

Design and FPGA Implementation of Low Power Punctured Soft
Decision Viterbi Decoder

Habibullah Jamal and Zaheer Ahmed
University of Engineering and Technology Taxila

Pakistan – 47050

drhjamal@uettaxila.edu.pk

Abstract

The paper presents the hardware implementation of basic building blocks of viterbi decoder. Different
architectures can be created by using these basic building blocks. A novel design of programmable Viterbi
Assist is presented by using these basic building blocks that optimizes both the area and power using a folded
ACS unit and a special trace back mechanism based on zig-zag shift registers. The design can be used with any
DSP processor for MIMD architecture. The host processor provides different address pointers and parameters
through shared memory and configuration registers. The Viterbi Assist reads the symbols from the memory,
performs Viterbi algorithm and writes decision back in the memory area specified by the host. The architecture
can also be used as a standalone Viterbi decoder for a variety of other applications as well. The FPGA
implementation of presented architecture is attractive because of the flexibility and efficient parallel
architectures available in FPGAs.

Key Words: Add Compare Select (ACS), Multiple Instruction Multiple Data (MIMD),
Branch Metric Unit (BMU), Register Exchange Architecture (REA), Folded ACS.

1 Introduction
Viterbi decoders are widely used as forward error correction devices in many digital
communication and multimedia products, including mobile phones, video and audio
broadcasting receivers, voice over packet gateways and modems. For low bit rate
applications, Viterbi decoding is implemented in software on digital signal processors
(DSPs). The bit rate required by modern high quality speech transmission represents the
current limitation for Viterbi decoder software implementations due to the high
computational requirements imposed by the Viterbi algorithm. A Viterbi Assist is presented
which can be used as a standalone Viterbi decoder or can be used with any DSP processor to
off-load Viterbi decoding.

The Viterbi assist comprises of a micro-coded algorithmic state machine, an adder/subtractor
based folded ACS unit, a shifter, logical unit, a few general-purpose registers, address
generation logic and host interface. The state machine comprises of sequencer unit, ROM and
configuration registers. The host processor programs the Viterbi decoder through

configuration registers. The constraint length, code rate, encoder polynomials, puncturing
patterns are some of the programming parameters provided to the assist.

This paper is arranged in five sections. Convolutional encoder and viterbi decoder algorithm
are described in section2. The section 3 describes the low power architectures of basic
building blocks of viterbi decoder for their hardware implementations. The Viterbi assist
architecture is explained in section 4. Section 5 concludes the paper.

2 CONVOLUTIONAL ENCODER AND VITERBI DECODER
Efficient and reliable data transfer is vital for any communication channel that comprises of
encoder, modulator, demodulator and decoder sections. For high bandwidth channel,
detection of errors and retrieval of original data requires advance error control codes to be
implemented in hardware. The viterbi decoder measures the similarity between the received
signal and all trellis paths entering each state at time ti. Every state selects the optimum path
termed as surviving path. The state having minimum path metric is traced back to retrieve
information bit. For quick VLSI realization, viterbi encoder and decoder units are divided
into following basic building blocks.

2.1 Differential Encoder

The differential encoder/decoder, are employed to resolve inverted data. The differential
encoder transforms the input data stream into transitions, the output transitions from 0 to 1 or
1 to 0 depending on previous output. The differential decoder is the inverse of differential
encoder; the circuit for 180-degree differential encoder/decoder is shown in Figure 1.

Z-1

Data in +
Differential

output

Z-1

coded
input +

Decoded
output

Figure 1: Differential encoder/decoder

2.2 Convolutional Encoder

The convolutional encoder is a linear time-invariant finite state machine, which accepts a
semi-infinite stream of information symbols, operates upon them in a sliding block manner
and transmits a continuous stream of encoded symbols [1]. Each information symbol remains
in the sliding block for a finite amount of time, thus affecting the transmitted symbols during
that time span. During encoding, k input bits are mapped to n output bits to give a rate k/n
coded bit stream. The ratio k/n is called the code rate. With k=1, only code rates 1/n are
possible. If the encoder has a memory of m bits, the code symbols are calculated from
K=m+1. K is called the constraint length and the number of states is 2K-1. The generator
polynomial gi defines the tap positions of the delay line to be XORed. A ‘1’ represents a
connection and ‘0’ represents no connection. The generator polynomials gi are of degree m
and are usually not written as polynomials, but as numbers in octal notations. The input data
bit is encoded by convolution into two or three output bits for rates 1/2 and 1/3 respectively
according to given polynomials. Rate 1/2 convolutional encoder with constraint length K=3 is
shown in Figure 2.

Z-1Z-1

1

Data
in

+

+

1 0

1 1

1

G0

G1

x[n] x[n-1] x[n-2]

Figure 2: Convolutional Encoder

For every x(n) input bit, the encoder generates two output bits G0(n) and G1(n).

g0 = 7 and g1= 5

G0(n) = x(n) + x(n-1) + x(n-2)

G1(n) = x(n) + x(n-2)

The octal numbers 7 and 5 represent the code generator polynomials, which when read in
binary (1112 and 1012) correspond to the shift register connections to the upper and lower
modulo-two adders, respectively.

2.3 Puncture and De-puncturing Logic Unit

A rate 1/2 convolutional encoder generates two output bits for every input bit; a big portion
of channel bandwidth is used to transmit parity bits. A high code rate is achieved by
puncturing mode in which input data is encoded with rate 1/2 encoder and certain bits of rate
1/2 coded data are deleted and not transmitted.

The de-puncturing unit inserts alternatively maximum and minimum values at the puncturing
position prior to decoding with the rate 1/2 decoder. The null symbols add very little bias to
the accumulated errors. In some coding schemes, where null values do not exist,
depuncturing is achieved by inserting smallest positive and negative values alternatively [2].
The trace back depth increases as the code rate increases. A trace back memory depth of 35 to
40 is adequate for rate 1/2 decoding. However, the rate 3/4 and 7/8 require memory depth of
70 and 90 respectively [1] [3].

2.4 Branch Metric Unit

The BMU calculates distance of received bits from encoder output bits using hamming
distance for hard decision and Euclidian distance for soft decision. The method employed to
calculate branch metrics depends on the representation of received data. If the data is
represented by a single bit, it is referred to as hard decision. When the data has a precision of
multiple bits, it is referred to as soft decision. The soft decision provides an improvement of
2.2 dB in signal to noise ratio (Eb/N0) at the same bit-error level.

The hamming distance is calculated by summing the individual bit difference between
received and expected data. Euclidean distance is employed for calculating local distance for
soft-decision. The Euclidean distance for rate 1/n is given by:

local_distance(j) = 2
1

0
)]([jGSD c

n

c
c −∑

−

=

Where SDc are the soft-decision inputs, Gc (j) are the expected inputs for each path state, j is
an indicator of the path and n is the inverse of the coding rate.

local_distance(j) =)]()(2[2
1

0

2 jGjGSDSD ccc

n

c
c +−∑

−

=

For minimization of accumulated errors similar terms of equation can be eliminated, thus
reducing the equation in to sum of products of the received and expected values.

local_distance(j) =)(
1

0
jGSD cc

n

c
∑
−

=

−

If the negative sign is removed, maximum values are searched for the metric update. The
implementation of BMU in trellis-based decoding architectures can be simplified for a certain
class of convolutional codes. For a rate 1/2 code, only two branch metrics have to be
calculated instead of four [4].

2.5 ACS (Add Compare Select) Unit

In the ACS unit, path metrics are added to the corresponding branch metrics, resulting new
path metrics are compared and the best one is selected as the surviving path metric. The
comparator output is the decision of the comparison, which also controls the multiplexer to
choose the surviving path metrics. The fully parallel radix-2 ACS architecture uses one ACS
unit for each state to update the states in parallel, therefore in each iteration, one level of
trellis is updated. Two path metrics and the branch metrics are compared to select the
minimum path metric. ACS can be implemented in radix-2, radix-4 and a bit wise pipelining
architecture by employing carry save adder. The radix-2 architecture is shown in Figure 3.

C
O

M
PA

R
A

TO
R

R
EG

ISTER

Path Metrics

PM0(t-1)

Branch Metrics

Decision

Path Metrics

PM1(t-1)

Branch Metrics

Path
Metrics
PM(t)

Figure 3: Radix-2 ACS unit

The throughput of the Viterbi decoder is increased by merging two levels of radix-2 trellises
into one level of radix-4 trellis, so two levels of ACS operation can effectively be performed
in one radix-4 ACS iteration. If the cycle time of the radix-4 operation is less than twice of
the cycle time of the radix-2 operation, the throughput of the ACS unit will improve. Each
element in radix-4 decoder calculates four path metrics, selects the smallest one, and stores
the result of the selection.

2.6 Survivor Memory management Unit

The decisions of ACS unit are stored in the path memory, which needs to be long enough to
ensure that all paths are merged. The length of memory is defined as trace back depth L. A
trace back method is a backward processing algorithm for deriving the survivor path from a
starting state and the path decisions. The survivor memory stores the minimum path metrics
and the decisions as to which branch should survive. The state sequence is computed based
on the path decisions. A block of M symbols are decoded in reversed order during the data
trace back phase, thus a LIFO memory is required for reversing the order before the
information output. Fast hardware implementations require more memory and exhibit a large
latency. Instead of tracing back L steps and decoding one symbol, K*L symbols are decoded
where L is the length of the trace back and K is between 1 and 1/L. The memory is organized
as a block with different operations executing in different blocks as shown in the Figure 4.

TBDC TB

TBDC TB

TB TBDC

TB TB DC

TBDC TB

Decode (DC) Traceback(TB) Write(WR)

kL kLL

TIM
E

Figure 4: One pointer Trace Back

Following are the steps to retrieve the information:

Trace back read (TB): Read path decisions in current states, combines this information with
the current state to find the previous state.

Decode Read (DC): Similar to TB, the pointer value in this operation is the decoded
information sent to bit order reversing circuit.

Write New Data (WR): Writes path select bit of every state into memory.

The access bandwidth and computational requirements are greatly reduced as compared to
register exchange architecture. The mechanism is more power efficient and consumes lesser
area as compared to REA. The memory access is a limiting factor for high-speed
implementations.

3 LOW POWER ARCHITECTURES
One of the basic challenges being faced by the ASIC designers is the adoption of
methodology incorporating the concept of block-based design for design reuse [5]. The
presented design methodology breaks the complex architectures in basic building blocks
(bbbs) and different architectures can be generated by manipulating these basic building
blocks. This section presents our area and time efficient architectures for implementing
viterbi algorithm.

3.1 Puncturing Unit

The puncturing technique holds the key to achieve the high data rates. Under this technique,
codes are punctured by deleting some symbols generated by the encoder on the transmit side.
Thus if the sequence G1 G2 G1 G2 has the second G2 deleted it becomes G1 G2 G1 (p),
where p denotes the punctured symbol and instead of transmitting four symbols to represent
two bits of data (R=2/4 or1/2) we now transmit three symbols to represent the same two bits
for 2/3 rate. Similarly we can generate a ¾ and higher rates. The straightforward method to
implement k/n encoder has k inputs and n outputs, the comparator required for each state is
2k ways, which is difficult to implement. In an alternate technique, the input data is encoded
with rate 1/2 encoder and certain bits of the rate 1/2 coded data are deleted and not
transmitted. With single input, there will be two branches entering a state and therefore
binary comparators will be used. The trellis for this scheme is systematic and helps to
simplify the ACS design and reduce the trace back memory.

shift reg
puncturing

pattern

ck1

ck1

Load
Puncturing

pattern
en_ctrl

shift reg
T
f/f

E
nc

od
er Punctured

data

ck2 en_ck1

punc

enck1

Figure 5: Puncturing Unit

The output of the convolutional encoder is passed through puncturing unit for deleting the
bits according to puncturing patterns. The unit comprises of a multiplexer that converts
parallel output of the encoder in to serial data, passed through a shift right register, whose
shift operation is controlled by puncturing patterns. The puncturing patterns are loaded in the
cyclic shift right register, it will transmit encoder bit if the puncturing bit is ‘1’, thus
puncturing unit is independent of the puncturing rate. The puncturing will be performed
according to the puncturing patterns whatever may be the puncturing rate. The puncturing is
controlled by ‘punc’ bit, set the bit to ‘0’, if puncturing is not required, the en_ctrl will always
enable the shift register and encoder data will be directly transmitted without puncturing. The
clock ck1 of puncturing unit is two times faster than ck2 as depicted in Figure 5.

3.2 De-puncturing Unit

The hardware implementation of unit comprises of a circular shift register, similar to
puncturing unit, which is loaded with the puncturing patterns. A toggle flip/flop generates
maximum and minimum values, clocked by the puncturing patterns. A multiplexer, also
controlled by the puncturing patterns selects encoded symbol or insert minimum and
maximum values at the punctured positions. Two registers x and y hold de-punctured data

with rate ‘1/2’, restored. Two multiplexers are utilized for synchronization, if out of
synchronization set bit ‘sync’ to ‘1’, which shuffles the symbol x and y. The design of de-
puncturing unit is shown in Figure 6.

shift reg
puncturing

pattern

x

y

synch

T
f/f

T F/F

ck1

ck2

ck1

ck1

ck1

en

en

punc
data in x symbol

y symbol

LoadPuncturing
pattern

Figure 6: Depuncturing Unit

3.3 Branch Metric Unit

Conventionally multiplier or squarer is employed in Euclidian distance calculation that
consumes maximum area in the architecture. In the presented viterbi assist, the approach is to
exploit normalized constellations (1,1), (-1,1), (-1,-1), (1,-1) and (2,2), (1,2), (-1,2), (2,-1), (-
2,-2),(-1,-2), (1,-2), (2,-2) for four point and eight point constellation respectively. With this
approach, branch metrics for all the architectures including V.34 are calculated simply by
addition and subtraction. Thus saving a multiplier, which occupies a considerable amount of
area in the chip. Branch metrics are calculated by adder/subtractor and a shift register instead
of a multiplier. The hardware implementation of the soft decision branch metrics depends on
the type of number system used. Design of three-bit soft decision for 2’s complement output
is depicted in Figure 7. The input data to branch metric unit is between 3 and – 4, while
output will remain in the range of 6 to – 8.

+

soft
dec[0]

-

2's comp 2's comp

sign
extention

sign
extention

sign
extention

sign
extention

soft
dec[1]

soft
dec[1]

soft
dec[0]

bm0 bm1

bm3 bm2

Figure 7: Branch metric unit 2’s complement

symb x
+

+

+

+

symb y
bm3

bm2

bm1

bm0

Figure 8: BMU Linear distance

The branch metrics can also be calculated by a linear distance measurement between the
received soft decision and the expected symbols [6]. The linear distance has smaller dynamic
range and its performance is equivalent to the squared Euclidian distance [1]. The input soft
decision is 3 bit binary number lies between 0 and 7, and the output of the branch metrics is a
4 bit binary number between 0 and 14, which is a linear distance. The hardware of the branch
metric using linear distance is shown in Figure 8.

3.4 Folded ACS Unit

In the viterbi assist one adder/subtractor based folded ACS unit is used for Add, Compare and
Select operation for all types of architectures. A folded ACS unit is implemented in the
viterbi assist, which calculates minimum path iteratively by using one adder/ subtractor as
shown in Figure 9. Thus a single instruction of ACS from Viterbi Assist will add two
numbers, store the result in the minimum register (min-reg), add two other numbers and store
the result in the feed back register (feed-back), calculate the minimum of two numbers, store
the minimum number in the min-reg and store the index of minimum number in the index
register (index-reg).

+/-
.

cin

R count R

en

min-reg

feed-back

data-reg

din

din

index-reg

Figure 9: Folded ACS Unit

3.4.1 Survivor Memory Management by Feed Forward Architecture

In this architecture, the starting decode state is determined by employing the register
exchange architecture. Normally L levels (Trace back depth) of register exchange units are
required, with the state indexes as the register contents and the ACS decisions are used to
select the states. After L cycles, the state indexes at the output of the register exchange
structure will be merged to a common state index, the starting decode state. The decoding
process starts from this state to produce the decoded bits.

The hardware implementation of feed forward architecture involves the calculation of starting
decode state, trace back to decode symbol, interface of the memory and LIFO circuitry for
data reversal. The starting decode state is calculated by utilizing one stage of register
exchange, since only the starting state is needed after every L cycles. The output of the
register exchange is feed back to the input through multiplexers for L cycles and initialized to
the state indexes after every L cycles. A dual ported RAM, available in FPGA, can be used
for storing ACS decisions. Read and write addresses of RAM are generated with one counter
by employing a delay of one clock cycle in the write address, so that the read pointer is
always ahead of write pointer. The address generation circuitry generates addresses from 0 to
2L, L to 0, 2L to L and the pattern is repeated in a cyclic way. The counter employed is re-
loadable up/down counter, loaded with three different addresses for one cycle. The register
can be programmed with different values of L, depending on the number of symbols to be
decoded. This scheme reduces RAM from 3L to 2L, the complete design of the feed forward
architecture is shown in Figure 10.

St0
Reg

St1
Reg

St2
Reg

St3
Reg

Mst
Reg

Write
Address

Merged state

00

10

01

11

St0

St1

St2

St3

St0

St1

St2

St3

ACS[0]

ACS[1]

ACS[2]

ACS[3]

LIFO

Memory

Data
from ACS

Delay #1

Decoder o/p

P
re

vi
ou

s
St

at
e

Read
Address

2-bit Counter

L-1

2L-1

0

R

U
p/

D
 P

ar
 L

oa
d

C
ou

nt
er

Msb

Lsb

Load

Load control

R

Up/D

Merge state signal

Merge state
Counter

R

Ck1

St sel

Ck1

Data

Data

Load

Load

Figure 10: Feed Forward RTL Diagram

 Counter

R

Delay

R
R0

R1

R2

R8

D
ec

od
er

dec
data

Trace
back

en

en

en

en

Decoder
out

Figure 11: LIFO Architecture

The LIFO can be employed by using RAM or registers. The design of LIFO, using registers
is depicted in Figure 11. To prevent read and write pointers to access the same location,
LIFO is designed with one additional location. The read pointer moves one address ahead of
write pointer and is used in a circular way at the output of the trace back unit.

4 Viterbi Assist Architecture
The viterbi assist comprises of a micro coded algorithmic state machine, address generation
unit, an adder/subtractor based folded ACS unit, shifter and logical unit,
puncturing/depuncturing unit and general purpose registers. The state machine contains
sequencer unit configuration registers and micro-code RAM. The transfer of data to and from
the viterbi assist is carried out through 64-bit bus connected to the memory; the system level
design is shown in Figure 12. Viterbi assist comprises of a general purpose register file,
which is interfaced with the external as well as internal data bus of viterbi assist. A variable
width of data including 16 , 32, 48 and 64 bits can be exchanged between viterbi assist’s data
registers and memory. A few data registers are internal to the viterbi assist to store temporary
data. Immediate data can be moved in any data register by state machine. A logic unit (LU)
performs AND, OR, XOR and NOT operations.

4.1 Address Generation Unit

Address generation unit comprises of ALU (Arithmetic logic unit), address registers, address
generation logic and bus stealing logic. ALU has the functionality of increment, decrement,
offset addressing, indirect addressing and modulo addressing. Address registers serve as
address pointers of viterbi assist memory for Viterbi decoder. As depicted in the Figure 13,
address generation unit calculates the address by adding offset with the fixed bits, which can
be programmed by host processor or micro-coded state machine. A data path is also provided
to the address generation unit for indirect addressing.

address bus

data bus

Algorithmic State Machine

 Configuration
Registers

Control Signals

From Host

Fix bits of address Bus stealing

logic

Address registers

Address generation
logic

ALU

increment
decrement

offset addressing
indirect addressing

modulo
Puncture/

De-puncture
unit

m in-distance

Data Registers

S
h
i
f
t
e
r

16-bit adder/
subtractor

1-adder based
folded add

compare select
and store unit

carryoverflowZN

.

LU

Figure 12: Viterbi Assist Architecture

In the address generation unit initial state counter provides initial state to the address
generation logic, and input-bit counter generate state index for v.34 protocol. The previous
state is calculated by employing these counters and operating the encoder in reverse order,
thus calculating the previous state dynamically instead of storing in a table, reducing the
memory size and generalizing the decoder for any encoder polynomial.

AREG

AREG

base-address

offset-address

min-offset

enable

offset

Address
geneartion logic

 initial state counter

R

input bit counter
0,1,2....7

loadAMux0

AMux1

AREG

Data bus
Indirect address

Immidiate data

Immidiate data from
state machine

base-address
from data bus R

ALU

Figure 13: Address Generation Unit

4.2 Algorithmic State Machine

S
ec

on
d

Ad
dr

es
s

R
eg

is
te

r

uP
C

 R
eg

is
te

r

Full adder
incrementer

Next
Address

Logic
Status Flags

Address
Register Counter

zero Ld

CNT

Up

en

En

1

2

3

0

su
br

ou
tin

e
 re

tu
rn

 a
dd

re
ss

m
em

or
y

To
p

of
 s

ta
k

po
in

te
r

en

en

To Data Path

Microprogram
ROM

Next
Address
Select

To
Architecture

Branch
Condition

Select

Branch
address

oe

Figure 14: Algorithmic State Machine

Algorithmic state machine comprises of a sequencer unit, micro-code RAM and
configuration registers. The sequencer unit comprises of a program counter, stack along with
stack pointer, counters for nested loops, conditional multiplexer for selecting branch on a
particular flag, an address register containing immediate address of the micro-code RAM,
which can be used as a starting address or loaded on some event. The state machine depicted
in Figure 14 has the functionality of implementing nested for loops, conditional and
unconditional jump, and nested subroutines. All the control signals to the Viterbi Assist are
generated by the state machine, which can be programmed for variety of Viterbi architectures
and other applications as well.

4.3 Interface with Host

Host interface with the Viterbi Assist is provided through configuration registers, which are
memory mapped to host for programming the encoder and decoder parameters. Different
address pointers for Viterbi decoder are also configured through memory. The parameters of
viterbi decoder like code rate, constraint length, encoder polynomial, puncturing patterns are
programmed through following configuration registers.

4.3.1 Code Rate k/n :

The input stream of information bits is mapped onto k-bit information symbols. These
information symbols are input to convolutional encoder, which codes information symbol
generating n>k. The ratio k/n is called code rate. k is the number of input bits and n is the
number of output bits. The larger the code rate, the smaller the redundancy introduced by the
encoder. The upper eight bits of the configuration register specify the value of k, while lower
bits correspond to n.

4.3.2 Constraint Length (K):

Constraint length represents the number of delay units. If the encoder has a memory of m
bits, then K=m+1.

4.3.3 Encoder polynomials

Each bit corresponds to the connection with the corresponding delay state to the EXOR gate.
In the configuration register a value of ‘1’ indicates connection of memory element with
EXOR gate, while ‘0’ indicates no connection.

4.3.4 Puncturing patterns:

In the puncturing pattern a value of ‘1’ corresponds to transmit and value of ‘0’ represents
deletion of the corresponding bit.

4.4 Address Pointers

Different address pointers for Viterbi decoder are configured through memory, which
contain the starting address of the different memory blocks for data exchange. Accumulated
error buffer pointer, minimum path buffer pointer, 2D and 4D subset error buffer pointers,
symbol and decision queue buffer pointers are the address pointers for viterbi decoder, which
can be programmed by the host processor or state machine. Sufficient address registers are
provided to load the address pointers corresponding to the operation being carried out, to
minimize the memory access.

4.5 Development of Micro-code

The viterbi assist is specially designed for v.34 algorithm, it can be programmed for any type
of viterbi decoder by downloading the micro-code in the control RAM through host interface.
The presented viterbi assist has VLIW architecture, for optimum mapping of the viterbi
decoder algorithm, the algorithm needs to be modified. The viterbi algorithm is a load store
intensive; the excessive use of load store can be avoided by storing the information of the
path in N contiguous registers. Where N depends on the number of information bits per
transition, constraint length K and register size. The path history in these N registers is stored
in a zig-zag manner [7]. By storing the history of entire path in contiguous registers and then
by zig-zag movements of the registers, removes extensive load and store requirements.
Travelling back in the trellis is very simple as the entire path is stored in N contiguous
registers. The oldest soft decision in the history is always b initial bits in the first surviving
path registers. Where b denotes the number of information bits per transition. The load
balancing at the algorithmic level is required such that all functional units are optimally used.

4.5.1 Example : Viterbi for 4D Trellis Coded Modulation

4D Trellis Coded Modulation is used in V.34 modem standard. The modem supports two
convolutional encoder standards, a 16 state, rate 2/3, and 32 state, rate ¾. The implementation
of the algorithm for convolutional encoder is described here

S0: A path in the trellis contains the 4-D subset information of all the transition in the path.
Each path in the trellis is stored in two consecutive 32-bit registers in the trellis-src-buffer.

S1: At an instance ti the trellis_src_buffer represents the path information prior to extending
the trellis. The trellis_sink_buffer represents the new path information after extending the
trellis.

S2: New subset information is appended to the second register from right whereas the oldest
subset information, which should already be used for computing the final decision, is thrown
out by the same shift left operation.

S3: For each state d, algorithm finds the path with the minimum pathmetric. Let this
path originates from state s.

S4: After finding the path with the minimum distance the algorithm loads the registers
corresponding to the surviving path from the trellis_src_buffer.

S5: The second register is appended, from the right, with the subset information and
stored at its new location in trellis_snk_buffer.

S6: The first path register associated with the same state is then copied unaltered from
trellis_src_buffer to second location in trellis_snk_buffer.

This procedure of extending trellis with zigzag movement of shift-registers from source state
s to destination state d is shown in Table 1. Two buffers for swapping the accumulated
pathmetric and two for shuffling the path information are used. One of the buffers is used as
source and the second one is sink buffer.

pathmetricSnkBf

pathmetricSrcBf

Table 1: Extending trellis by zigzag shuffling of path registers

5 Conclusions
The architecture of the viterbi assist presented utilizes minimum area by utilizing folded ACS
unit implementation, exploiting normalized constellations, taking advantage of the special
zig-zag trace back algorithm and minimization of the micro-coded RAM by providing
powerful instruction sets. The high speed decoding can be accommodated in the architecture
by employing an extra adder and subtractor. This viterbi assist can be interfaced either with a
DSP processor for off-loading it or can be used as stand alone viterbi decoder. The presented
hardware implementation of basic building blocks of viterbi decoder enables quick
implementation of number of architectures that can be mapped easily on FPGA and ASIC.

6 References
[1] Mong-Kai Ku, “Design and Implementation of 100 Mb/s Variable Rate Decoder for

Satellite TV Applications” UCLA, 1997
[2] Qualcomm Application Notes AN1401-2a, “Using Punctured Code Techniques with the

Q1401 Viterbi Decoder.”

4D Subset 3 4D Subset 5 ………… 4D Subset new

4D Subset 0 4D Subset 2 ………… 4D Subset 14

4D Subset 0 4D Subset 2 ………… 4D Subset 14

4D Subset 1 4D Subset 3 ………… 4D Subset 15

New in

Old out

[3] Jason Ming-jen Chang, “Design and Implementation of a forward Error Correction
Encoder for Digital Cable Television Applications.” UCLA, 1997.

[4] Matthias Kamuf, John B. Anderson, and Viktor Öwall, “ A Simplified Computational
Kernel for Trellis-Based Decoding” IEEE COMMUNICATIONS LETTERS, VOL. 8,
NO. 3, MARCH 2004

[5] Zaheer Ahmed, Shoab Khan, and I. Elahi “DEVELOPMENT OF COMPLEX
ARCHITECTURES USING ERTL LANGUAGE ” IEEE INMIC 2000

[6] Erik Paake, Jakob Dahl Andersen, “High Speed Viterbi Decoder Architecture”, Dept. of
Telecommunication, Technical University of Denmark.
http://www.netaddress.com/tpl/Message/216IIQLVB/Read.

[7] S.A. Khan, M.Saqib, and S.Ahmed, “ Parallel Viterbi algorithm for a VLIW DSP”,
ICASSP2000

	Button4:
	Button2:
	Button1:

