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Abstract  
 

Spectral estimation techniques have been used for many years. In many cases, their complexity 

warrants investigating machine-learning alternatives where intensive computations are required 

only during training, with actual estimation simplified and speeded up. This allows using simple 

portable apparatus for fast and automated estimation in real time. We propose using abductive 

network machine learning for estimating both the amplitude and frequency of a single sine wave 

in the presence of additive Gaussian noise. Models synthesized by training on 1000 

representative simulated sinusoids were evaluated on 500 new cases. With no phase variations 

and a signal to noise ratio of 7 dB, average absolute percentage errors for the sinusoid amplitude 

and period are 8.4% and 3.6%, respectively. Effects of the range of frequency variations and the 

noise level on the complexity and accuracy of the models were investigated. Amplitude and 

period estimates show signs of biased at a signal to noise ratio of 3 dB. Error variances track the 

Cramer-Rao bounds at high noise levels, with no thresholding observed down to 0 dB. The 

method is compared with a neural network model and with conventional DFT (discrete Fourier 

transform) based techniques and a Prony's based approach. The new approach is particularly 

useful when only a small portion of the sinusoid cycle is measured. 

Index Terms: Spectral analysis, Frequency estimation, Parameter estimation, Machine learning, 

Abductive networks, Cramer-Rao bounds, Sinusoid, Gaussian noise. 

 
Dr. R. E. Abdel-Aal,  
P. O. Box 1759,  
KFUPM, Dhahran 31261 
Saudi Arabia 
Phone: +966 3 860 4320, Fax: +966 3 860 4281                                               
e-mail: radwan@kfupm.edu.sa  



 

 2 

1. Introduction 

Estimation of unknown parameters of sinusoids in noise is important in many areas, including 

underwater acoustics, radar, sonar, radio direction finding, and communication systems. 

Example applications include: determining carrier frequencies and baud rates of communication 

systems following distortion and nonlinearities introduced through transmission, analysis of 

earth waves, processing of nuclear magnetic resonance (NMR) signals, speech and image 

processing, modal analysis, condition monitoring for engineering structures, and control and 

protection of electrical power systems. The more generalized problem of spectral estimation has 

received considerable attention in the literature, see Kay and Marple Jr. (1981) for an overview. 

Although the fast Fourier transform (FFT) approach is computationally efficient and produces 

acceptable results in many situations, its frequency resolution in Hz is limited to the reciprocal 

of the width of the measurement time window. The method also suffers from spectrum smearing 

due to the leakage associated with the implicit windowing with a boxcar function. With pulsed 

signals, e.g. in radar, the resulting resolution may not be adequate, and leakage has a detrimental 

effect on the detectability of sinusoidal components. Many alternative procedures have been 

proposed to alleviate the above limitations (Marple Jr., 1989). Real-time spectral estimation is 

important in several areas; e.g. speech processing (Moreno and Fonollosa, 1992), 

communications (Sills and Black, 1996), and online monitoring, control, and protection of 

power systems (Osowski, 1992). However, many of the alternative spectral estimation 

techniques require intensive matrix computations and/or iterative optimization which may not be 

practical for real time processing and may not even converge to a solution (Marple Jr., 1989). 

This has often led to adopting sub-optimal alternatives to reduce the computational load to a 

manageable level. Some techniques may require user intervention. For example, the most 

appropriate order for the auto regressive (AR) model is usually not known a priori, making it 

necessary to explore several possible orders based on the minimization of an error criterion. The 

model order may be progressively increased until the criterion for the error power reaches a 
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minimum. However, for least squares estimation procedures, prediction error decreases 

monotonically with increased model order, and some penalty function may be required to 

discourage the selection of too high an order (Marple Jr., 1989). All the computational 

complexities have to be repeated for each individual spectrum estimation, even though it may be 

quite similar to a previous one. These factors are not conducive to speeding up and automating 

spectrum analysis for real-time applications. 

A recent trend in many areas of applied sciences has been to resort to a machine learning 

approach when a rigorous algorithmic solution becomes too complex. With this approach, a 

model is automatically developed through training on an adequate number of solved examples. 

Once the model is synthesized, it can be used to perform fast predictions of outputs 

corresponding to new cases. A major advantage of this approach in spectral analysis is that 

intensive computations are now required only once, i.e. during training for model synthesis, 

rather than being repeated for every sample analyzed during actual use. Using the model to 

process new data becomes a simple and speedy operation that can be implemented in real time 

using compact and portable apparatus. While conventional spectral estimation techniques are 

primarily concerned with frequency estimates only, with amplitudes and phase requiring extra 

computations, a machine learning solution can estimate all parameters of interest 

simultaneously.  

Many techniques exist for the development of machine learning systems (Weiss and 

Kulikowski, 1991), including statistical pattern recognition methods (e.g. Bayesian classifiers 

and discriminant functions), artificial neural networks, and methods for the induction of decision 

trees. These techniques vary in their accuracy, complexity, computational requirements during 

training, and their ability to provide human-like explanations for their conclusions. Such 

variations have led to newer techniques that combine good features from various methods. An 

example of such 'hybrids'  is  the  AIM (abductory induction mechanism) modeling tool 
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(AbTech Corporation, 1990; Montgomery and Drake, 1990) which draws  on  statistical  and  

multiple regression analysis methods as well as neural networks, resulting in a faster and more 

automated approach to model synthesis. The development of this approach of machine learning 

through self-organization has followed the track of the group method of data handling (GMDH) 

algorithm (Farlow, 1984) and the closely related adaptive learning network (ALN) technique 

(Barron et al., 1984). A mathematical description of the GMDH foundations for AIM is given in 

(Abdel-Aal, 1998).  

Neural network techniques have been proposed for signal identification and parameter 

estimation for multiple sinusoids in noise. Analog neural networks have been proposed to solve 

optimization differential equations using the gradient descent method in real time, mainly for 

waveform analysis in power systems, e.g. (Osowski, 1992). These are implementations of the 

Hopfield type feedback recurrent dynamic networks that do not require a separate training phase. 

An analog processing element is needed for each sample in the time record processed, and 

therefore implementation cost would be high for large waveform records. To avoid convergence 

to a local minimum of the network energy function, the network may have to be initialized 

several times with different initial values in search of the global minimum. In another 

application of more conventional neural networks, nonlinear constrained Hebbian learning 

algorithms were developed for frequency estimation of multiple sinusoids in impulsive and 

colored noise (Karhunen and Joutsensalo, 1992).  A radial basis function (RBF) neural network 

has been described for estimating the input noise density function and its derivative, which are 

fed to a locally optimum detection procedure for determining weak sinusoidal signals in non 

Gaussian noise (Hummels et al., 1995). An analysis-by-synthesis system of neural networks was 

used to extract the sinusoidal parameters from the spectra of audio signals (Garcia, 2001). 

This paper investigates the use of AIM machine learning for estimating the amplitude and 

frequency of a single sinusoid in Gaussian noise. Parameter estimation of single sinusoids has 
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been reported using various techniques (Hancke, 1990; Nishiyama, 1997; Kay, S., 1989; 

Nishiyama, K., 1999; and Rife and Boorstyn, 1974). Previous experience with AIM in modeling 

and forecasting the daily minimum temperature (Abdel-Aal and Elhadidy, 1994) has indicated 

improved prediction accuracy and faster training compared to neural network models. Model 

synthesis is also more automated with AIM, requiring little or no user intervention. Expressed as 

a network of polynomials, AIM models can provide better insight into the phenomenon being 

modeled. The technique has also been used for estimating the position, width, and height of 

single and double noisy Gaussian peaks in nuclear spectra (Abdel-Aal, 1998). Following a brief 

overview of AIM, models for estimating both noiseless and noisy sinusoids are synthesized and 

evaluated, and the results compared with the corresponding Cramer-Rao bounds and other 

conventional and non-conventional spectral estimation methods. 

2. AIM Abductive Machine Learning 

AIM is a supervised inductive machine-learning tool for automatically synthesizing abductive 

network models from a database of input and output values which represent a training set of 

example situations. Once synthesized by training on a training data set, the network can be 

queried with new input data to provide the corresponding predicted output. Abductive networks 

(Montgomery and Drake, 1990) combine the advantages of the neural network approach with 

those of advanced statistical methods. While the processing elements in neural networks are 

restricted by the neuron analogy, AIM builds networks of various types of more powerful 

numerical functional elements based on prediction performance. The network size, element 

types, connectivity, and coefficients for the optimum model are automatically determined using 

well-proven optimization criteria, thus reducing the need for user intervention. With neural 

networks, the user has to experiment with various architectures and there are no hard and fast 

design rules to determine optimum values for the number of hidden layers, number of neurons in 

each hidden layer, and various training parameters. Often a number of combinations need to be          
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tried in search of the best solution. With the commonly used standard back propagation 

algorithm, training times can be huge and there are many training parameters to adjust which 

may have a major effect on the results (Weiss and Kulikowski, 1991). The algorithm is not 

guaranteed to converge to a good solution, and because the method may be unstable and 

oscillate between solutions, it may not be clear when to stop (Weiss and Kulikowski, 1991). 

This makes AIM much easier to use and considerably reduces the learning/development time 

and effort.  

AIM models take the form of layered feed-forward abductive networks of functional elements 

(nodes) (AbTech Corporation, 1990), see Fig.1. Elements in the first layer operate on various 

combinations of the independent input variables (x's) and the single element in the final layer 

produces the predicted output for the dependent variable y. In addition to the functional elements 

in the main layers of the network, an input layer of normalizers converts the input variables into 

an internal representation as Z scores with zero mean and unity variance, and an output layer of 

unitizers restores the results to the original problem space. Both the element type and the 

combination of inputs to it from all the previous layers are selected automatically for best 

prediction performance according to the predicted squared error (PSE) criterion (Barron, 1984). 

The used version of AIM supports the following main elements:  

(i) A white element which consists of a constant plus the linear weighted sum of all outputs of 

the previous layer, i.e.: 

"White" Output  = W0 + W1x1 + W2x2 + W3x3 + .... + Wnx n                                                         (1) 

where x1, x2, …, xn are the inputs to the element and W0, W1, …, Wn are the element weights.  

(ii) Single, double, and triple elements which implement a third-degree polynomial expression 

with all possible cross-terms for one, two, and three inputs respectively; for example,  

"Double" Output = W0 + W1x1 + W2x2 + W3x12 + W4x22 + W5x1x2 + W6x13 + W7x23             (2)  
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The first step in solving a problem is preparing a database of input-output solved training 

examples, which AIM uses to synthesize the model network layer by layer until no further 

improvement in performance is possible or a preset limit on the number of layers is reached. 

Within each layer, every element is computed and its performance scored for all combinations of 

allowed inputs. The best network structure, element types and coefficients, and connectivity are 

all determined automatically by minimizing the PSE criterion. This selects the most accurate 

model that does not overfit the training data, and therefore strikes a balance between the 

accuracy of the model in representing the training data and its generality which allows it to fit 

yet unseen future data. In this way the model is optimized for the actual use for which it is 

developed, rather than only at the training phase. The user may optionally control this trade-off 

between accuracy and generality using the complexity penalty multiplier (CPM) parameter 

(AbTech Corporation, 1990). Larger values than the default value of 1 lead to simpler models 

that are less accurate but are more likely to generalize well with unseen data, while lower values 

produce more complex networks that may overfit the training data and degrade prediction 

performance with noise. To obtain good AIM models, the training set should be a good 

representation of the problem space. AIM’s learning task is also simplified by breaking the 

problem into smaller and more manageable assignments, and by utilizing knowledge on relevant 

parameters in the choice of input variables for the training database. 

3. Estimating Noiseless Sinusoids 

As a first exercise, AIM was trained on noiseless sinusoids of various amplitudes and 

frequencies, with the objective of developing a model that determines the amplitude and period 

of the sine wave automatically. The model was synthesized by training on 1000 simulated 

sinusoids having the same phase angle of zero but randomly generated values for both the 

amplitude and the period. The data record for a noiseless sinusoid having amplitude A and 

period T was represented as: 
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50,...,2,1;2sin)( == i
T

iAiy π                                    (3) 

Samples are uniformly spaced in time and the sample spacing is taken as 1 second for simplicity. 

Initially, both amplitude and period variations ranged over a decade, i.e. a ratio of ten between 

the maximum and minimum values. The amplitude A assumed real values which are uniformly 

distributed between 1.0 and 10.0, inclusive (1.0 ≤ A ≤ 10.0), while the period T assumed integer 

values which are uniformly distributed between 5 and 50, inclusive (5 ≤ T ≤ 50). Uniform 

distribution for A and T values allowed equal representation of different sinusoids during 

training for model synthesis. A sinusoid consisted of 50 samples that constituted the input 

variables to AIM. Restriction on the number of samples in a record was imposed by the 

maximum limit of 50 input variables for the AIM version used. With 5 ≤ T ≤ 50, the largest 

period (lowest frequency) represents one full cycle of the sinusoid within the time data record 

input to AIM, while the shortest period (highest frequency) contains five samples within each 

sinusoid cycle, which adequately satisfies the sampling theorem.  

Records for the AIM training/evaluation database were derived by appending corresponding 

known values for the amplitude and frequency to each sinusoidal data records computed in (3). 

A typical complete AIM record is represented below: 

Inputs :               Outputs :   

Values of the Sinusoid         Corresponding Sinusoid Parameters      
Samples             

y(1)   y(2)   y(3) …  y(50)      Amplitude, A     Period, T 

AIM generates a model for each variable declared as output in the training database. All model 

synthesis was performed using the default value for the complexity penalty multiplier (CPM=1). 

The top row in Fig. 2 shows the abductive network models synthesized for the amplitude (left) 

and the period (right). Here yi indicates y(i), the ith time sample of the sinusoid. Multiple input 

samples may be indicated on the same model input line to reduce figure complexity. The 
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amplitude model is a relatively simple 1-layer, 3-input network while the period model is a more 

complex 4-layer, 9-input model. Determining the amplitude of a noiseless sinusoid is simpler 

than determining its frequency.  

To investigate how model complexity is affected by the range of frequency variations in the 

training data, training was repeated with variations in the waveform period limited to only one 

octave, i.e. a ratio of two between the maximum and minimum periods. Three ranges were used 

for the frequency octave variations: a high frequency range (5 ≤ T ≤ 10), a medium frequency 

range (25 ≤ T ≤ 50), and a low frequency range (100 ≤ T ≤ 200). Resulting models for these 

frequency octave ranges are shown in the remaining three rows of Fig. 2. All models for the 

octave frequency variations are clearly simpler than their decade counterpart, for both the 

amplitude and the period. It is noted that the 'white' functional element is only a linear weighted 

sum of its inputs, and therefore is simpler than the 'triple' element that can contain terms of the 

third degree of the inputs. The three ranges for octave frequency variations have nearly the same 

complexity for the period models. However, the amplitude model is simplest for the medium 

frequency range, where the model is just a linear weighted sum of only two samples.  Accurate 

amplitude estimation becomes relatively more difficult (requiring a more complex model) at 

both lower frequencies (shallower waveforms) and higher frequencies (fewer samples within the 

waveform period). This suggests that the medium frequency models should give the best overall 

estimation performance. 

Fig. 3 shows a detailed description of the simple amplitude model obtained for medium 

frequency octave variations (1.0 ≤ A ≤ 10.0 and 25 ≤ T ≤ 50). Equations shown are the outcome 

of model synthesis. Symbolically substituting for the equations and simplifying, we obtain the 

following relationship for the estimate of A in terms of two sinusoid samples: 

)24(155.0)8(147.1027.0 yyA ++=
K

                                          (4) 
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For example, the sinusoid )40/2sin(5.7)( iiy π=  has A =7.5, T = 40, y(8) = 7.133, and y(24) = -

4.408. Substituting for y(8) and y(24), (4) gives the estimate A
K

as 7.525, which is the correct 

sinusoid amplitude with an error of 0.33%.  

To assess the performance of the models over a wide range of test cases, the AIM 'Evaluate' 

utility was used to run the resulting models through new evaluation sets (previously unseen 

during model synthesis) of 500 sinusoid records each. AIM predictions for the amplitude and 

period of each sinusoid were compared with the corresponding known values. Table 1 

summarizes data on the percentage of the evaluation population having percentage errors within 

±2%, ±5%, and ±10% of the true values of the sinusoid amplitude and period. Included also are 

the values of the overall mean and standard deviation (SD) of the absolute percentage error over 

the total evaluation population. In general, errors are markedly larger for the decade variations as 

compared to the octave variations. With the wider range of variations in the decade case, there is 

a fewer number of training examples in each narrow bin containing a set of close frequencies 

and amplitudes. With these bins having the same width in both cases, their number would be 

considerably larger in the decade case. Using the same total number of 1000 training examples 

in both cases, fewer number of the uniformly distributed, randomly generated training examples 

would fall within each bin, which leads to poorer learning. This problem can be solved by 

proportionally increasing the number of training examples for the case of decade variations.  

For all octave ranges, amplitude and period estimates have an average absolute percentage error 

below 1.6% and the maximum error magnitude hardly exceeds 10%. As expected, models for 

the medium frequency octave give the best overall performance. It is noted that for the low 

frequency octave, the period is estimated more accurately than the amplitude. With the 50-

sample time records used, conventional FFT based frequency estimation has a resolution of 0.02 

Hz. For the low frequency octave (100 ≤ T ≤ 200), the measured record of 50 samples contains 

one half to one quarter of the sinusoid cycle, respectively, and frequencies fall within the range 
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0.005 Hz to 0.01 Hz. These two frequency limits are below the FFT resolution, and therefore 

conventional methods would most likely estimate all frequencies of this octave as the DC 

component, which amounts to a frequency estimation error of 100%. This shows that the 

proposed technique is particularly useful for frequency estimation from short time records that 

represent only a small portion of one cycle of the measured sinusoid. Further investigations 

reported here will consider only the case of the medium range frequency octave (1.0 ≤ A ≤ 10.0 

and 25 ≤ T ≤ 50).  

4. Estimating Noisy Sinusoids 

Realistic observation data often have the true sinusoid corrupted by broadband background and 

sensor noise. A noisy sinusoid may be represented as:  

50,...,2,1);(2sin)( =+= iie
T

iAiy π
                                           (5) 

where e(i) are samples of a white Gaussian noise process with zero mean and standard deviation 

σ. The value of σ is chosen to give the required signal to noise ratio (SNR) given in decibels by: 

2

2

2
log10

σ
ASNR =                                                          (6) 

Model training and evaluation was repeated using signals for the medium range frequency 

octave at various noise levels. Fig. 4 shows the models synthesized with SNR = 17 and 3 dB, in 

comparison with the models derived in Section 3 above for noiseless data. The figure shows a 

general trend of increasing model complexity with increased noise level. This is expected as the 

model now tries to reconcile greater variations in the input data to the same true value for the 

output parameter. The most complex network is that for estimating the period at the largest 

noise level (SNR = 3 dB). Amplitude models remained simpler than period models for the noise 

levels considered. Each model was evaluated using 500 sinusoid records at the same noise level 

used for training, and statistics on the error are given in Table 2. As expected, the trend of 

increasing error with increased noise is obvious. It is clear that for noisy signals, frequency 
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estimates are more accurate than amplitude estimates. At SNR = 3 dB, 91.6% of the evaluation 

population has a period error within ±10%, and the overall mean absolute period error is about 

4.5%.   

 

To highlight the increase in model complexity attributed to noise, Fig. 5 shows the detailed 

structure and equations for the amplitude model for SNR = 17 dB (left hand side of the middle 

row in Fig. 4). Fig. 5 should be compared with Fig. 3 which shows the 2-input model obtained 

for the noiseless case. Both models are 1-element linear models, but accounting for the noise has 

increased the number of inputs used to 23. Symbolic substitution for the equations in Fig. 5 and 

simplifying gives the following relationship for the amplitude estimate in terms of 23 samples of 

the noisy sine wave: 

A
K

 =  0.035 + 0.075 y(2) + 0.059 y(3) + 0.087 y(4) + 0.093 y(5) + 0.121 y(6) + 0.141 y(7)           

+ 0.124 y(8) + 0.127 y(9) + 0.078 y(10) + 0.102 y(11) + 0.086 y(12) + 0.044 y(13)  

+ 0.053 y(14) + 0.026 y(15) -  0.040 y(18) - 0.060 y(22) - 0.026 y(24) - 0.033 y(25)      

+ 0.020 y(33) - 0.042 y(37) - 0.031 y(39) - 0.036 y(43) - 0.029 y(46)                          (7) 

 

Substituting the relevant waveform samples for the noiseless sinusoid having A = 7.5 and T = 40 

into this equation gives A
K

 = 7.579, which is accurate to 1.05%. Equation (7) should be 

compared with the simple 3-term expression in equation (4) for the noiseless case. Higher levels 

of noise would introduce even greater model complexity and nonlinearity. For example, at SNR 

= 3 dB, the amplitude model (left hand side of the bottom row in Fig. 4) becomes a 4-layer 

model with three nonlinear ‘Triple’ elements.  

We have so far considered the absolute value of the percentage error as a measure of the 

estimation accuracy. Many frequency estimators suffer from being biased at low signal to noise 

ratios when the mean estimation error (not its absolute value) over the entire population 

becomes significantly different from zero. A positive mean value shows that the method tends to 
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overestimate, while a negative value is a sign of underestimation. In practice, we can only infer 

about performance of the estimator on the entire error population from measured performance 

on evaluation samples of finite size. Values of the mean error with such samples are assumed to 

be normally distributed about the true population mean for the error, with a standard deviation 

equal to the population standard deviation/ n , where n is the sample size (Mendenhall and 

Beaver, 1994). For large values of n, (e.g. n = 500), we can also assume that the unknown 

standard deviation for the entire error population is equal to that of the finite evaluation sample. 

Judging whether the estimator is actually biased or not should take into account the statistical 

fluctuations in estimates of the mean error for such evaluation samples about the true mean 

error. The z statistic can be used to test the hypothesis that the true mean error is zero (i.e. the 

estimator is unbiased) at a specified confidence level, given the measured mean error for a finite 

evaluation sample. Table 3 shows data on the mean and standard deviation of the percentage 

error for the sinusoid amplitude and period as calculated from 500-case evaluation samples at 

two noise levels, SNR = 7 dB and 3 dB. At 95% confidence level (α = 0.05), the hypothesis is 

accepted for -1.96 < z < 1.96. Data for both the amplitude and the period show that the 

hypothesis of unbiased estimation is rejected only for SNR = 3 dB. Therefore, the AIM 

estimators described are unbiased down to an SNR value of 7 dB, showing signs of bias at SNR 

= 3 dB. 

So far, models were evaluated using evaluation data having the same noise level as that of the 

training data used to synthesize the model. Performance of models with evaluation data having 

different noise levels from that used to synthesis the model has also been investigated, and the 

results are shown in Table 4. Models developed with noiseless, SNR = 17 dB, and SNR = 7 dB 

training data were each evaluated with noiseless, SNR = 17 dB, and SNR = 7 dB evaluation data. 

The table shows that a model performs well at noise levels that are equal to or less than the noise 

level of the training data used to synthesize it. For example, models developed using training 
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data having SNR = 7 dB perform adequately with sinusoids having signal to noise ratios down to 

7 dB. This ensures that the training data set gives an adequate representation of new data that 

may be encountered during model evaluation. 

5. Comparison with Neural Networks 

Performance of the abductive network model shown in the middle row of Fig. 4 for noisy 

sinusoids (SNR = 17 dB) was compared with a back propagation neural network model trained 

and evaluated on the same data used by the abductive model. The neural model was the default 

function approximation model synthesized by the NeuroExpert module of the NeuroSolutions 4 

software for Windows. 20% of the training data were used for cross validation. The 3-layer 

network uses 50 neurons for the input layer, three neurons with a hyperbolic tangent transfer 

function for the hidden layer, and two output neurons representing the amplitude and the period 

of the sine wave. Combined together, the two AIM models for the amplitude and period use only 

28 different samples of the sine wave, while the neural model requires all 50 inputs. Excluding 

irrelevant inputs helps simplify the resulting model and speed up its execution. It also reduces 

the effects of noise or measurement errors associated with such inputs. In contrast with the 

opaque nature of the neural models, the abductive models are quite transparent as evidenced by 

Fig. 5 and Equation (7) that describe the amplitude model. Expressing the model in an analytical 

form gives better insight into the modeled relationship, allows comparison with previously 

obtained forms for the relationship, and simplifies implementing the model and transporting it to 

other platforms. Table 5 compares the estimation performance of the abductive and neural 

models when evaluated on 500 sinusoid records at the same noise level used for training. Similar 

to the abductive model, the neural model estimates the period of the sine wave more accurately 

than the amplitude. The abductive model significantly outperforms the neural model, with the 

mean absolute error being 1.70% and 2.53%, respectively for the period, and 3.04% and 4.40%, 

respectively for the amplitude.  
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6. Comparison With the Cramer-Rao Bounds and Other Estimators 

Performance of estimators is often compared against the Cramer-Rao (CR) bound (Norton, 

1986) which sets a theoretical lower limit (a minimum variance unbiased bound) on the 

uncertainty that can be achieved in the estimation of a parameter from noisy measurements. A 

single complex sinusoid of N measured samples takes the form: 

NiiAeiY Fij ,...,2,1);()( )2( =+= + υφπ
                                       (8)

 

where A is the amplitude, F the frequency, φ  the phase, and )(iυ  is a complex white Gaussian 

noise process with zero mean and variance 222
ir υυυ σσσ += . We assume that noise variances 

for the real and imaginary parts are equal, i.e. 2
rυσ = 2

iυσ . For this simple case the Fisher's 

information J matrix (Norton, 1986) is a 3 x 3 matrix that can be easily inverted analytically to 

produce simple expressions for the bounds. For multiple sinusoids, the resulting larger J matrix 

is usually inverted by the computer and no attempt is made to derive analytical expressions for 

the bounds. If F
K

and A
K

are the estimates for F and A, then the Cramer-Rao bounds give the 

minimum variances on these estimates as (Nishiyama, 1997): 
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The Cramer-Rao lower bounds (CRLB) on the frequency estimate is usually expressed in dB as: 
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where SNR is the signal to noise ratio for the sine/cosine part of the complex sinusoid as defined 

in (6). It is noted that the bound is independent of the frequency of the complex sinusoid, and is 

solely determined by N, the number of samples in the data record measured, and the signal-to-

noise ratio. The bound is larger (error variance smaller) for larger SNR and N.  For N = 50 we 

have: 

149.59_ += SNRFCRLB                     (14)
 

Substituting from (12) into (10), the CRLB bound on the amplitude estimate is: 

22

2

2

2log10
2

log10

log10
)var(min_

1log10_

A
NA

N
A

ACRLB

r

r

+=

==

υ

υ

σ

σ
�

 

2

2log10
A
NSNR +=                                                                     (15)                           

In addition to SNR and N, this CRLB depends on the amplitude of the sinusoid. For N = 50 and 

A = 5 we get:  

021.6_ += SNRACRLB                      (16)
 

Fig. 6(a) and 6(b) plot CRLB_F and CRLB_A, respectively, versus SNR for N = 50 and A = 5.  

Although CRLB bounds for a single complex sinusoid have simple analytical expressions due to 

the simplicity of the J matrix, they do not generally apply to the corresponding real (cosine) or 

imaginary (sine) sinusoidal signal assumed here. A single real or imaginary sinusoidal signal at 

frequency F is composed of two complex sinusoids at frequencies -F and +F. For these two 
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complex sinusoids, the CRLB bounds approach those of a single complex sinusoid when the 

frequency separation between the two sinusoids exceeds a critical frequency of 2/N, i.e. F > 1/N  

(Rife and Boorstyn, 1976). With N = 50 used here, this condition is satisfied for F > 0.02 Hz. 

With N = 24 used in (Tufts and Fiore, 1996), bounds for the single complex sinusoid were taken 

to represent those for a single real (cosine) wave having F = 0.125, i.e. F = 3/N.   

Fig. 6 shows also plots of ( )MSE/1log10 , where MSE is the mean square error in estimating the 

frequency F (=1/T) and amplitude A of the sine wave, versus the signal to noise ratio, SNR. 

Results were obtained when medium frequency AIM models (1.0 ≤ A ≤ 10.0 and 25 ≤ T ≤ 50) 

synthesized at a given SNR were evaluated using 500 cases, all having the same nominal values 

of A = 5 and T= 26 (F ≈ 0.04 ≈ 2/N) at the same SNR value. Fig. 6(a) shows that the loss in 

frequency estimation accuracy by AIM from the CRLB improves (decreases) with the decrease 

in the signal-to-noise ratio and there are no signs of thresholding (sudden drop in the estimation 

accuracy) for SNRs as low as 0 dB. At SNR = 0, AIM's loss compared to CRLB_F  is less than 5 

dB. At low signal to noise ratios, many frequency estimators exhibit a thresholding effect. For 

example, estimators employing iterative minimization, e.g. using the Gauss-Newton algorithm, 

suffer from the presence of local minima in the loss function to be minimized. At high noise 

levels, initial estimates will not be sufficiently accurate, and the algorithm may converge to a 

false local minimum, thus leading to a threshold SNR which must be exceeded for acceptable 

performance with noise (Stoica et al., 1989).  Typical threshold SNR values where estimation 

accuracy for the frequencies of complex sinusoids departs sharply from tracking the CRLB are 7 

dB for the principal component auto regressive method (PC-AR) (Rao and Raghavan, 1989) and 

-1 dB for the maximum likelihood (MLE) estimator (Kay, 1989).   

Fig. 6(a) shows also the performance of another frequency estimator based on the Prony's 

method (Tufts and Fiore, 1996) for a single real sinusoid of the cosine form. Using a set of 

difference equations, the method reduces the problem of estimating the frequency of a cosine 
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wave to that of a linear least squares fit, giving the frequency estimate as (Tufts and Fiore, 

1996): 
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where y(i); i=1,2,3, ..., N are the measured samples of the cosine wave. With N = 50, the method 

was evaluated using 500 noisy cosine waves having the same amplitude, period, and SNR as 

those used for AIM evaluation and CRLB determination. Although there is no sharp cut off, 

estimation accuracy for this method deteriorates steadily, departing more from the CRLB bound 

as the noise level increases. At SNR = 0 dB, the mean absolute percentage frequency error is 

unacceptably high at 77 % for this method, as compared to about 5 % for AIM.  It is clear that 

AIM frequency estimates are far more accurate than those using the Prony's based method, 

particularly at high noise levels. Fig. 6(b) for the amplitude bounds shows that AIM estimation 

errors for the amplitude track the CRLB well at low values of the signal to noise ratios, with a 

loss of only about 6 dB at SNR = 0 dB. Again there are no signs of thresholding at high noise 

levels. 

We compared the performance of the AIM frequency estimator and the DFT based method for 

determining the frequency of a single noisy sine wave having A = 4.58 and T= 28 at SNR = 7 dB, 

see Fig. 7. An FFT transform was performed on the waveform signal, and the frequency of the 

sine wave was determined as that corresponding to the frequency bin containing the peak 

magnitude of the FFT transform. Percentage errors in the period estimates for the AIM and DFT 

methods are 0.74% and -10.71%, respectively. The AIM amplitude estimator was compared 

with a simple peak detection method applied after the waveform was smoothed to reduce the 

effects of noise. Smoothing was performed through simple averaging of the waveform signal 

over a moving window of size 3. Both the positive and negative peak values were detected, and 

the amplitude of the sine wave was taken as the average of their absolute values. Percentage 
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errors in the amplitude estimates for the AIM and peak detection methods are –9.3% and 10.3%, 

respectively. Fig. 7 plots the original sine wave data in comparison with two sine wave fits 

obtained from period and amplitude estimates by the AIM method and the DFT-Peak detection 

method. Computed to give an overall measure of the goodness of fit, the sum of the squared 

errors was 32 and 289 for the two fits, respectively.  

 

7. Conclusions 

Abductive machine learning has been demonstrated for estimating the amplitude and frequency 

of a single noisy sinusoid. It promises faster, simpler, and more automated analysis that makes it 

favorable in many real-time applications. Both parameters can be accurately determined 

simultaneously through direct substitution of the measured sample values into a set of 

polynomial equations, without the need for user intervention. Parameter estimation does not 

require any matrix manipulations, data fitting, or solving for the roots of polynomials, and 

therefore can be performed speedily in the field using simple portable apparatus. Major 

computational resources are needed only once for training during model synthesis. Performance 

for both amplitude and frequency is superior to that of a back propagation neural network model 

developed on the same noisy data. Frequency estimation accuracy exceeds that of conventional 

DFT based techniques, particularly when data is available only on a small portion of the 

sinusoid cycle.  Performance is also superior to that of a neural network model, and that of a 

Prony's based method using a linear least squares fit, particularly at high noise levels. AIM 

estimates start to show some bias at about SNR = 3 dB. Error variance tracks that of the Cramer-

Rao bound closely (with a small loss) at low SNR values, showing no signs of thresholding 

down to SNR = 0 dB. This may be attributed to the fact that phase was assumed constant and 

that a model was synthesized for use at each noise level considered. Future work would consider 

estimating the phase for a given frequency as well as the analysis of multiple sinusoids.  
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Table 1. Error statistics for the AIM models of Figure 2 for fitting a single noiseless sine wave at 

various frequency ranges. Evaluation on 500 noiseless cases. Shown are percentages of the 

evaluation population having various ranges of the absolute percentage error and data on the 

mean and standard deviation of the absolute percentage error.  
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Table 2. Error statistics for the AIM models of Figure 4 for fitting a single sine wave at various 

noise levels. Evaluation on 500 noisy cases. Shown are percentages of the evaluation population 

having various ranges of the absolute percentage error and data on the mean and standard 

deviation of the absolute percentage error. 
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Table 3. Data for testing the hypothesis of unbiased estimation for the AIM amplitude and 

period estimators using the z statistic at two values of the signal to noise ratio. Mean and 

standard deviation are those of the percentage error for a 500-case evaluation sample. 
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Table 4. Performance of AIM models when evaluated with data having the same and different 

noise levels from those used to develop the model. Shown are the mean and standard deviation 

of the absolute percentage error for both the amplitude and the period. 
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Table 5. Performance comparison between the AIM abductive model shown in the middle 

row of Figure 4 for a single noisy sine wave at SNR = 17 dB and a back propagation neural 

network model developed and evaluated using the same data. 
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Figure 1. A typical AIM abductive network structure showing various types of functional 

elements. 
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Figure 2. AIM abductive network models for estimating the parameters of a single noiseless  

sine wave at various frequency ranges. Amplitude range: 1-10. Training on 1000 cases. 
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Figure 3. Details of the AIM abductive network model for the amplitude of a single noiseless 

sine wave (third row, left, in Figure 2).  
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Figure 4. AIM abductive network models for estimating the parameters of a single sine wave at 

SNR = 17 dB and SNR = 3 dB in comparison with the noiseless case. Training data: Medium 

frequency octave variations, 1000 cases. 
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Figure 5. Details of the AIM abductive network model for the amplitude of a single noisy sine 

wave at SNR = 17 dB (middle row, left, in Figure 4). 
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Figure 6. Plots of the inverse of estimation error variance versus signal-to-noise ratio for the 

Cramer-Rao bounds, AIM estimators, and a Prony's based frequency estimator. (a): Frequency, 

(b): Amplitude. Evaluation on 500 cases having amplitude = 5 and period = 26 at the same SNR 

used to develop the model. 
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Figure 7. Comparison between fits for a noisy sine wave (A = 4.58, T = 28, SNR = 7 dB) using 

AIM amplitude and period estimators and using DFT and peak detection to determine the 

frequency and the amplitude, respectively. 
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