways and modems.  For low bit rate 
applications, Viterbi decoding is implemented in software on digital signal processors 
(DSPs). The bit rate required by modern high quality speech transmission represents the 
current limitation for Viterbi decoder software implementations due to the high 
computational requirements imposed by the Viterbi algorithm. A Viterbi Assist is presented 
which can be used as a standalone Viterbi decoder or can be used with any DSP processor to 
off-load Viterbi decoding. 

The Viterbi assist comprises of a micro-coded algorithmic state machine, an adder/subtractor 
based folded ACS unit, a shifter, logical unit, a few general-purpose registers, address 
generation logic and host interface. The state machine comprises of sequencer unit, ROM and 
configuration registers. The host processor programs the Viterbi decoder through 



  

configuration registers. The constraint length, code rate, encoder polynomials, puncturing 
patterns are some of the programming parameters provided to the assist. 

This paper is arranged in five sections. Convolutional encoder and viterbi decoder algorithm 
are described in section2. The section 3 describes the low power architectures of basic 
building blocks of viterbi decoder for their hardware implementations. The Viterbi assist 
architecture is explained in section 4. Section 5 concludes the paper. 

2 CONVOLUTIONAL ENCODER AND VITERBI DECODER 
Efficient and reliable data transfer is vital for any communication channel that comprises of 
encoder, modulator, demodulator and decoder sections. For high bandwidth channel, 
detection of errors and retrieval of original data requires advance error control codes to be 
implemented in hardware. The viterbi decoder measures the similarity between the received 
signal and all trellis paths entering each state at time ti. Every state selects the optimum path 
termed as surviving path. The state having minimum path metric is traced back to retrieve 
information bit. For quick VLSI realization, viterbi encoder and decoder units are divided 
into following basic building blocks. 

2.1 Differential Encoder 

The differential encoder/decoder, are employed to resolve inverted data. The differential 
encoder transforms the input data stream into transitions, the output transitions from 0 to 1 or 
1 to 0 depending on previous output. The differential decoder is the inverse of differential 
encoder; the circuit for 180-degree differential encoder/decoder is shown in Figure 1. 
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Figure 1: Differential encoder/decoder 

2.2 Convolutional Encoder 

The convolutional encoder is a linear time-invariant finite state machine, which accepts a 
semi-infinite stream of information symbols, operates upon them in a sliding block manner 
and transmits a continuous stream of encoded symbols [1].  Each information symbol remains 
in the sliding block for a finite amount of time, thus affecting the transmitted symbols during 
that time span. During encoding, k input bits are mapped to n output bits to give a rate k/n 
coded bit stream. The ratio k/n is called the code rate. With k=1, only code rates 1/n are 
possible. If the encoder has a memory of m bits, the code symbols are calculated from 
K=m+1. K is called the constraint length and the number of states is 2K-1.  The generator 
polynomial gi defines the tap positions of the delay line to be XORed. A ‘1’ represents a 
connection and ‘0’ represents no connection. The generator polynomials gi are of degree m 
and are usually not written as polynomials, but as numbers in octal notations. The input data 
bit is encoded by convolution into two or three output bits for rates 1/2 and 1/3 respectively 
according to given polynomials. Rate 1/2 convolutional encoder with constraint length K=3 is 
shown in Figure 2. 
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Figure 2: Convolutional Encoder 

For every x(n) input bit, the encoder generates two output bits G0(n) and G1(n).                   

g0 = 7 and g1= 5 

G0(n) = x(n) + x(n-1) + x(n-2) 

G1(n) = x(n) + x(n-2) 

The octal numbers 7 and 5 represent the code generator polynomials, which when read in 
binary (1112 and 1012) correspond to the shift register connections to the upper and lower 
modulo-two adders, respectively. 

2.3 Puncture and De-puncturing Logic Unit 

A rate 1/2 convolutional encoder generates two output bits for every input bit; a big portion 
of channel bandwidth is used to transmit parity bits. A high code rate is achieved by 
puncturing mode in which input data is encoded with rate 1/2 encoder and certain bits of rate 
1/2 coded data are deleted and not transmitted. 

The de-puncturing unit inserts alternatively maximum and minimum values at the puncturing 
position prior to decoding with the rate 1/2 decoder. The null symbols add very little bias to 
the accumulated errors. In some coding schemes, where null values do not exist, 
depuncturing is achieved by inserting smallest positive and negative values alternatively [2]. 
The trace back depth increases as the code rate increases. A trace back memory depth of 35 to 
40 is adequate for rate 1/2 decoding. However, the rate 3/4 and 7/8 require memory depth of 
70 and 90 respectively [1] [3]. 

2.4 Branch Metric Unit 

The BMU calculates distance of received bits from encoder output bits using hamming 
distance for hard decision and Euclidian distance for soft decision. The method employed to 
calculate branch metrics depends on the representation of received data. If the data is 
represented by a single bit, it is referred to as hard decision. When the data has a precision of 
multiple bits, it is referred to as soft decision. The soft decision provides an improvement of 
2.2 dB in signal to noise ratio (Eb/N0)  at the same bit-error  level.  

The hamming distance is calculated by summing the individual bit difference between 
received and expected data. Euclidean distance is employed for calculating local distance for 
soft-decision. The Euclidean distance for rate 1/n is given by: 
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Where SDc are the soft-decision inputs, Gc (j) are the expected inputs for each path state, j is 
an indicator of the path and n is the inverse of the coding rate. 
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For minimization of accumulated errors similar terms of equation can be eliminated, thus 
reducing the equation in to sum of products of the received and expected values. 
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If the negative sign is removed, maximum values are searched for the metric update. The 
implementation of BMU in trellis-based decoding architectures can be simplified for a certain 
class of convolutional codes. For a rate 1/2 code, only two branch metrics have to be 
calculated instead of four [4]. 

2.5 ACS (Add Compare Select) Unit 

In the ACS unit, path metrics are added to the corresponding branch metrics, resulting new 
path metrics are compared and the best one is selected as the surviving path metric. The 
comparator output is the decision of the comparison, which also controls the multiplexer to 
choose the surviving path metrics. The fully parallel radix-2 ACS architecture uses one ACS 
unit for each state to update the states in parallel, therefore in each iteration, one level of 
trellis is updated. Two path metrics and the branch metrics are compared to select the 
minimum path metric.  ACS can be implemented in radix-2, radix-4 and a bit wise pipelining 
architecture by employing carry save adder. The radix-2 architecture is shown in Figure 3. 
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Figure 3: Radix-2 ACS unit 

 

The throughput of the Viterbi decoder is increased by merging two levels of radix-2 trellises 
into one level of radix-4 trellis, so two levels of ACS operation can effectively be performed 
in one radix-4 ACS iteration. If the cycle time of the radix-4 operation is less than twice of 
the cycle time of the radix-2 operation, the throughput of the ACS unit will improve. Each 
element in radix-4 decoder calculates four path metrics, selects the smallest one, and stores 
the result of the selection. 



  

2.6 Survivor Memory management Unit 

The decisions of ACS unit are stored in the path memory, which needs to be long enough to 
ensure that all paths are merged. The length of memory is defined as trace back depth L. A 
trace back method is a backward processing algorithm for deriving the survivor path from a 
starting state and the path decisions. The survivor memory stores the minimum path metrics 
and the decisions as to which branch should survive. The state sequence is computed based 
on the path decisions. A block of M symbols are decoded in reversed order during the data 
trace back phase, thus a LIFO memory is required for reversing the order before the 
information output. Fast hardware implementations require more memory and exhibit a large 
latency. Instead of tracing back L steps and decoding one symbol, K*L symbols are decoded 
where L is the length of the trace back and K is between 1 and 1/L. The memory is organized 
as a block with different operations executing in different blocks as shown in the Figure 4. 
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Figure 4: One pointer Trace Back 

Following are the steps to retrieve the information: 

Trace back read (TB): Read path decisions in current states, combines this information with 
the current state to find the previous state.  

Decode Read (DC): Similar to TB, the pointer value in this operation is the decoded 
information sent to bit order reversing circuit. 

Write New Data (WR): Writes path select bit of every state into memory. 

The access bandwidth and computational requirements are greatly reduced as compared to 
register exchange architecture. The mechanism is more power efficient and consumes lesser 
area as compared to REA. The memory access is a limiting factor for high-speed 
implementations. 



  

3 LOW POWER ARCHITECTURES 
One of the basic challenges being faced by the ASIC designers is the adoption of 
methodology incorporating the concept of block-based design for design reuse [5]. The 
presented design methodology breaks the complex architectures in basic building blocks 
(bbbs) and different architectures can be generated by manipulating these basic building 
blocks. This section presents our area and time efficient architectures for implementing 
viterbi algorithm.  

3.1 Puncturing Unit 

The puncturing technique holds the key to achieve the high data rates. Under this technique, 
codes are punctured by deleting some symbols generated by the encoder on the transmit side. 
Thus if the sequence G1 G2 G1 G2 has the second G2 deleted it becomes G1 G2 G1 (p), 
where p denotes the punctured symbol and instead of transmitting four symbols to represent 
two bits of data (R=2/4 or1/2) we now transmit three symbols to represent the same two bits 
for 2/3 rate. Similarly we can generate a ¾ and higher rates. The straightforward method to 
implement k/n encoder has k inputs and n outputs, the comparator required for each state is 
2k ways, which is difficult to implement.  In an alternate technique, the input data is encoded 
with rate 1/2 encoder and certain bits of the rate 1/2 coded data are deleted and not 
transmitted. With single input, there will be two branches entering a state and therefore 
binary comparators will be used. The trellis for this scheme is systematic and helps to 
simplify the ACS design and reduce the trace back memory.  
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Figure 5: Puncturing Unit 

The output of the convolutional encoder is passed through puncturing unit for deleting the 
bits according to puncturing patterns. The unit comprises of a multiplexer that converts 
parallel output of the encoder in to serial data, passed through a shift right register, whose 
shift operation is controlled by puncturing patterns. The puncturing patterns are loaded in the 
cyclic shift right register, it will transmit encoder bit if the puncturing bit is ‘1’, thus 
puncturing unit is independent of the puncturing rate. The puncturing will be performed 
according to the puncturing patterns whatever may be the puncturing rate. The puncturing is 
controlled by ‘punc’ bit, set the bit to ‘0’, if puncturing is not required, the en_ctrl will always 
enable the shift register and encoder data will be directly transmitted without puncturing. The 
clock ck1 of puncturing unit is two times faster than ck2 as depicted in Figure 5. 

3.2 De-puncturing Unit 

The hardware implementation of unit comprises of a circular shift register, similar to 
puncturing unit, which is loaded with the puncturing patterns. A toggle flip/flop generates 
maximum and minimum values, clocked by the puncturing patterns. A multiplexer, also 
controlled by the puncturing patterns selects encoded symbol or insert minimum and 
maximum values at the punctured positions. Two registers x and y hold de-punctured data 



  

with rate ‘1/2’, restored. Two multiplexers are utilized for synchronization, if out of 
synchronization set bit ‘sync’ to ‘1’, which shuffles the symbol x and y. The design of de-
puncturing unit is shown in Figure 6. 
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Figure 6: Depuncturing Unit 

3.3 Branch Metric Unit 

Conventionally multiplier or squarer is employed in Euclidian distance calculation that 
consumes maximum area in the architecture. In the presented viterbi assist, the approach is to 
exploit normalized constellations (1,1), (-1,1), (-1,-1), (1,-1) and (2,2), (1,2), (-1,2), (2,-1), (-
2,-2),(-1,-2), (1,-2), (2,-2) for four point and eight point constellation respectively. With this 
approach, branch metrics for all the architectures including V.34 are calculated simply by 
addition and subtraction. Thus saving a multiplier, which occupies a considerable amount of 
area in the chip. Branch metrics are calculated by  adder/subtractor and a shift register instead 
of a multiplier. The hardware implementation of the soft decision branch metrics depends on 
the type of number system used. Design of three-bit soft decision for 2’s complement output 
is depicted in Figure 7. The input data to branch metric unit is between 3 and – 4, while 
output will remain in the range of 6 to – 8. 
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Figure 8: BMU Linear distance 

 

The branch metrics can also be calculated by a linear distance measurement between the 
received soft decision and the expected symbols [6]. The linear distance has smaller dynamic 
range and its performance is equivalent to the squared Euclidian distance [1]. The input soft 
decision is 3 bit binary number lies between 0 and 7, and the output of the branch metrics is a 
4 bit binary number between 0 and 14, which is a linear distance. The hardware of the branch 
metric using linear distance is shown in Figure 8. 

3.4 Folded ACS Unit 

In the viterbi assist one adder/subtractor based folded ACS unit is used for Add, Compare and 
Select operation for all types of architectures. A folded ACS unit is implemented in the 
viterbi assist, which calculates minimum path iteratively by using one adder/ subtractor as 
shown in Figure 9. Thus a single instruction of ACS from Viterbi Assist will add two 
numbers, store the result in the minimum register (min-reg), add two other numbers and store 
the result in the feed back register (feed-back), calculate the minimum of two numbers, store 
the minimum number in the min-reg and store the index of minimum number in the index 
register (index-reg).  
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Figure 9: Folded ACS Unit 



  

  

3.4.1 Survivor Memory Management by Feed Forward Architecture  

In this architecture, the starting decode state is determined by employing the register 
exchange architecture. Normally L levels (Trace back depth) of register exchange units are 
required, with the state indexes as the register contents and the ACS decisions are used to 
select the states. After L cycles, the state indexes at the output of the register exchange 
structure will be merged to a common state index, the starting decode state. The decoding 
process starts from this state to produce the decoded bits.  

The hardware implementation of feed forward architecture involves the calculation of starting 
decode state, trace back to decode symbol, interface of the memory and LIFO circuitry for 
data reversal. The starting decode state is calculated by utilizing one stage of register 
exchange, since only the starting state is needed after every L cycles. The output of the 
register exchange is feed back to the input through multiplexers for L cycles and initialized to 
the state indexes after every L cycles. A dual ported RAM, available in FPGA, can be used 
for storing ACS decisions. Read and write addresses of RAM are generated with one counter 
by employing a delay of one clock cycle in the write address, so that the read pointer is 
always ahead of write pointer. The address generation circuitry generates addresses from 0 to 
2L, L to 0, 2L to L and  the pattern is repeated in a cyclic way. The counter employed is re-
loadable up/down counter, loaded with three different addresses for one cycle. The register 
can be programmed with different values of L, depending on the number of symbols to be 
decoded. This scheme reduces RAM from 3L to 2L, the complete design of the feed forward 
architecture is shown in Figure 10. 
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Figure 10: Feed Forward RTL Diagram 
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Figure 11: LIFO Architecture 

The LIFO can be employed by using RAM or registers. The design of LIFO, using registers 
is depicted in Figure 11. To prevent read and write pointers to access the same location, 
LIFO is designed with one additional location. The read pointer moves one address ahead of 
write pointer and is used in a circular way at the output of the trace back unit. 

4 Viterbi Assist Architecture 
The viterbi assist comprises of a micro coded algorithmic state machine, address generation 
unit, an adder/subtractor based folded ACS unit, shifter and logical unit, 
puncturing/depuncturing unit and general purpose registers. The state machine contains 
sequencer unit configuration registers and micro-code RAM. The transfer of data to and from 
the viterbi assist is carried out through 64-bit bus connected to the memory; the system level 
design is shown in Figure 12. Viterbi assist comprises of a general purpose register file, 
which is interfaced with the external  as well as internal data bus of viterbi assist. A variable 
width of data including 16 , 32, 48 and 64 bits can be exchanged between viterbi assist’s data 
registers and memory. A few data registers are internal to the viterbi assist to store temporary 
data. Immediate data can be moved in any data register by state machine. A logic unit (LU) 
performs AND, OR, XOR and NOT operations. 

4.1 Address Generation Unit 

Address generation unit comprises of ALU (Arithmetic logic unit), address registers, address 
generation logic and bus stealing logic. ALU has the functionality of increment, decrement, 
offset addressing, indirect addressing and modulo addressing. Address registers serve as 
address pointers of viterbi assist memory for Viterbi decoder. As depicted in the Figure 13, 
address generation unit calculates the address by adding offset with the fixed bits, which can 
be programmed by host processor or micro-coded state machine. A data path is also provided 
to the address generation unit for indirect addressing. 
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Figure 12: Viterbi Assist Architecture 
 

In the address generation unit initial state counter provides initial state to the address 
generation logic, and input-bit counter generate state index for v.34 protocol. The previous 
state is calculated by employing these counters and operating the encoder in reverse order, 
thus calculating the previous state dynamically instead of storing in a table, reducing the 
memory size and generalizing the decoder for any encoder polynomial. 
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Figure 13: Address Generation Unit 



  

4.2 Algorithmic State Machine 
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Figure 14: Algorithmic State Machine 

Algorithmic state machine comprises of a sequencer unit, micro-code RAM and 
configuration registers. The sequencer unit comprises of a program counter, stack along with 
stack pointer, counters for nested loops, conditional multiplexer for selecting branch on a 
particular flag, an address register containing immediate address of the micro-code RAM, 
which can be used as a starting address or loaded on some event. The state machine depicted 
in  Figure 14 has the functionality of implementing nested for loops, conditional and 
unconditional jump, and nested subroutines. All the control signals to the Viterbi Assist are 
generated by the state machine, which can be programmed for variety of Viterbi architectures 
and other applications as well.  

4.3 Interface with Host 

Host interface with the Viterbi Assist is provided through configuration registers, which are 
memory mapped to host for programming the encoder and decoder parameters. Different 
address pointers for Viterbi decoder are also configured through memory. The parameters of 
viterbi decoder like code rate, constraint length, encoder polynomial, puncturing patterns are 
programmed through following configuration registers.  

4.3.1 Code Rate k/n : 

The input stream of information bits is mapped onto k-bit information symbols. These 
information symbols are input to convolutional encoder, which codes information symbol 
generating n>k. The ratio k/n is called code rate. k is the number of input bits and n is the 
number of output bits. The larger the code rate, the smaller the redundancy introduced by the 
encoder. The upper eight bits of the configuration register specify the value of k, while lower 
bits correspond to n. 



  

4.3.2 Constraint Length (K):  

Constraint length represents the number of delay units. If the encoder has a memory of m 
bits, then K=m+1. 

4.3.3 Encoder polynomials 

Each bit corresponds to the connection with the corresponding delay state to the EXOR gate. 
In the configuration register a value of  ‘1’ indicates connection of memory element with 
EXOR gate, while ‘0’ indicates no connection. 

4.3.4 Puncturing patterns:  

In the puncturing pattern a value of ‘1’ corresponds to transmit and value of ‘0’ represents 
deletion of the corresponding bit.  

4.4 Address Pointers 

Different address pointers for Viterbi decoder are configured through  memory, which 
contain the starting address of the different memory blocks for data exchange. Accumulated 
error buffer pointer, minimum path buffer pointer, 2D and 4D subset error buffer pointers, 
symbol and decision queue buffer pointers are the address pointers for viterbi decoder, which 
can be programmed by the host processor or state machine. Sufficient address registers are 
provided to load the   address pointers corresponding to the operation being carried  out, to 
minimize the memory access. 

4.5 Development of Micro-code  

The viterbi assist is specially designed for v.34 algorithm, it can be programmed for any type 
of viterbi decoder by downloading the micro-code in the control RAM through host interface. 
The presented viterbi assist has VLIW architecture, for optimum mapping of the viterbi 
decoder algorithm, the algorithm needs to be modified. The viterbi algorithm is a load store 
intensive; the excessive use of load store can be avoided by storing the information of the 
path in N contiguous registers. Where N depends on the number of information bits per 
transition, constraint length K and register size. The path history in these N registers is stored 
in a zig-zag manner [7]. By storing the history of entire path in contiguous registers and then 
by zig-zag movements of the registers, removes extensive load and store requirements. 
Travelling back in the trellis is very simple as the entire path is stored in N contiguous 
registers. The oldest soft decision in the history is always b initial bits in the first surviving 
path registers. Where b denotes the number of information bits per transition. The load 
balancing at the algorithmic level is required such that all functional units are optimally used. 

4.5.1 Example : Viterbi for 4D Trellis Coded Modulation 

4D Trellis Coded Modulation is used in V.34 modem standard. The modem supports two 
convolutional encoder standards, a 16 state, rate 2/3, and 32 state, rate ¾. The implementation 
of the algorithm for convolutional encoder is described here 

S0:  A path in the trellis contains the 4-D subset information of all the transition in the path. 
Each path in the trellis is stored in two consecutive 32-bit registers in the trellis-src-buffer.  

S1:  At an instance ti the trellis_src_buffer represents the path information prior to extending 
the trellis. The trellis_sink_buffer represents the new path information after extending the 
trellis. 

S2:  New subset information is appended to the second register from right whereas the oldest 
subset information, which should already be used for computing the final decision, is thrown 
out by the same shift left operation. 



  

 

S3: For each state d, algorithm finds the path with the minimum pathmetric. Let this          
path originates from state s. 

S4: After finding the path with the minimum distance the algorithm loads the registers 
corresponding to the surviving path from the trellis_src_buffer. 

S5: The second register is appended, from the right, with the subset information and        
stored at its new location in trellis_snk_buffer. 

S6:  The first path register associated with the same state is then copied unaltered from 
trellis_src_buffer to second location in trellis_snk_buffer.  

This procedure of extending trellis with zigzag movement of shift-registers from source state 
s to destination state d is shown in Table 1. Two buffers for swapping the accumulated 
pathmetric and two for shuffling the path information are used. One of the buffers is used as 
source and the second one is sink buffer. 

pathmetricSnkBf 

 

 

pathmetricSrcBf 

 

 

Table 1: Extending trellis by zigzag shuffling of path registers 

 

 

5 Conclusions        
The architecture of the viterbi assist presented utilizes minimum area by utilizing folded ACS 
unit implementation, exploiting normalized constellations, taking advantage of the special 
zig-zag trace back algorithm and minimization of the micro-coded RAM by providing 
powerful instruction sets. The high speed decoding can be accommodated in the architecture 
by employing an extra adder and subtractor. This viterbi assist can be interfaced either with a 
DSP processor for off-loading it or can be used as stand alone viterbi decoder. The presented 
hardware implementation of basic building blocks of viterbi decoder enables quick 
implementation of number of architectures that can be mapped easily on FPGA and ASIC. 
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