
2003 IC/CAD Contest

Problem 1: Chip Floorplanning with Hard/Soft Macros

Source: Springsoft Inc.

Jan. 15, 2003

 I. Introduction
After circuit partitioning, the area of each macro can be estimated and its shape can be
determined via specifying the aspect ratio. The aspect ratio of a macro is the ratio of the width
of the macro to its height. A macro is called hard if its dimension is known (aspect ratio
cannot be changed) and a soft macro has an unfixed aspect ratio that can be changed within a
specified range. Given several rectangular macros (soft or hard) with their core area and
aspect ratio constraints, a chip floorplanner arranges all these macros within a given region.

Floorplanning plays an important role in an overall physical design cycle and mainly
determines the quality of final layout such as area and performance. A floorplanner should
consider many factors, such as aspect ratio, routability, timing, packaging and pre-placed
macros. To simplify the problem, we assume the macros are rectangular. The aspect ratio
varies between its upper bound and lower bound. The main objective is to minimize the
total wire length of all nets. Since the final wiring paths are not known during floorplanning,
we have to model the topology of interconnections. There are several methods to estimate the
wire length, such as semi-perimeter method, complete graph, minimum chain, source to sink
connection, steiner tree approximation and minimum spanning tree[1]. Here, we use the
minimum spanning tree method to estimate wire length. For an n-terminal net, a minimum
spanning tree can be constructed by determining the distances between all possible pairs of
terminals, and connecting the smallest (n-1) edges that do not form cycles. Fig. 1[1] gives an
illustration of the minimum spanning tree method.

Fig. 1: Minimum Spanning Tree (length = 15) [1]

A slicing floorplan is obtained by recursively partitioning a rectangle into two parts in

horizontal or vertical, and its slicing tree is a binary tree in which each leaf represents a
partition and each internal node represents a cut. The figure of Fig. 2(a) is a slicing floorplan
[2], and Fig. 2(b) is its corresponding slicing tree. The figure of Fig. 2(c) is a non-slicing
floorplan. A floorplan is hierarchical of order k if it can be obtained by recursively
partitioning a rectangle into at most k parts. We can represent a hierarchical floorplan by a

floorplan tree. Each leaf corresponds to a basic rectangle and each internal node corresponds
to a composite rectangle in the floorplan. The figure of Fig. 3[2] shows a hierarchical
floorplan of order 5 and its floorplan tree. The set of all slicing floorplans is an important
class of hierarchical floorplans. There are four main graph models for the representation of
floorplans, including polar graphs, adjacency graphs, channel intersection graphs and channel
position graphs. Related articles can be found in [2][10].

A

B

C

D E

F G

H I

V

H H

V V V V

H
F G H I D E A

B C

A

B

D

C

(a) (b)

(c)

Fig. 2: A floorplan with slicing tree and a non-slicing floorplan [2]

Floorplanning algorithms[2][10] can be classified into seven classes: (1) constraint

based[3], (2) integer programming based[2], (3) rectangular dualization based[5], (4)
hierarchical tree based[6], and (5) iterative approaches[7]. The constraint based floorplanning
algorithm constructs a floorplan of optimal area under a given set of horizontal and vertical
topological (ordering) constraints. In integer programming based floorplanning, this problem
is modeled as a set of linear equations using 0/1 integer variables. Two types of constraints
are considered, i.e., the overlap constraints and routability constraints. The rectangular
dualization based algorithms model the floorplan by converting the partition graph into its
rectangular dual. The hierarchical tree based floorplanning represents a floorplan as a tree.
There are two ways to generate physical hierarchy: top-down partitioning and bottom-up
clustering. The simulated evloution (genetic) algorithms and simulated annealing algorithm
are iterative floorplanning approaches. These iterative approaches start from an initial
floorplan, and then this floorplan performs a seris of perturbations until no more improvement
can be achieved. Recently there are several timing-driven floorplanning approaches [8][9]
proposed to solve the performance problems.

 Cluster growth [11] is a greedy approach. In the beginning, a seed macro is selected and
placed into the lower left corner of the floorplan region. Then the remaining macros are
selected one at a time and placed to the partial floorplan, while trying to grow evenly on
upper, diagonal and right sides simultaneously. (see Fig.4(a)) The aspect ratio constraints are
also maintained simultaneously. To determine the order of macro selection, the macros are
initially organized into a linear order. Linear ordering algorithms order the given macro netlist
into a linear list so as to minimize the number of nets that will be cut by any vertical line
drawn between any consecutive macros in the linear order. A general linear ordering
algorithm is shown in Fig. 4(c). Initially a seed macro is selected, then the algorithm enters a

1

11

12

7

6

3

2

5 4

8

9 10

A
D

E
C

B

3 6 1
12

7

8

11

5 4 9 10 2

6

1 11 8 7 12

5 4 9 103

Fig. 3: Hierarchical Floorplan [2]

repeated loop. During each loop, the gain function of each unordered macro will be computed.
The macro with the maximum gain will be selected, removed from the unordered list, and
added to the sequence of ordered macros. If there exists a tie among several macros, the
macro terminating the largest number of started nets is selected. If another tie occurs, the
macro connecting to the largest number of continuing nets is selected. If there is one more tie,
the most lightly connected macro is selected. Fig. 4(b) gives an example for net classification.
In Fig. 4(c) the notation !S is used to represent the elements of sequence S. Square brackets
are used to represent sequences and curly braces are employed with sets. The cluster growth
algorithm is shown in Fig. 4(d).

Floorplan growth

Continuing Net

Terminated Nets Started Nets

(a) Cluster growth floorplanning (b) Net classification during linear ordering

Algorithm Linear_Ordering
S: Set of all macros;
Order: Sequence of ordered macros; // initally empty
begin
 Seed:=Select Seed macro;
 Order:=[Seed];
 S:=S-{Seed};
 repeat
 foreach macro m in S do
 compute the gain for m;
 gain_m:=number of nets terminated by m - number of new nets started by m;
 end foreach;
 Select the macro m* with maximum gain;
 if there is a tie then
 Select the macro that terminates the largest number of nets;
 else if there is a tie then
 Select the macro that has the largest number of continuing nets;
 else if there is a tie then
 Select the macro with the least number of connections;
 else break remaining ties as desired;
 end if
 Order:=[!Order,m*]; // append m* to the ordered sequence
 S:=S-{m*};
 until S = ;
end

(c) Linear ordering algorithm

Algorithm Cluster_Growth
S: Set of all macros;
begin
 Order:=Linear_Ordering(S);
 repeat
 nextmacro:=b where Order=[b, !rest];
 Order:=rest;
 Select a location for b that will result in minimum increase in cost function;
 until Order = ;
end

(d) Cluster growth algorithm

φ

φ

Fig. 4: Cluster growth approach [11]

 II. Input/Output Specification
Input Format
Each testcase has two input files, problem_no.mac and problem_no.net. The first file defines
chip and macro information. The former includes chip width and chip height, and the later
includes name, area and aspect ratio constraints of a macro. The second file describes all net
connectivities. For problem 1, there are two input files, problem1.mac and problem1.net. The
first file format is as follows:

.chip_bbox (width, height)
// the lower-left corner of this bounding box is (0, 0)
.macro macro_name macro_area low_aspect high_aspect
.macro macro_name macro_area low_aspect high_aspect
... More macros
// low_aspect: lower bound of aspect ratio
// high_aspect: upper bound of aspect ratio
// for hard macro, low_aspect = high_aspect

The format of the second file (netlist) is :

.net net_name macro_name1 macro_name2 …

.net net_name macro_name1 macro_name2 …
 … More nets

// one line defines a net
 // for example, if net N1 connect macro A, B, and C, the definition is
 // .net N1 A B C

Output Format
The output file problem1.rpt records problem output. This report consists of three parts: (1)
bounding box for each macro (specified by lower-left corner and upper-right corner), (2) total
wire length estimated by minimum spanning tree (Manhattan distance), and (3) area (it may
be smaller than chip bounding box) . The area can be obtained by X * Y where X(Y) is the
difference between rightmost(topmost) edge and leftmost(bottommost) edge among all
macros. The report file format(problem1.rpt) is :

 .macro macro_name (x1, y1) (x2, y2)
 .macro macro_name (x1, y1) (x2, y2)
 // (x1, y1): lower-left corner, (x2, y2): upper-right corner
 … More macros
 .mst total_wire_length
 .area chip_area

// area = (max_x2 – min_x1) * (max_y2 – min_y1)

 III. Problem Statement
Given 1) 15 different rectangle macros (5 hard macros and 10 soft macros), their core area
and aspect ratio constraints, and (2) 20 nets among these macros, the tool arranges all these
macros within a specified rectangular bounding box. We assume the lower-left corner of this
bounding box is the origin (0,0) and no space (channel) is needed between two different
macros. The main objective is to minimize the total wire length estimated by minimum
spanning tree. The net terminals are assumed to be at the center of their corresponding
macros. The second objective is to minimize the chip area.

We give an example for all IO files in Fig. 5.

(0,0) 60

100

50

100

40

A
B

DC

Fig. 5: A floorplan problem and its solution, bold line represent net N1.
Input files :
[problem1.mac]:
.chip_bbox (100,100)
.macro A 2000 0.6 1.5
.macro B 3000 0.8 1.2
.macro C 3000 0.8 1.5
.macro D 2000 0.8 0.8 // hard macro

[problem1.spc]:
.net N1 A B C

Output files :
[problem1.rpt]
.macro A (0, 50) (40, 100)
.macro B (40, 50) (100, 100)
.macro C (0, 0) (60, 50)
.macro D (60, 0) (100, 50)
.mst 110
.area 10000

 IV. Advanced Features
Provide GUI (Graphic User Interface) to show the floorplanning result with
interconnections (minimum spanning tree for each net).

 V. Language/Platform
1.Language: C or C++.
2.Platform: SUN OS/Solaris or PC DOS/Windows.

 VI. Evaluation
The score will be given based on the total wire length and minimal rectangular area needed
for floorplanning, the time efficiency, and the memory requirement.
Bonus will be rewarded if the GUI is provided.

VII. Questions
Please report any question regarding this problem to cad@cs.nthu.edu.tw with the subject
“CAD Contest: Problem 1.” Your question(s) will be answered in two weeks, and the Q&A’s
will be posted at the contest web site

 References
[1]Naveed Sherwani. Algorithms For VLSI Physical Design Automation. 3rd ed., Kluwer

Academic Publishers, pages 222-223, 1999.
[2]Naveed Sherwani. Algorithms For VLSI Physical Design Automation. 3rd ed., Kluwer

Academic Publishers, pages 193-196, 1999.
[3]G. Vijayan and R. Tsay. A new method for floorplanning using toplogical constraint

reduction. IEEE Transactions on Computer-Aided Design, pages 1494-1501, December
1991.

[4]S. Sutanthavibul, E. Shragowitz, and J. Rosen. An analytical approach to floorplan design
and optimization. IEEE Transactions on Computer-Aided Design, pages 761-769, June
1991.

[5]B. Lokanathan and E. Kinnen. Performance optimized floorplanning by graph
planarization. Proceedings of 26th ACM/IEEE Design Automation Conference, pages
116-121, 1989.

[6]W. W. Dai, B. Eschermann, E. Kuh, and M. Pedram. Hierarchical placement and
floorplanning in bear. IEEE Transactions on Computer-Aided Design. VOL. 8, pages
1335-1349, December 1989.

[7]M. Rebaudengo and M. S. Reorda. Gallo: a genetic algorithm for floorplan area
optimization. IEEE Transactions on Computer-Aided Design. pages 943-951, 1996.

[8]S. M. Sait, H. Youssef, S. Tanvir, and M.S. T. Benten. Timing influenced general-cell
genetic floorplanner. Proceedings of the ASP-DAC’95/CHDL’95/VLSI’95., IFIP
International Conference on Hardware Description Languages. IFIP International
Conference on Very Large Scale Integration., Asian and South Pacific, pages 135-140,
1995.

[9]H. Youssef, S. M. Sait, and K. J. Al-Farra. Timing influenced force directed floorplanning.
Proceedings EURO-DAC’95., pages 156-161, 1995.

[10]S. M. Sait, and H. Youssef, VLSI Physical Design Automation – Theory and Practice.
McGraw-Hill Book Company Europe and IEEE PRESS, pages 80-130, 1995

[11]S. M. Sait, and H. Youssef, VLSI Physical Design Automation – Theory and Practice.
McGraw-Hill Book Company Europe and IEEE PRESS, pages 91-95, 1995

	I. Introduction
	II. Input/Output Specification
	III. Problem Statement
	IV. Advanced Features
	V. Language/Platform
	VI. Evaluation
	References

