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Abstract: 

Hourly temperature forecasts are important for electrical load forecasting and other 

applications in industry, agriculture, and the environment. Modern machine learning techniques 

including neural networks have been used for this purpose. We propose using the alternative 

abductive networks approach, which offers the advantages of simplified and more automated 

model synthesis and transparent analytical input-output models. Dedicated hourly models were 

developed for next-day and next-hour temperature forecasting, both with and without extreme 

temperature forecasts for the forecasting day, by training on hourly temperature data for five 

years and evaluation on data for the 6th year. Next-day and next-hour models using extreme 

temperature forecasts give an overall mean absolute error (MAE) of 1.68º F and 1.05º F, 

respectively. Next-hour models may also be used sequentially to provide next-day forecasts.  

Performance compares favourably with neural network models developed using the same data, 

and with more complex neural networks, reported in the literature, that require daily training. 

Performance is significantly superior to naive forecasts based on persistence and climatology.  
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1. Introduction 

Accurate forecasting of hourly air temperatures has a number of important applications 

in industry, agriculture, and the environment. Many short-term load forecasting (STLF) schemes 

for power utilities require hourly temperature forecasts (Fan & McDonald, 1994; Hwang et al., 

1998; Khotanzad, Afkhami-Rohani & Maratukulam, 1998; Sharif & Taylor, 2000; Xu & Chen, 

1999). Such forecasts are also used for predicting the gas send-out for a gas utility, (e.g., Pattern 

Recognition Technologies ANNGSF) and for forecasting the one-hour-ahead heat load for a 

district heat load network (Seppälä et al., 2000). In agriculture, hourly air temperature forecasts 

can be used by disease warning systems and pest management schemes to predict conditions that 

are favourable for disease development in crops and scheduling appropriate actions such as 

spraying protective fungicides (Francis, 2000; Kim et al., 2002). Road weather information 

systems utilize forecasted hourly air temperatures for predicting road surface temperatures 

(Bogren & Gustavsson, 1994).  

Temperature is the most important weather parameter affecting electric load generated 

by power utilities in many parts of the world, and therefore forecasted temperatures constitute a 

basic ingredient in load forecasting schemes. Forecasts for extreme (minimum and maximum) 

daily temperatures are provided by many weather services, but these alone are useful only for 

predicting the daily peak load. However, forecasting the full 24-hour load curve is important for 

many scheduling and network analysis functions in power utilities. Since high-low temperature 

forecasts are usually provided without specifying the times at which they occur, this precludes 

their use to generate the hourly load curve through regression and interpolation (Hippert, 

Pedreira & Souza, 2000). Schemes for hourly temperature forecasting have been developed in 

the context of short-term load forecasting and in some cases form an integrated part of the load 

forecaster (e.g., Fan & McDonald, 1994; Khotanzad, Afkhami-Rohani & Maratukulam, 1998). 

In other agricultural and environmental applications, even high-low temperature forecasts that 
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are specific to the site of interest may not be available, and it is often preferred that temperature 

forecasts rely only on parameters that are available or can be measured on-site.   

 Schneider, Takenawa & Schiffman (1985) obtained hourly temperature forecasts by first 

fitting a two-harmonics Fourier model to the temperature data of the past 21 days to produce a 

temperature day profile. Hourly forecasts were then obtained by stretching/contracting this 

profile so that its minimum and maximum points coincide with those forecasted for the day by 

the weather service. Fan & McDonald (1994) adopt a similar approach but use a day profile that 

is initialized with historical average data and updated by exponential smoothing with a time 

constant of 28 days. The complex and nonlinear nature of temperature variations and the 

abundance of historical data suggest that computational intelligence data-based modeling 

techniques would be good candidates for solving the temperature forecasting problem. In the 

load forecasting arena, the use of neural networks temperature forecasting has been a natural 

extension to their use in load forecasting. The ANNSTLF neural network load forecasting 

system (Khotanzad, Afkhami-Rohani & Maratukulam, 1998) embodies a 7-day-ahead neural 

network hourly temperature forecaster that uses an adaptive daily update of the weights  

(Khotanzad et al., 1996). The day module of such forecaster uses back propagation neural 

networks to forecast the 24 hourly temperatures for day (d) using 28 inputs which include the 

minimum and maximum temperatures measured for day (d-2), the 24 hourly temperatures for 

day (d-1), and the forecasted minimum and maximum temperatures for day (d). One drawback 

to this approach is the large size of the neural networks involved, which implies a large number 

of weights to be estimated. The large input dimensionality relative to the number of training 

records may cause the estimation problem to be ill-posed, resulting in unstable networks for 

typical sizes of training sets (Hippert, Pedreira & Souza, 2000). The resulting over-fitting may 

also degrade model generalization, thus yielding poor out-of-sample forecasts (Hippert, Pedreira 

& Souza, 2001). To overcome these problems, smaller networks have been proposed that tackle 

the simpler problem of forecasting only the next-hour temperature. Lanza & Cosme (2001) used 
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a radial basis functions neural network to forecast the temperature on hour (h) from only three 

inputs including the temperature at hour (h-1) and two hour indices of the sine/cosine form. 

With the fewer inputs, smaller databases can be used to train the network, and in this case a 

sliding window of 28 days was found sufficient. In many situations, however, full forecasts of 

the 24 next day temperatures are required. This may be achieved through iterative use of the 

same next-hour forecaster, with the output forecasted for hour (h) being recycled as input for 

forecasting hour (h+1). This approach, however, may lead to the neural network forecaster 

behaving chaotically (Hippert, Pedreira & Souza, 2000). To reduce this risk, these latter authors 

feed the neural network instead with crude forecasts estimated using an autoregressive (AR) 

model. Tassadduq, Rehman & Bubshait (2002) describe a back propagation neural network that 

uses only the temperature at a given hour to forecast the temperature at the same hour of the 

following day.  

In general, the neural network approach also suffers from a number of limitations, 

including difficulty in determining optimum network topology and training parameters (Alves 

da Silva et al., 2001). There are many choices to be made in determining numerous critical 

design parameters with little guidance available (Hippert, Pedreira & Souza, 2001), and 

designers often resort to trial and error approaches (Charytoniuk & Chen, 2000; Tassadduq, 

Rehman & Bubshait, 2002) which can be tedious and time consuming. Such design parameters 

include the number and size of the hidden layers, the type of neuron transfer functions for the 

various layers, the learning rate and momentum coefficient, and training stopping criteria to 

avoid over-fitting and ensure adequate generalization with new data. Another limitation is the 

black box nature of neural network models that give little insight into the modeled relationship 

and the relative significance of various inputs, thus providing poor explanation facilities 

(Matsui, Iizaka & Fukuyama, 2001). The acceptability of, and confidence in, automated 

forecasting tools in operational environments appear to be related to their transparency and their 

ability to justify results to human experts (Lewis, III, 2001). 
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To overcome such limitations, we propose using abductive networks (Montgomery & 

Drake, 1990) as an alternative machine learning approach to hourly temperature forecasting. We 

have previously used this approach to model and forecast the monthly domestic energy 

consumption (Abdel-Aal, Al-Garni & Al-Nassar, 1997) and in forecasting the minimum (Abdel-

Aal & Elhadidy, 1994) and maximum (Abdel-Aal & Elhadidy, 1995) daily temperatures. The 

method has also been used by Fulcher & Brown (1994) in predicting temperature distributions at 

data-deficient sites based on detected similarities with data-rich sites. Compared to neural 

networks, abductive networks offer the advantages of faster model development requiring little 

or no user intervention, faster convergence during model synthesis without the problem of 

getting stuck in local minima, automatic selection of effective input variables, and automatic 

configuration of the model structure (Alves da Silva, 2001). Using the approach on a time series 

problem led to lower mean square errors and simpler models as compared to back propagation 

neural networks (Tenorio & Lee, 1989). With the model represented as a hierarchy of 

polynomial expressions, resulting analytical model relationships can provide insight into the 

modeled phenomena, highlight contributions of various inputs, and allow comparison with 

previously used empirical or statistical models. The technique automatically avoids over-fitting 

by using a proven regularization criterion based on penalizing model complexity (Montgomery 

& Drake, 1990) without requiring a dedicated validation dataset during training, as is the case 

with many neural network paradigms. 

Following a brief description of abductive network modeling in Section 2, the 

temperature dataset used is described in Section 3. Next-day hourly temperature forecasters, that 

predict the full 24-hour temperature curve for a full day in one step at the end of the preceding 

day, are described in Section 4. Abductive network models were developed and evaluated both 

with and without extreme temperature forecasts for the forecasting day. Performance of 

representative models was compared with that of the corresponding neural network models 

developed using the same data. Next-hour temperature forecasters that predict the temperature 
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hour by hour utilizing all data available up to the forecasting hour are presented in Section 5. 

Results are also given when such models are used sequentially to forecast the full next-day 

temperature curve. 

2. AIM abductive networks 

AIM (abductory inductive mechanism) (AbTech, 1990) is a supervised inductive 

machine-learning tool for automatically synthesizing abductive network models from a database 

of inputs and outputs representing a training set of solved examples. As a group method of data 

handling (GMDH) algorithm (Farlow, 1984), the tool can automatically synthesize adequate 

models that embody the inherent structure of complex and highly nonlinear systems. The 

automation of model synthesis not only lessens the burden on the analyst but also safeguards the 

model generated from being influenced by human biases and misjudgements. The GMDH 

approach is a formalized paradigm for iterated (multi-phase) polynomial regression capable of 

producing a high-degree polynomial model in effective predictors. The process is 'evolutionary' 

in nature, using initially simple (myopic) regression relationships to derive more accurate 

representations in next iterations. The algorithm selects polynomial relationships and input 

combinations that minimize the prediction error in each phase. AIM builds networks of various 

types of polynomial functional elements, based on prediction performance. The network size, 

element types, connectivity, and coefficients for the optimum model are automatically 

determined using well-proven optimization criteria, thus reducing the need for user intervention 

compared to neural networks. This simplifies model development and considerably reduces the 

learning/development time and effort. The models take the form of layered feed-forward 

abductive networks of functional elements (nodes) (AbTech, 1990), see Fig. 1. Elements in the 

first layer operate on various combinations of the independent input variables (X's) and the 

element in the final layer produces the predicted output for the dependent variable y. In addition 

to the main layers of the network, an input layer of normalizers convert the input variables into 

an internal representation as Z scores with zero mean and unity variance, and an output unitizer 
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unit restores the results to the original problem space. The used version of AIM supports the 

following main functional elements:  

(i) A white element which consists of a constant plus the linear weighted sum of all outputs of 

the previous layer, i.e.: 

"White" Output  = W0 + W1X1 + W2X2 + W3X3 + .... + WnX n (1) 

where X1, X2,..., Xn are the inputs to the element and W0, W1, ..., Wn are the element weights.  

(ii) Single, double, and triple elements which implement a third-degree polynomial expression 

with all possible cross-terms for one, two, and three inputs respectively; for example,  

"Double" Output = W0 + W1X1 + W2X2 + W3X12 + W4X22 + W5X1X2 + W6X13 + W7X23 (2) 

The database of input-output solved examples is split into a training set and an 

evaluation set. AIM uses the training set to synthesize the model network layer by layer until no 

further improvement in performance is possible or a preset limit on the number of layers is 

reached. Within each layer, every element is computed and its performance scored for all 

combinations of allowed inputs. The best network structure, element types and coefficients, and 

connectivity are all determined automatically by minimizing the predicted squared error (PSE) 

criterion (Barron, 1984), which eliminates the problem of determining when to stop training in 

neural networks. This criterion selects the most accurate model that does not overfit the training 

data to strike a balance between the accuracy of the model in representing the training data and 

its generality which allows it to fit yet unseen future data. The user may optionally control this 

trade-off between accuracy and generality using the complexity penalty multiplier (CPM) 

parameter (AbTech, 1990). Larger values than the default value of 1 lead to simpler models that 

are less accurate but may generalize well with previously unseen data, while lower values 

produce more complex networks that may overfit the training data and degrade actual prediction 

performance.  
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3. The dataset 

 
The dataset used consists of measured hourly temperature data for the Puget power 

utility, Seattle, USA, as integer values over the period 1 January 1985 to 12 October 1992. The 

set is made available in the public domain by Professor A. M. El-Sharkawi, University of 

Washington, Seattle, USA (El-Sharkawi, 2002). We used the data for the first five years (1985-

1989) for model synthesis and those of the following year (1990) for model evaluation. Data for 

five years were considered sufficient for training the required hourly temperature forecasting 

models, and therefore data for 1991 and the partial data available for 1992 were not utilized by 

the work described in this paper. A few missing values, indicated as 0’s in the original dataset, 

were filled-in by interpolating between neighbouring values. The dataset contains no forecasted 

values for tomorrow’s minimum and maximum daily temperatures. Table 1 lists summary 

statistics of the hourly temperature data for both the training and evaluation datasets, giving the 

overall mean and standard deviation values for each hour of the day.   

 
4. Next-day hourly temperature forecasters 

 
4.1. Using forecasts for next day extreme temperatures 

 
We have developed 24 models for forecasting the hourly temperatures for the following 

day (d) in one step at the end of the preceding day (d-1). A model is dedicated for forecasting the 

temperature, ET (d,h), for each hour of the day. Each of the 24 models was trained using 1825 

data records for five years (1985-1989) and evaluated on 365 records for the year 1990. Unless 

specified otherwise, training was performed with the default value CPM = 1 for the complexity 

penalty multiplier. All models use the same set of inputs which includes: 24 hourly temperatures 

on day (d-1) (T1,T2,…,T24), the measured minimum (Tmin) and maximum (Tmax) air 

temperatures on day (d-1), the forecasted minimum (ETmin) and maximum (ETmax) air 
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temperatures for day (d). Tmin and Tmax were taken as the minimum and maximum values of 

the 24 hourly temperatures provided for the day. In the absence of forecasted data for the 

minimum (ETmin) and maximum (ETmax) air temperatures for the forecasting day, we used 

actual values measured on that day instead, which would be the case with ideal forecasts for the 

extreme temperature. We also investigate the effect of introducing Gaussian noise depicting 

temperature forecasting errors that would be present in practice. A record in the training dataset 

for the model for hour h (h=1,2,…,24) includes 28 input variables and takes the following form: 

Inputs Output 

24 hourly 
temperatures           
for day (d-1) 

Extreme 
Temperatures for 

day (d-1) 

Forecasted Extreme 
Temperatures         

for day (d) 

Temperature   
for hour (h)      
on day (d)  

T1, T2, …, T24 Tmin, Tmax ETmin, ETmax T(d,h) 

The top part of Fig. 2 shows the abductive network model synthesized for forecasting the 

temperature at hour 12 (midday), ET12. This is a single-element nonlinear model that selects 

only the measured temperature at hour 1, T1, and the two forecasted extreme temperatures, 

ETmin and ETmax, as the essential predictors for ET12 out of the 28 inputs provided. 

Automatic selection of only relevant inputs simplifies the resulting models, allows them to 

execute faster, and prevents noise and uncertainty in the unused inputs from degrading model 

performance. The resulting simpler models also provide better insight into the modeled 

phenomenon. A corresponding standard neural network model would require all 28 inputs, 

giving little indication of the relative importance of the various inputs. When required, such 

information must be extracted by subsequent analysis of the trained network, e.g. by summing 

absolute weight values (Roadknight et. al., 1997). Analyzable networks were also described for 

this purpose (Matsui, Iizaka & Fukuyama, 2001). To determine the importance of input 

parameters for speech synthesis by neural networks, Sonntag, Portele & Heuft (1997) adopt the 

manual approach of comparing the performance of individual models trained on single inputs or 
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on groups of inputs that lack only one input.   

The use of the Triple element indicates the nonlinear nature of the model. Substituting 

symbolically for the five equations of functional elements of the model shown at the top part of 

Fig. 2 gives the following analytical relationship for the forecasted temperature in terms of the 

three inputs:  

 

ET12 = -12.58281 + 0.14334 T1+ 0.39523 ETmin + 1.28334 ETmax - 1.48526 x 10 –3 T12

- 9.58987 x 10 –3 ETmin2 - 6.97403 x 10 –3 ETmax2 + 7.11060 x 10 –5 ETmin3

+ 4.67070 x 10 –5 ETmax3 + 5.89213 x 10 –3 T1 ETmin - 5.31302 x 10 –3 T1 ETmax                (3) 

 

Analytical model relationships in the from of Equation (3) help identify the model order and 

determine the relative contributions of various inputs and the combinatory effects between the 

inputs, thus enhancing model interpretation and understanding. Simpler equations can obtained 

from simpler models synthesized using larger CPM values, to be presented later in this section. 

In the field of environmental studies, model equations were found particularly useful in 

generating hypothesis regarding the phenomenon under investigation, which can then be tested 

by performing the relevant experiments (Roadknight et. al., 1997). Generating manageable 

analytical expressions from neural network models is a tedious process involving network 

pruning through iterated removal of weak weight links and testing the resulting network for 

adequate performance (Roadknight et. al., 1997). Resulting model equations can be compared 

with those derived using first-principles, empirical, or statistical models. For example, 

simplifying Equation (3) through omitting the nonlinear terms leaves a linear model consisting 

of only the first four terms. Such a simplified model can be compared with a linear regression 

model developed using the training data. 

Fig. 2 shows also the performance of the model in the form of scatter and time series 

plots of the actual and forecasted temperatures for hour 12 over the evaluation year. The scatter 

plot shows a best line fit and the value of the Pearson’s correlation coefficient as 0.98, and the 
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time series plot shows a mean absolute error (MAE) of 1.86º F and a mean absolute percentage 

error (MAPE) as 3.62%. A more elaborate assessment of the forecasting performance can be 

made using contingency tables and statistical criteria such as bias, the Heidke's skill score, and  

the Priestley skill score (Pasini, Pelino, & Potestà, 2001; and Abdel-Aal & Elhadidy, 1995). 

Performance of the abductive model for the temperature at hour 12 was compared with a back 

propagation neural network model developed using the PathFinder software for Windows. The 

model was trained and evaluated using the same data used for the abductive model, with 20% of 

the training data reserved for cross validation. The 28-6-1 neural model has one hidden layer 

containing 6 neurons with a sigmoid transfer function.  MAE and MAPE values for the neural 

model are 2.02º F and 3.91%, respectively, indicating inferior performance compared to the 

abductive model. It should be noted that while the neural model requires all 28 inputs, the 

abductive model uses only three inputs as shown in Fig. 2.  

Table 2 summarizes the 24 hourly models, listing the model inputs selected and the 

corresponding time lags in the temperature time series and showing a sketch of the model 

structure.  Models for hours 14 to 17 are of the ‘wire’ type where the output is a linear 

relationship of a single input (ETmax). Temperature at such hours is highly correlated with 

Tmax for the forecasting day, with values for the Pearson’s correlation coefficient for the 

training data being around 0.99. Temperature extremes on the forecasting day are utilized by all 

models while those on the previous day are used only by one model. The temperature time series 

is utilized by 18 models, mostly using a single time lag. The last hourly temperature on the 

preceding day (T24) is used by 14 models. Model structures are fairly simple, with 21 models 

being single-element, single-layer. The most complex model is a 5-input, 2-element, 2-layer 

model for hour 20. The left hand side of Table 3 lists the MAE and MAPE values for all hours, 

giving the overall values for the evaluation year as 1.68º F and 3.49%, respectively. The MAPE 

value compares favourably with that of 5.20% quoted for a hybrid forecasting scheme consisting 

of an AR model followed by a back propagation neural network, which was developed with 20 
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days of data and evaluated using data for the following 20 days (Hippert, Pedreira & Souza, 

2000). The MAE is comparable with the value of 1.48º F given as the average error at eight 

power utilities where the error values ranged from 1.04º F to 2.03º F using neural network 

hourly temperature forecasters that required daily updating of the weights (Khotanzad et al., 

1996). Full-day temperature curves were forecasted using all 24 abductive network models for 

four days marking the beginning of the four seasons of the evaluation year, and the results are 

shown in Fig. 3.  Fig. 4 plots the average MAE and MAPE values over each calendar month of 

the evaluation year. MAE values are below 2º F for all months. 

We have investigated the effect of simulated errors in the ideal extreme temperature 

forecasts ETmin and ETmax on model performance. As seen from Table 2, the model for hour 

12 is an example of 17 forecasters that use both ETmin and ETmax, and would therefore be 

affected most by such errors. Simulated Gaussian random errors of zero mean and standard 

deviation σ were added to the two ideal temperature forecasts in both the training and evaluation 

datasets used to develop the forecaster for hour 12. The MAE of 1.86º F for the noiseless case 

increased to 2.34º F for σ = 2° F, indicating the importance of good forecasting accuracy for the 

extreme temperatures and that in practice errors in such forecasts are expected to degrade the 

performance of such models. 

The effect of varying the complexity of the resulting forecasting models was investigated 

for the model for hour 12. Table 4 shows the structure and performance of the resulting more 

complex model with CPM = 0.2 and the simpler model with CPM = 5, in comparison with the 

default model synthesized with CPM = 1. It is noted that input ETmax features in all three 

models which indicates its importance in explaining the modeled output. The level of model 

complexity varies widely from a 32-input, 4-layer nonlinear model with CPM = 0.2 to a simple 

‘wire’ model at CPM = 5. As expected, the default model with CPM = 1 gives optimum 

performance. The highly complex model with CPM = 0.2 seems to overfit the training data 
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giving poorer generalization with the evaluation data, while that with CPM = 5 oversimplifies 

the model function. As indicated in the table, more complex models require longer train times. 

Table 5 lists hourly forecasts over the evaluation year based on persistence and 

climatology. Persistence forecasts were obtained by assuming the temperature at a given hour of 

the forecasting day to be equal to the temperature measured at the preceding hour on the same 

day. With climatology, the forecasted value was taken as the average of the five temperatures 

measured at the same hour on the five calendar days similar to the forecasting day in the five 

years (1985-1989) preceding the evaluation year. These are the same years used to train the AIM 

models.  The table indicates that abductive network models provide significantly superior 

forecasting accuracy compared to both persistence and climatology, with average MAE values 

being 1.68º F as compared to 4.17º F and 5.13º F, respectively. 

 
4.2. Without using forecasts for next day extreme temperatures 

 
In some applications, accurate extreme temperature forecasts, ETmin and ETmax, on the 

forecasting day may not be available for the region of interest. We have developed a set of 24 

next-day hourly temperature forecasters that do not require these two input variables. Table 6 

shows a summary of the resulting models. Compared to those in Table 2, the models are 

generally more complex. For example, the 3-input, 1-element, 1-layer model described in 

Section 4.1 for hour 12 is now a 4-input, 2-element, 2-layer model. Absence of the important 

ETmin and ETmax inputs is compensated for by increased dependence on the temperature time 

series, with considerably more time lags being utilized by the models. The model for hour 20 

uses six time lags. Increased model complexity degrades forecasting performance as indicated 

by the two columns at the right hand side of Table 3. Forecasting errors without extreme 

temperature forecasts are nearly double those with ideal values for such forecasts, but this 

margin would be narrower in practice due to errors in realistic forecasts. For hour 12, the MAE 

and MAPE values increase from 1.86º F and 3.62%, respectively, for the case with extreme 
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temperature forecasts, to 3.47º F and 6.88%, respectively, without such forecasts. Performance 

of the model for hour 12 was compared with a back propagation neural network model 

developed using the PathFinder neural network software for Windows. The model was trained 

and evaluated using the same data used to develop the abductive network model, with 20% of 

the training data reserved for cross validation. The 26-6-1 neural model has one hidden layer 

containing 6 neurons with a sigmoid transfer function. MAE and MAPE values for the neural 

model are 3.38º F and 6.59%, respectively, indicating a slightly better performance compared to 

the abductive model. It should be noted that while the neural model requires all 26 inputs, the 

abductive model for hour 12 uses only four inputs as shown in Table 6.  

 
5. Next-hour temperature forecasters 

 
5.1. Using forecasts for next day extreme temperatures 

 
We have developed 24 models for forecasting the temperature at the next hour (h) during 

day (d) using the full hourly temperature data on day (d-1) (T1,T2,…,T24) together with all 

available hourly temperatures on day (d) up to the preceding hours hour (h-1) (NT1,NT2, …, 

NT(h-1)), in addition to the measured minimum (Tmin) and maximum (Tmax) air temperatures 

on day (d-1) and the forecasted minimum (ETmin) and maximum (ETmax) air temperatures on 

day (d), as described in Section 4.1 above. A record in the training dataset for the model for hour 

h (h=1,3,…,24) takes the form: 

Inputs Output 

24 hourly 
temperatures           
for day (d-1) 

(h-1) available hourly 
temperatures             

on day (d) 

Extreme 
Temperatures for 

day (d-1) 

Forecasted Extreme 
Temperatures         

for day (d) 

Temperature 
for hour (h) 
on day (d)  

T1, T2, …, T24 NT1, NT2, …NT(h-1) Tmin, Tmax ETmin, ETmax T(d,h) 

Contrary to the case of next-day hourly forecasters, the number of hourly temperature 

inputs used here is not fixed, but varies from 24 for hour 1 to 47 for hour 24. The maximum 
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total number of model inputs is therefore 51 in the model for hour 24. Input T1 was removed 

when training this model only in order to keep the number of model inputs within the maximum 

limit of 50 for the AIM version used. Table 7 summarizes the model structure for all the 24 

hourly models. Compared to the corresponding models for next-day hourly temperatures (Table 

2), next-hour models are simpler, reflecting the relative ease of forecasting with previous 

temperature data as recent as the previous hour being available. For example, the model for hour 

12 is a 2-input, double element as compared to a 3-input triple element for the corresponding 

next-day hourly model. Dependence on previous day (d-1) hourly temperatures is reduced, with 

15 of the 24 models totally ignoring such inputs in favour of the more recent values on the 

forecasting day (d). Forecasted extreme temperatures on day (d) are utilized by most of the 

models, while no use is made at all of measured extreme temperatures on day (d-1). The 

temperature time series features strongly in all models. The time lag of 1 hour is used by all but 

two models, indicating a strong influence for persistence. The left hand side of Table 8 lists the 

MAE and MAPE values for all hours, giving the overall values for the evaluation year as 1.05 ºF 

and 2.14%, respectively, indicating the effectiveness of the technique for very short term 

temperature forecasting.   

 
5.2. Without using forecasts for next day extreme temperatures 

We have developed a set of 24 next-hour temperature forecasters that do not use 

forecasted ETmin and ETmax as input variables. Table 9 shows a summary of the resulting 

models. The models are generally of comparable complexity with those of Table 7, but with 

increased dependence on the temperature time series. As shown in the middle part of Table 8, 

forecasting performance of these models over the evaluation year (MAE = 1.06º F and MAPE = 

2.18%) is comparable with the models utilizing ETmin and ETmax. However, the former 

models would be more useful and more accurate in practice, as they do not require, and are not 

influenced by errors in, extreme temperature forecasts. Lanza & Cosme (2001) report an MAE 
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of 0.80º F for a next-hour radial basis functions neural network forecaster that does not use 

extreme temperature forecasts. The neural network required training on daily basis using a 

moving window of 28 days and was evaluated over a period of 90 days. Table 10 summarizes 

the MAPE error histograms for all forecasting hours over the evaluation year for both next-day 

and next-hour models, as well as persistence and climatology forecasts. 95% of next-hour 

forecasts are accurate to ±3º F without requiring extreme temperature forecasts. 

 
5.3. Next-day forecasts using next-hour models 

 
The right hand side of Table 8 lists results for next-day, day (d), forecasting obtained by 

sequential use of the next-hour models described in subsection 5.2 above for all hours up to the 

forecasting hour (h). In practice, this would be performed at the end of day (d-1), with the 

temperature forecasted for hour (i) being fed, along with other required inputs, to the next-hour 

model for hour (i+1). As expected, performance this way is inferior to that of next-hour 

forecasting by the same models, due to the accumulation of forecasting errors. However, overall 

next-day performance of these models is comparable with that obtained by dedicated next-day 

forecasters (Table 3, right hand side) (MAE values 3.11º F versus 3.02º F, respectively). The 

next-hour models are simpler and easier to apply and maintain in practice as compared to the 

corresponding next-day hourly models. Moreover, they have the advantage of forming a 

compact set of forecasters that serves the dual purpose of providing accurate next-hour forecasts 

as well as reasonably accurate next-day hourly forecasts through sequential application at the 

end of the day preceding the forecasting day.  

 
6. Conclusions 

 
Abductive network machine learning has been demonstrated as an alternative tool for 

next-day and next-hour hourly temperature forecasting. Models both with and without the 

requirement for extreme temperature forecasts have been developed. Compared to the neural 
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networks approach, the proposed method simplifies model development, automatically selects 

effective inputs, gives better insight into the modeled function, and allows comparison with 

previously used analytical models. Represented as a few simple equations, the models lend 

themselves to use in remote locations, e.g. for agricultural and environmental applications. 

Forecasting is performed through straight-forward substitution in such equations using simple 

apparatus, without the need for specialized software packages or frequent training. Performance 

compares favourably with neural network models developed using the same data, and with more 

complex neural models reported in the literature. Some of the latter neural models may require 

daily training or weight updates, which complicates onsite forecasting. Next-hour models do not 

require extreme temperature forecasts for improved accuracy, and may be used sequentially to 

serve the additional purpose of providing reasonably accurate next-day hourly forecasts at 

remote locations. In this way, such models could economically serve the dual purpose of 

providing both next-hour and next-day forecasts. Models described should prove useful in a 

variety of agricultural, environmental, and electrical load forecasting applications. Future work 

will attempt to further improve the forecasting accuracy by using dedicated seasonal models and 

including temperature data on a larger number of previous days.   
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Table 1. Summary statistics of the hourly temperatures data for both the training set (1825 

records) and the evaluation set (365 records).  

 
Training dataset            

(1985-1989) 
 Evaluation dataset        

(1990) Hour of 
day, h 

Mean, º F Standard 
Deviation, º F Mean, º F Standard     

Deviation, º F 

1 48.97 9.74 49.26 10.50 

2 48.33 9.37 48.73 10.23 

3 47.73 9.13 48.14 9.87 

4 47.23 8.95 47.64 9.69 

5 46.80 8.76 47.25 9.48 

6 46.49 8.63 47.08 9.56 

7 46.97 8.95 47.52 9.78 

8 47.91 9.47 48.40 10.23 

9 49.46 9.90 49.79 10.82 

10 51.24 10.29 51.44 11.28 

11 53.07 10.70 53.15 11.73 

12 54.79 11.22 54.81 12.16 

13 56.25 11.81 56.05 12.62 

14 57.33 12.42 57.06 13.21 

15 58.00 13.02 57.63 13.76 

16 58.07 13.64 57.79 14.23 

17 57.57 14.13 57.20 14.67 

18 56.57 14.08 56.33 14.64 

19 55.31 13.56 55.16 14.11 

20 53.80 12.56 53.72 13.14 

21 52.18 11.34 52.36 12.02 

22 51.22 10.62 51.36 11.40 

23 50.43 10.33 50.61 11.11 

24 49.60 10.00 49.83 10.78 
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Triple
Double

Table 2. Summary of the abductive network models for the 24 next-day temperature forecasters 

with extreme temperature forecasts. 

Model Input(s) 

Temperature 
Extremes 

Day (d) 
Forecasting 

Hour 
Day (d-1) 

Temperature 
at Hours: Day (d-1) Day (d) 

Temperature 
Time Lags 
Selected 

Model Structure 

14 

15 

16 

17 

 ETmax  

 

1 1

2
24 

 
ETmin 

2

3 3

4 4

6 6

7 7

8 8

9

24 

9

11 2 33

12 35 

13 
1

36 

18 7 35

19 8 35

21 21 

22 22 

23 

24 

 

ETmin, 
ETmax 

23 

5 24 Tmax ETmin 5 

 

10 24,1 10,33 
 

20 20,14,8 24,30,36 
 

24 24,15 

 ETmin, 
ETmax 

24,33 
 

Double

Triple

Triple
Double

Triple
Triple
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Table 3. Performance of the next-day temperature forecasting models over the evaluation year.  
 

With extreme     
temperature forecasts 

 Without extreme   
temperature forecasts Forecasting 

hour, h 
MAE, º F MAPE, % MAE, º F MAPE, % 

1 0.94 2.01 1.00 2.16 

2 1.16 2.52 1.30 2.78 

3 1.20 2.67 1.52 3.35 

4 1.22 2.72 1.78 4.02 

5 1.28 2.85 1.89 4.33 

6 1.38 3.11 2.12 4.88 

7 1.48 3.32 2.11 4.83 

8 1.65 3.54 2.29 5.08 

9 1.73 3.57 2.54 5.46 

10 1.82 3.70 2.79 5.77 

11 1.91 3.79 3.16 6.31 

12 1.86 3.62 3.47 6.88 

13 1.64 3.22 3.36 6.46 

14 1.51 2.94 3.82 7.28 

15 1.50 2.93 4.05 7.72 

16 1.42 2.85 4.20 8.02 

17 1.70 3.51 4.49 8.64 

18 1.87 3.72 4.27 8.34 

19 2.19 4.37 3.94 7.92 

20 2.12 4.42 3.78 7.85 

21 2.08 4.22 3.60 8.01 

22 2.05 4.25 3.58 7.99 

23 2.28 4.86 3.71 8.59 

24 2.29 5.04 3.73 8.74 

Average 1.68 3.49 3.02 6.31 
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Table 4. Effect of the CPM parameter on the complexity and performance of next-day 

temperature forecasting models for hour 12 with extreme temperature forecasts. 

 

CPM Model Structure  
Relative 
Training 

Time 

MAE,     
º F

MAPE, 
%

0.2 1.52 1.89 3.64 

1 1.00 1.86 3.62 

5 0.81 2.13 4.30 

25 of 35

Tuesday , March  23, 2004

Elsevier



Rev
ie

w
 C

op
y

26

Table 5. Performance of persistence and climatology forecasts over the evaluation year.  
 

Persistence Forecast Climatology Forecast Forecasting 
hour, h MAE, º F MAPE, % MAE, º F MAPE, % 

1 3.76 8.69 4.75 11.62

2 3.84 8.87 4.66 11.63

3 3.83 8.99 4.52 11.50

4 3.93 9.30 4.54 11.61

5 3.95 9.40 4.50 11.54

6 4.01 9.74 4.65 12.06

7 3.83 9.18 4.64 11.95

8 3.90 9.14 4.60 11.79

9 4.00 8.99 4.79 11.82

10 4.07 8.68 4.97 11.70 

11 4.32 8.73 5.22 11.51 

12 4.46 8.69 5.47 11.52 

13 4.44 8.43 5.60 11.26 

14 4.63 8.58 5.74 11.34 

15 4.76 8.77 5.94 11.68 

16 4.77 8.75 5.99 11.70 

17 4.94 9.20 6.24 12.38 

18 4.74 9.05 5.95 12.10 

19 4.36 8.75 5.61 11.82 

20 4.11 8.54 5.32 11.64 

21 3.83 8.29 4.98 11.39 

22 3.69 8.24 4.88 11.53 

23 3.90 8.86 4.77 11.57 

24 3.91 8.98 4.81 11.69 

Average 4.17 8.87 5.13 11.68 

26 of 35

Tuesday , March  23, 2004

Elsevier



Rev
ie

w
 C

op
y

27

Table 6. Summary of the abductive network models for the 24 next-day temperature forecasters 

without extreme temperature forecasts. 

Model Input(s):  Day (d-1) Day (d) 
Forecasting 

Hour  Temperature at 
Hours: 

Temp. 
Extremes 

Temperature 
Time Lags 
Selected 

Model Structure 

1 24  1  

2 24,17 Tmin 2,9 

3 3

4
24 Tmin, 

Tmax 4

5 5,23 

6
24,6 Tmax 

6,24 

7 24,7  Tmax 7,24 

8 24,8 Tmax 8,24 

9 24,9,7  9,24,26 

22  24,18,14  22,28,32 

 

10 24,18,10,5  10,16,24,29 

11 24,18,10,6  11,17,25,29 

 

12 24,18,13,2  12,18,23,34 

14 24,18,16,7  14,20,22,31 

15 24,18,13,7  15,21,26,32 

16 24,18,3 Tmax 16,22,37 

17 24,18,5  Tmax 17,23,36 

18 24,23,18,17  18,19,24,25 

 

13 24,20,18,14,3  13,17,19,23,34 

21 24,23,19,17,15  21,22,26,28,30 

23 24,18,16,14,1  23,29,31,33,46 

24 24,18,13,8  Tmin 24,30,35,40 

 

19 24,23,19,17,3 Tmax 19,20,24,26,40 

20 24,23,19,16,15,3 20,21,25,28,29,41 

 

Triple

Triple
Double

Triple
Double

Triple
Triple

Triple
Triple

Double
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Table 7. Summary of the abductive network models for the 24 next-hour temperature forecasters 

with extreme temperature forecasts. 

Model Input(s) 

Hourly Temperatures Extreme Temperatures 
Day (d) 

Forecasting 
Hour 

Day (d-1) Day (d) Day (d-1) Day  (d) 

Temperature 
Time Lags 
Selected 

Model Structure 

16  15   1 

23  22   1

1 24 ETmin 1 

2 1 ETmin 1 

3 2 ETmin 1 

4 3 ETmin 1 

10  9  ETmax 1 

11  10  ETmax 1 

12  11  ETmax 1 

13  12  ETmax 1 

17 19 16   1,22 

19  18  ETmin 1 

21  20  ETmin 1 

22  21  ETmin 1 

 

5 4 ETmin 
ETmax 1

6 5 ETmin 
ETmax 1

7 6 ETmin 
ETmax 1

8 6 7 ETmax 1,26 

9 19 8 ETmax 1,14 

14 8 12  ETmax 2,30 

18 7   ETmin 
ETmax 35 

20 11 19  ETmin 1,33 

24 7 23  ETmin 1,41 

 

15 19,17, 
15,14 14,7,3  ETmin 

ETmax 
1,8,12,       

20,22,24,25 
 

Double

Triple

White

28 of 35

Tuesday , March  23, 2004

Elsevier



Rev
ie

w
 C

op
y

29

Table 8. Performance of the next-hour temperature forecasting models over the evaluation year.  
 

Without extreme temperature forecasts With extreme     
temperature forecasts 
(Next-hour forecasts) Next-hour forecasts Next-day forecasts 

(Sequential Application)
Forecasting 

hour, h 

MAE, º F MAPE, % MAE, º F MAPE, % MAE, º F MAPE, % 

1 0.94 2.01 1.00 2.16 1.00 2.16 

2 0.96 2.11 1.06 2.32 1.35 2.97 

3 0.86 1.90 0.96 2.13 1.61 3.55 

4 0.90 1.96 1.01 2.20 1.84 4.10 

5 0.85 1.86 0.97 2.09 2.03 4.55 

6 0.83 1.85 0.87 1.96 2.32 5.28 

7 0.94 2.08 0.94 2.01 2.28 5.14 

8 0.96 2.05 1.14 2.40 2.32 5.10 

9 0.99 2.10 1.13 2.44 2.54 5.49 

10 1.01 2.12 1.12 2.29 2.78 5.83 

11 1.03 1.99 1.12 2.17 3.12 6.27 

12 1.04 2.04 1.10 2.12 3.39 6.64 

13 1.06 2.00 1.27 2.41 3.45 6.67 

14 1.25 2.38 1.13 2.07 3.84 7.23 

15 0.99 1.85 1.13 2.03 4.07 7.65 

16 1.07 2.00 1.07 2.00 4.25 7.97 

17 1.13 2.12 1.13 2.12 4.60 8.77 

18 1.87 3.72 1.03 2.21 4.45 8.60 

19 1.10 2.16 1.02 2.18 4.26 8.52 

20 1.09 2.14 1.02 2.17 4.07 8.37 

21 1.03 2.03 1.05 2.07 3.73 7.99 

22 1.20 2.44 1.02 2.17 3.66 8.06 

23 1.06 2.19 1.06 2.19 3.82 8.63 

24 1.10 2.35 1.12 2.40 3.78 8.64 

Average 1.05 2.14 1.06 2.18 3.11 6.42 
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Table 9. Summary of the abductive network models for the 24 next-hour temperature forecasters 

without extreme temperature forecasts. 

Model Input(s) 

Hourly Temperatures Extreme 
Temperatures 

Day (d) 
Forecasting 

Hour 
Day (d-1) Day (d) Day (d-1): 

Temperature 
Time Lags 
Selected 

Model Structure 

1 24 1

4 3 1

5 4 1

6 5 1

15  14  1 

16  15  1 

19  18  1 

23  22  1 

 

2 1 Tmin 1 

3 20 2 1,7

8 24 7 1,8

17  19 16  1,22 

18   17,5  1,13 

20  19,6  1,14 

21   20,5  1,16 

 

7 20 6,2 1,5,11

9 13 8,6 1,3,20

11  18 10,5  1,6,17 

12  9 11,7  1,5,27 

13 19 12,6  1,7,18 

14 17 13,6  1,8,21 

22  21,13,5 1,9,17

24  23,15,6 1,9,18

10 3 9,7 Tmax 1,3,31 

 

Double 

Triple 

Triple
Double
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Table 10. Summary of the MAE error histograms showing percentage populations of all 

forecasting hours over the evaluation year in three error categories for next-day and next-hour 

models as well as persistence and climatology forecasts. 

 

Next-day models Next-hour models 

MAE 
Error 

Category 

With 
Extreme 

Temperature 
Forecasts 

Without 
Extreme 

Temperature 
Forecasts 

Persistence Climatology With 
Extreme 

Temperature 
Forecasts 

Without 
Extreme 

Temperature 
Forecasts 

≤ 1 º F 41% 27% 25% 14% 60% 59% 

≤ 3 º F 85% 62% 52% 38% 95% 95% 

≥ 6 º F 2.6% 13% 27% 33% 0.4% 0.4% 

31 of 35

Tuesday , March  23, 2004

Elsevier



Rev
ie

w
 C

op
y

32

 

Fig. 1. A typical AIM abductive network model showing various types of functional 

elements. 
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Fig. 2. Structure and performance over the evaluation year for the next-day forecaster for 

hour 12 with extreme temperature forecasts. 
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Fig. 3. Performance of the 24 next-day hourly temperature forecasters (using extreme 

temperature forecasts) on four days representing the beginning of the four seasons of the 

evaluation year. Continuous line: Actual, solid circles: Forecasted.
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Fig. 4. Plots of average MAE and MAPE values for each calendar month of the evaluation 

year for next-day forecasters with extreme temperature forecasts. 
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