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Abstract 
 
 

Differential diagnosis of multiple disorders is a challenging problem in clinical medicine. 

According to the divide-and-conquer principle, this problem can be handled more effectively through 

decomposing it into a number of simpler sub-problems, each solved separately. We demonstrate the 

advantages of this approach using abductive network classifiers on the 6-class standard dermatology 

dataset. Three problem decomposition scenarios are investigated, including class decomposition and 

two hierarchical approaches based on clinical practice and class separability properties. Two-stage 

classification schemes based on hierarchical decomposition boost the classification accuracy from 91% 

for the single-classifier monolithic approach to 99%, matching the theoretical upper limit reported in 

the literature for the accuracy of classifying the dataset. Such models are also simpler, achieving up to 

47% reduction in the number of input variables required, thus reducing the cost and improving the 

convenience of performing the medical diagnostic tests required. Automatic selection of only relevant 

inputs by the simpler abductive network models synthesized provides greater insight into the diagnosis 

problem and the diagnostic value of various disease markers. The problem decomposition approach 

helps plan more efficient diagnostic tests and provides improved support for the decision making 

process. Findings are compared with established guidelines of clinical practice, results of data analysis, 

and outcomes of previous informatics-based studies on the dataset. 

Keywords:  

Classifiers, Abductive Networks, Neural Networks, Problem Decomposition, Divide and Conquer, 

Classification Accuracy, Data Reduction, Modular Networks, Medical Diagnosis, Multiple Disorders, 
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1. Introduction 

 Differential diagnosis among a group of disorders having similar symptoms and signs poses a 

challenging problem in clinical medicine. According to the divide-and-conquer principle, classification 

of multiple disorders can be performed more efficiently through problem decomposition [1], 

particularly when various diagnoses are independent and the causes underlying them do not interact. 

Instead of tackling the whole complex problem at once, the problem is divided into a number of 

simpler sub-problems, each of which is solved separately. Problem decomposition also helps the user 

better understand the diagnostic situation and provide required interpretations and justifications [1]. 

The hierarchical nature of this approach makes the classification easier to understand and helps guide 

the diagnosis process [2]. Resulting partial diagnoses could also prove useful in explaining findings 

and deciding upon further diagnostic tests to be performed next. Early diagnostic programs, e.g. [3], 

have applied pattern sorting methods to group disorders based on similarity of symptoms. The 

hierarchical approach to diagnosis has also been used to implement several medical expert systems [4].  

Machine learning classification techniques are being increasingly used for decision-making 

support in medicine. Such techniques include Bayesian and nearest-neighbor classifiers, rule induction 

methods, decision trees, fuzzy logic, artificial neural networks, and abductive networks [5] based on 

the group method of data handling (GMDH) algorithm [6]. Compared to neural networks, abductive 

networks allow easier model development and provide more transparency and greater insight into the 

modeled phenomena, which are important advantages in medicine. Medical applications of GMDH-

based techniques include modeling obesity [7], analysis of school health surveys [8], drug detection 

from EEG measurements [9], medical image recognition [10], and screening for delayed gastric 

emptying [11].  Neural networks have been used to solve many multiclass classification problems 

directly using a single network. Examples of such applications include categorizing arrhythmia types 

from ECG signals [12], diagnosing eye diseases [13], classifying the severity of diabetic retinopathy 
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[14], discriminating between dyslexic subtypes [15], classifying various types of aphasia [16], 

classifying sleep stages from EEG signals [17], differential diagnosis of eleven interstitial lung 

diseases [18], differential diagnosis among different types of dementia [19], and discriminating 

between pancreatic ductal adenocarcinoma and mass-forming pancreatitis based on CT findings [20].  

Training a single network to solve a complex multiclass classification problem may suffer from 

strong interferences that slow down convergence and degrade generalization [21]. The divide-and-

conquer approach has been proposed to improve the performance and realization of neural network 

solutions to real life problems through problem decomposition. Instead of tackling the whole complex 

problem in one go, the problem is divided into a number of simpler, more manageable sub-problems, 

each of which can be solved by a network module. The resulting modules are simpler than a single 

(monolithic) network that attempts to solve the problem as a whole, and therefore would generalize 

better, thus improving classification performance. Such modules would also require fewer inputs and 

train faster. Various modules can be trained in parallel, which further reduces training time. They 

would also be easier to realize physically as VLSI circuits where practical limitations exist on the 

number of connections associated with a node [22]. Resulting smaller modular networks reduce the 

requirement on the training sample size, which is useful in handling high-dimensionality data often 

encountered in medicine.  

A number of approaches exist for decomposing a complex problem into a set of simpler ones. 

In the manual approach, decomposition is performed by the designer prior to training, based on prior 

knowledge of the classification problem. Class decomposition, e.g. [23], is a straight forward 

approach, where a K-class classifier is replaced by K two-class modules, each trained to recognize one 

class from its complement. Hierarchical approaches, e.g. [24], perform classification in a number of 

sequential stages. Techniques have also been described for performing the decomposition 

automatically during training without requiring prior knowledge of the problem, e.g. [25]. Using 
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network committees (ensembles) is another related modular approach for improving classification 

accuracy. With this approach, a number of independent classifiers, each trained to solve the whole 

problem from a different perspective, are used simultaneously and their outputs combined to produce 

the final classifier output. Ensembles of abductive networks trained on different subsets of the training 

set have proved useful in improving the classification accuracy of a number of standard medical 

datasets including the dermatology dataset [26]. 

 Chi and Jabri [24] adopted a two-stage problem decomposition approach using three neural 

networks to classify intracardiac electrograms (IECGs) rhythms into four classes for identifying 

Supraventricular and Ventricular Arrhythmias.  Compared a monolithic solution that uses a single 

more complex network, problem decomposition improved the classification accuracy from 89.3% to 

96.2%. Wen and Ozdamar [23] used a scheme of modular neural networks based on class 

decomposition to classify auditory brainstem response, improving the rate of correct classification 

from 76.6% to 82.4%. The divide-and-conquer approach was used to build a system of multimodule 

contextual neural networks for the automatic identification of abdominal organs from computed 

tomography (CT) image series, where each module focuses on extracting the regions of one organ 

[27]. Ohno-Machado and Musen [2] developed a hierarchical system of neural networks for diagnosing 

thyroid diseases through grouping them into four superclasses. The system trained faster, required  

fewer inputs, and generally proved more accurate compared to the monolithic alternative. West and 

West [21] employed a two-stage hierarchical neural network to classify the six-class of the 

dermatology dataset [28] with an accuracy of 98.4% which approaches the 98.6% maximum 

theoretical limit envisaged for the classification accuracy. The network combines a multiplayer 

perceptron first stage with a mixture of expert second stage designed to learn the particularly difficult 

subtask of discriminating between two overlapping classes. A previous investigation on abductive 

network classifiers has shown that problem decomposition improves classification accuracy of 
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waveform patterns and makes the classifiers more tolerant to model simplification and reductions in 

the training set size compared to monolithic solutions [29].  

 
This paper investigates improvements in classifying the multiclass dermatology dataset [28] 

with abductive network classifiers using various scenarios of problem decomposition. The dataset 

consists of 358 records, each having 34 input features, diagnosed into six diseases (classes). Results are 

compared with those of conventional monolithic alternatives and other problem decomposition 

approaches reported in the literature. Section 2 gives a brief introduction to the GMDH algorithm, the 

abductive network modeling tool used, and the problem decomposition approaches adopted. Section 3 

gives a brief outline of the dermatology dataset used in the investigation. Section 4 presents the results 

obtained and compares findings with those reported in the literature. In addition to improving 

classification accuracy, problem decomposition offers simpler classifiers that use fewer disease 

markers, thus reducing the cost and improving the convenience of performing medical diagnostic tests. 

Information gained on the relevance of various input features to the diagnosis of various types of 

dermatology disorders are compared with clinical experience and with findings from previous studies. 

Conclusions are made and suggestions given for future work in Section 5. 

 

2.  Methods 

2.1  GMDH and AIM Abductive Networks  

AIM (abductory inductive mechanism) [30] is a supervised inductive machine learning tool for 

automatically synthesizing abductive network models from a database of inputs and outputs 

representing a training set of solved examples. As a GMDH algorithm, the tool can automatically 

synthesize adequate models that embody the inherent structure of complex and highly nonlinear 

systems. Automation of model synthesis not only lessens the burden on the analyst but also safeguards 

the model generated against influence by human biases and misjudgments. The GMDH approach is a 

formalized paradigm for iterated (multi-phase) polynomial regression capable of producing a high-
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degree polynomial model in effective predictors. The process is 'evolutionary' in nature, using initially 

simple (myopic) regression relationships to derive more accurate representations in the next iteration. 

To prevent exponential growth and limit model complexity, the algorithm selects only relationships 

having good predicting powers within each phase. Iteration is stopped when the new generation 

regression equations start to have poorer prediction performance than those of the previous generation, 

at which point the model starts to become overspecialized and therefore unlikely to perform well with 

new data. The algorithm has three main elements: representation, selection, and stopping. It applies 

abduction heuristics for making decisions concerning some or all of these three aspects.  

To illustrate these steps for the classical GMDH approach, consider an estimation data base of 

ne observations (rows) and m+1 columns for m independent variables (x1, x2, ..., xm) and one dependent 

variable y. In the first iteration we assume that our predictors are the actual input variables. The initial 

rough prediction equations are derived by taking each pair of input variables (xi, xj ; i,j = 1,2,...,m) 

together with the output y and computing the quadratic regression polynomial [6]:  

 y = A + B xi + C xj + D xi
2 + E xj

2 + F xi xj                                                                         (1) 

Each of the resulting m(m-1)/2 polynomials is evaluated using data for the pair of x variables used to 

generate it, thus producing new estimation variables (z1, z2, ..., zm(m-1)/2) which would be expected to 

describe y better than the original variables. The resulting z variables are screened according to some 

selection criterion and only those having good predicting power are kept. The original GMDH 

algorithm employs an additional and independent selection set of ns observations for this purpose and 

uses the regularity selection criterion based on the root mean squared error rk over that dataset, where: 
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Only those polynomials (and associated z variables) that have rk below a prescribed limit are kept and 

the minimum value, rmin, obtained for rk is also saved. The selected z variables represent a new 

database for repeating the estimation and selection steps in the next iteration to derive a set of higher-
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level variables. At each iteration, rmin is compared with its previous value and the process is continued 

as long as rmin decreases or until a given model complexity is reached. An increasing rmin is an 

indication of the model becoming overly complex, thus overfitting the estimation data and performing 

poorly on the new selection data.  Keeping model complexity checked is an important aspect of 

GMDH-based algorithms, which keep an eye on the final objective of constructing the model, i.e. 

using it with new data previously unseen during training. The best model for this purpose is that 

providing the shortest description for the data available [31]. Computationally, the resulting GMDH 

model can be seen as a layered network of partial quadratic descriptor polynomials, each layer 

representing the results of an iteration. 

A number of GMDH methods have been proposed which operate on the whole training dataset 

thus eliminating the need for a dedicated selection set. The adaptive learning network (ALN) approach, 

AIM being an example, uses the predicted squared error (PSE) criterion [31] for selection and stopping 

to avoid model overfitting, thus solving the problem of determining when to stop training in neural 

networks. The criterion minimizes the expected squared error that would be obtained when the 

network is used for predicting new data. AIM expresses the PSE as: 

2)2( pNKCPMFSEPSE σ+=                                                                                                     (3) 

where FSE is the fitting squared error on the training data, CPM is a complexity penalty multiplier 

selected by the user, K is the number of model coefficients, N is the number of samples in the training 

set, and  is a prior estimate for the variance of the error obtained with the unknown model. This 

estimate does not depend on the model being evaluated and is usually taken as half the variance of the 

dependent variable y [31]. As the model becomes more complex relative to the size of the training set, 

the second term increases linearly while the first term decreases. PSE goes through a minimum at the 

optimum model size that strikes a balance between accuracy and simplicity (exactness and generality). 

The user may optionally control this trade-off using the CPM parameter. Larger values than the default 

2
pσ
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value of 1 lead to simpler models that are less accurate but may generalize well with previously unseen 

data, while lower values produce more complex networks that may overfit the training data and 

degrade actual prediction performance.  

AIM builds networks consisting of various types of polynomial functional elements. The 

network size, element types, connectivity, and coefficients for the optimum model are automatically 

determined using well-proven optimization criteria, thus reducing the need for user intervention 

compared to neural networks. This simplifies model development and considerably reduces the 

learning/development time and effort. The models take the form of layered feed-forward abductive 

networks of functional elements (nodes) [30], see Fig. 1. Elements in the first layer operate on various 

combinations of the independent input variables (x's) and the element in the final layer produces the 

predicted output for the dependent variable y. In addition to the main layers of the network, an input 

layer of normalizers convert the input variables into an internal representation as Z scores with zero 

mean and unity variance, and an output unitizer unit restores the results to the original problem space. 

AIM supports the following main functional elements:  

(i) A white element which consists of a constant plus the linear weighted sum of all outputs of the 

previous layer, i.e. 

"White"  Output  = w0 + w1x1 + w2x2 + w3x3 + .... + wnx n                                                                   (4) 

 where x1, x2,..., xn are the inputs to the element and w0, w1, ..., wn are the element weights.  

(ii) Single, double, and triple elements which implement a third-degree polynomial expression with all 

possible cross-terms for one, two, and three inputs respectively; for example,  

"Double"  Output = w0 + w1x1 + w2x2 + w3x1
2 + w4x2

2 + w5x1x2 + w6x1
3 + w7x2

3                         (5) 

 
2.2   Classification with Problem Decomposition  

Classification with problem decomposition entails dividing the decision domain into a number 

of smaller subtasks that are more easily handled using dedicated classifiers. Fig. 2 sketches a straight 
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forward, non-hierarchical arrangement of solving a K-class classification problem using class 

decomposition. Instead of using a single complex classifier to solve the problem, K binary classifier 

modules are used in parallel, each trained to identify only one class from its complement. Individual 

modules handle simpler tasks and therefore are expected to be simpler than a single (monolithic) 

classifier tackling the entire problem. Since class classifiers can be trained and interrogated in parallel, 

faster training and classification is expected. Using classification techniques that indicate the input 

features selected by the classifier, e.g. decision trees and GMDH based methods, this approach reveals 

disease markers that are important for differentially diagnosing each class from the remaining classes. 

One limitation of this approach is the gross imbalance in the composition of training sets for individual 

modules. For example, if all K classes are equally represented in the dataset, the ratio of training 

records pertaining to the class of interest to the remaining classes is 1/(K-1). For a large number of 

classes, this ratio would be low, which slows down training and degrades classification performance 

[32]. Multi-stage hierarchical problem decomposition attempts to overcome this limitation. Fig. 3 

shows a two-stage arrangement where the classes are grouped into two categories (superclasses), each 

containing a number of classes. The correct superclass is first determined by the classifier in the first 

stage, and then the appropriate classifier in the second stage is used to determine the class within that 

superclass. Although classifier modules can still be trained in parallel, actual classification is 

sequential. One challenging aspect of this approach is splitting the classification problem into two or 

more subproblems which are at least partially independent. Wu [1] applied the symptom 

decomposition method as a systematic approach to solve partially decomposable medical diagnostic 

problems. In this paper we investigate two heuristic approaches to problem decomposition for the six-

class standard dermatology dataset: one based on clinical diagnostic practice and the other based on 

class separability properties reported in the literature.      
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3. Material 

The dermatology standard medical diagnosis dataset from the UCI Machine Learning Repository [33] 

was used for this study. This multiclass dataset [28] has been used for the differential diagnosis of 

Erythemato-Squamous diseases. It consists of 366 records, each having 34 attributes. Table 1 lists the 

names or brief descriptions of the input attributes for the dataset. The attributes include age and 11 

other clinical attributes (attributes numbered 1-11), and 22 histopathological features (attributes 

numbered 12-33) determined by the analysis of skin samples under the microscope. Each attribute 

other than age and family history was given a score in the range 0 to 3, where 0 indicates the feature 

being absent, 3 indicates the largest amount possible, and 1, 2 indicate intermediate values. The feature 

number used in the table is the column number for the feature in the dataset. The class output variable 

(variable 35 in the dataset) is an integer code ranging from 1 to 6 that indicates the following six 

possible diseases: psoriasis, seborrheic dermatitis, lichen planus, pityriasis rosea, chronic dermatitis, 

and pityriasis rubra pilaris, respectively. Eight records in the original dataset had the age attribute 

missing, and these were excluded, leaving 358 records for use in this study. The 358 records were 

randomly split into a training set and an evaluation set of 258 and 100 records, respectively. Table 2 

gives details of the distribution of the six disease classes in the total, training, and evaluation datasets 

as determined by the class variable. Using single classifiers based on the C4.5 decision-tree induction 

algorithm, a classification accuracy of 89.1% was obtained with a five-fold cross validation procedure 

[34]. Classification accuracies of 92.25% and 86.15% were achieved on this dataset with feed forward 

back propagation neural networks and conventional radial basis function neural networks, respectively 

[35].   
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4. Results 

4.1 Monolithic Models 

Monolithic AIM abductive models of various complexities were developed to solve the whole 

classification problem at once. Model inputs comprised the full set of 34 input features of the data set 

(Table 1), and the model had a single multi-valued output with the values 1, 2, 3, 4, 5, and 6 

representing the six disease classes as given in Table 2. Each model was trained using the full training 

set of 258 records and evaluated using the evaluation set consisting of the remaining 100 records. 

Categorical classifier output was derived from the linear model output by rounding through simple 

crossing of threshold levels located half-way between adjacent class values. For example, class 1 is 

represented by: output < 1.5, class 3 is represented by: 2.5 ≤ output < 3.5, while class 6 is represented 

by: 5.5 ≤ output. Various models of different complexity were synthesized using different CPM values, 

e.g. CPM = 1 (default model), CPM = 0.5 (more complex model), and CPM = 2 (less complex model). 

The model with CPM = 0.5 gave the highest value of 91% for the classification accuracy. Fig. 4 shows 

the structure of this 4-layer model. Only 27 out of the 34 input features are automatically selected by 

the learning algorithm as model inputs. The numbers indicated at the model input in Fig. 4 refer to the 

feature numbers listed in Table 1. The seven features discarded by the model are those numbered 10, 

11, 17, 25, 28, 32, and 34. A data reduction procedure carried out on this dermatology dataset using 

stepwise discriminant analysis has identified nine input features {1,3,9,10,17,23,27,30,34} that do not 

contribute significantly to the discrimination of the six classes [21]. These included features 10, 17, 

and 34 discarded by the AIM model described above. Table 3 (a) shows the confusion matrix obtained 

when this monolithic model was evaluated on the 100 cases of the evaluation set. The table shows the 

overall percentage classification accuracy in the bottom right cell. Poorest performance is associated 

with the identification of class 6, followed by classes 2 and 4 respectively. As indicated in Table 2, 

class 6 is thinly represented in the data set at only 5.6%, and therefore the number of training examples 
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for this class may not be sufficient for adequate learning. Exploratory data analysis performed by West 

and West [21] on the dermatology dataset using self organizing maps (SOMs) revealed that classes 

{1,3,5,6} form distinct clusters that do not overlap in the SOM map, and therefore should be identified 

with a higher degree of accuracy compared to classes 2 and 4. They have shown that classes 2 and 4 

overlap on the SOM map at five cases in the total dataset of 358 cases due to inconsistency or wrong 

diagnosis, concluding that sets an upper limit of 98.6% for the classification accuracy for the 

dermatology dataset. It is expected that classifier schemes employing problem decomposition could 

improve on the classification accuracy of the complex monolithic model through better learning and 

identification of classes 2, 4, and 6. 

4.2 Class Decomposition Approach 

In line with the class decomposition scheme depicted in Fig. 2, six abductive models were 

developed, each trained to identify only one class. Referring to Table 2, the model for class 6, for 

example, was trained on 258 cases of which 13 cases are class 6 and 245 cases are not class 6, and 

therefore the ratio between the in-class and out-of-class cases is only 0.05. The model was evaluated 

on 100 cases of which 7 cases are class 6 and 93 cases are not class 6. In the training set, the class 

output is assigned the value of 2 for the in-class cases and the value of 1 for the out-of-class cases. 

Table 4 shows the structure and performance of the six models synthesized at the default model 

complexity (CPM = 1). Overall classification accuracy is 91%, which is the same as the best 

monolithic model of Fig. 4. Table 3 (b) shows the confusion matrix obtained when the six class 

decomposition models were evaluated on the evaluation set. As expected, the modular classifiers are 

generally simpler than the monolithic model. The most complex models correspond to classes 2 and 4, 

which proved to be the most difficult classes to classify [21]. Among themselves, the six models use 

28 different input features. The six features discarded are those numbered 10, 11, 24, 30, 32, and 34. 

Four of these features {10,11,32,34} were also discarded by the monolithic model described in Section 
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4.1 above, and three {10,30,34} are among the nine features discarded by the data reduction procedure 

described in [21].  

The unique property of automatic selection of only the most relevant input features by 

abductive network models gives useful insight into the diagnostic value of the various features in the 

dataset.  For example, Table 4 shows that the model for class 1 (Psoriasis) uses four features: 20 

(Clubbing of the rete ridges), 22 (Thinning of the suprapapillary epidermis), 28 (Spongiosis), and 31 

(Perifollicular parakeratosis) and achieves 100% classification accuracy for this class. It is clinically 

established that histopathologic features of Psoriasis vary according to the stage of development of the 

lesion. Spongiosis is very mild and is usually seen only in the very early lesion. The fully developed 

psoriatic plaque is characterized by (a) acanthosis with regular elongation of the rete ridges with 

thickening in their lower portions (clubbing), (b) thinning of the suprapapillary epidermis with the 

occasional presence of small spongioform pustules of Kogoj, (c) pallor of the upper layers of the 

epidermis, (d) diminished or absent granular cell layer, (e) confluent parakeratosis, (f) presence of 

Munro microabscesses, (g) elongation and edema of the dermal papillae, and (h) dilated tortuous 

capillaries [36, 37]. This suggests that features 21 (Elongation of rete ridges), 23 (Spongioform 

pustules), 24 (Munro microabcesses), and 26 (Absent granular cell layer) should also contribute to the 

model. With the model already giving 100% classification accuracy without any of these features, the 

diagnostic value of these features in relation to the Psoriasis disorder appears to be poor for the dataset 

used. Class 3 disorder (Lichen Planus) can be diagnosed using only input feature number 33 (Band-like 

infiltrate). Inspection of the full data set revealed that the value of this feature is ≥ 2 for class 3 cases 

and is 0 for nearly all other cases. This feature is clinically recognized as a characteristic 

histopathological marker for this disorder, together with Damage to the basal cell layer (feature 27) and 

Saw-tooth appearance of retes (feature 29) [36]. Analysis of the dataset showed strong correlation 

between feature 33 selected by the model and the other two features, with the Pearson correlation 
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coefficients being 0.94 and 0.93 with features 27 and 29, respectively. Simple models in Table 4 allow 

the derivation of manageable analytical expressions that directly relate the classification output to the 

feature inputs. The model relationship is obtained through symbolic substitution of the equations 

determined by the learning algorithm for the various functional elements of the model. For example, 

substituting for the equations obtained for the normalizer, unitizer, and  “Single” functional elements 

of the model for class 3, the class output can be determined from only the value of feature 33 (Var_33) 

using the following relationships: 

2 31 1.16667 _ 33 + 1.5 ( _ 33)  0.3333 ( _ 33) ,y Var Var Var= − −  

Class = 3 if y ≥ 1.5                                                                                                                     (6)                    

The model for Class 5 (Chronic Dermatitis) uses only two features: 5 (Koebner phenomenon) 

and 15 (Fibrosis of the papillary dermis) and achieves 100% classification accuracy for this class. 

Inspection of the data revealed that the value of feature 15 is ≥ 1 for class 5 and is 0 for nearly all other 

cases. Clinical experience confirms that Papillary dermal fibrosis (feature 15) is a justified feature for 

diagnosing chronic dermatitis and discriminating it from the remaining disorders. Class 6 disorder 

(Pityriasis Rubra Pilaris) can be diagnosed using only feature number 31 (Perifollicular parakeratosis). 

Inspection of the data revealed that the value of this feature is ≥ 1 for class 6 and is 0 for nearly all 

other cases. The localization of parakeratosis to perifollicular shoulders is often seen in the follicular 

keratotic lesions of the disorder, and is usually associated with dilated infundibulae filled with 

orthokeratotic horny plug [37]  

 In addition to comparing the results of class decomposition models given in Table 4 with 

knowledge gained from clinical practice, we compared the results with those derived from informatics 

perspectives. Valdes-Perez, Pericliev, and Pereira [38] have derived concise, intelligible, and 

approximate profiles for each class of the dermatology dataset. Each class profile consists of a 

minimized list of features annotated with how these features contrast the class from other classes. 
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Fidelis, Lopes, and Freitas [39] have used genetic algorithms (GA) to derive six comprehensive 

classification rules that describe the six dermatology classes, each maximizing a fitness function 

defined as the product of sensitivity and specificity for the class. Rules were derived using a training 

set consisting of 2/3 of the available records and tested on the remaining 1/3 of the records. Table 5 

compares the features selected by the class decomposition approach with those derived by the 

approximate profiling and the classification rule approaches for each class. The table also lists the 

values of the fitness function (on a scale of 0 to 1) for each class for the latter approach. In all three 

approaches,  identifying classes 2 and 4 represents the most difficult problem, as indicated by the large 

number of features required and the lowest values for the fitness function for those two classes. For 

example, approximate profiling suggests that each of classes 1, 3, 5, and 6 can be identified with a 

single feature while classes 2 and 4 require 5 and 3 features, respectively. Moreover, the three features 

used to identify class 4 are a subset of the five features used to identify class 2. This suggests that the 

group of classes {1,3,5,6} are more separable than the group {2,4}. Such observations agree with 

conclusions made by West and West [21]. All three approaches unanimously agree on feature 33 

(Band-like infiltrate) as the sole predictor for class 3 (Lichen Planus). They also select feature 15 

(Fibrosis of the papillary dermis) as a predictor for class 5 (Chronic Dermatitis). Approximate profiling 

is the only approach that made use of the feature 34 (Age), which is used as a sole predictor for class 6 

(Pityriasis Rubra Pilaris) as opposed to feature 31 (Perifollicular parakeratosis) selected by class 

decomposition for this purpose. With the class output being 1 for class 6 and 0 otherwise, analysis of 

the full dataset reveals that the Pearson correlation coefficient between the class output and features 34 

and 31 are –0.42 and 0.95, respectively, suggesting that feature 31 would be a better predictor for class 

6. 

 

 

 16



4.3 Hierarchical Problem Decomposition Approach 

As shown by the results above, class decomposition did not improve classification performance 

beyond that of the best monolithic model, mainly because of the imbalance between the number of in-

class and out-of-class cases during training of individual models. To overcome this limitation, we 

employed two-stage hierarchical problem decomposition of the type shown in Fig. 3. In the first stage, 

a classifier sorts the population into one of two categories (superclasses), which is then sorted into 

individual classes by the appropriate classifier in the second stage. If the class subsets for the two 

categories are {2,5} and {1,3,4,6}, then the category classifier in the first stage would have an in-

class/out-of-class ratio of 0.41 for its training set (refer to relevant class distribution data in Table 2). In 

the second stage, the classifier handling the second category would be trained to identify class 6 with 

an in-class/out-of-class of 0.07. This ratio is 40% higher than the corresponding value of 0.05 with the 

class decomposition approach, suggesting improved classification performance for this class with 

hierarchical problem decomposition. Performance is also improved with judicious partitioning of the 

population into separate categories with minimum overlap for simplifying category classification at the 

first stage. Here we apply two heuristic approaches for partitioning the population based on natural and 

logical grouping. One approach relies on clinical experience with the dermatology disorders, while the 

other utilizes class separability properties reported in the literature for the dataset.       

4.3.1 Clinical-based Hierarchical Problem Decomposition 

With this approach, the six disorders of the dermatology dataset are partitioned into two 

categories based on primary legion diagnosis. The first category of Eczema (Spongiotic dermatitis) 

disorders includes two classes: 2 (Seborrheic Dermatitis) and 5 (Chronic Dermatitis). The second 

category of Papulosquamous disorders includes the remaining four classes: 1 (Psoriasis), 3 (Lichen 

Planus), 4 (Pityriasis Rosea), and 6 (Pityriasis Rubra Pilaris). Eczema disorders start with itchy oozy 

papulovesicular eruption that develops crustations and with chronicity it becomes lichenified (as in 
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chronic dermatitis). On the other hand, Papulosquamous disorders start as erythematous scaly papules 

that may coalesce to form plaques [40].  

Table 6 shows model structures for the three classifier modules, all synthesized at the default 

CPM value of 1, as well as their performance on the evaluation set of 100 cases. The total number of 

different input features required by the three models is 19 features, which is 70% of the number of 

features used by the monolithic model in Fig. 4. The subset of 15 discarded features is 

{1,2,3,7,8,11,12,18,19,24,25,27,30,32,34}, which includes 5 of the 9 features discarded by the data 

reduction procedure in [21]. Net 1 distinguishes between the two main disorder categories with only 

one error, and is the most complex of the three models. Identifying classes within each group proves to 

be a much simpler task. Net 2 is a single element model that discriminates between classes 2 and 5 in 

the Eczema group with 100% accuracy using only feature 15 (Fibrosis of the papillary dermis). 

Fibrosis of dermal papillae is the predominant feature in chronic dermatitis as it represents the 

cutaneous reaction to chronic itching and rubbing of the skin. Inspection of the full data set revealed 

that the value of feature 15 is 0 for all class 2 cases and > 0 for all class 5 cases. Referring to the 

approximate profiling column in Table 5, it is noted that feature 15 forms the intersection of the two 

feature subsets characterizing classes 2 and 5. Net 3 is a single element, 3-input model that uses 

features 21, 31, and 33 to classify all four classes of the Papulosquamous group with only one error. 

Overall accuracy of the problem decomposition classification scheme is 99%, which matches the 

theoretical upper bound proposed by West and West [21]. The confusion matrix giving details of the 

classification performance is shown in Table 3(c). A 3-member committee of abductive networks 

trained on different subsets of the same dataset achieved classification accuracy of only 93% [26].  

4.3.2.  Separability-based Hierarchical Problem Decomposition 

 With this approach, the six disorders of the dermatology dataset are partitioned into two 

categories based on class separability properties reported by West & West [21]. Their exploratory data 

 18



analysis performed on the dataset using SOM maps revealed that four classes, namely 1 (Psoriasis), 3 

(Lichen Planus), 5 (Chronic Dermatitis), and 6 (Pityriasis Rubra Pilaris) are quite distinct. They 

conclude that most of the error in conventional classification systems results from confusion in 

separating the two remaining classes, namely 2 (Seborrheic Dermatitis) and 4 (Pityriasis Rosea) which 

partially overlap. Effective improvement in the overall classification accuracy for the dataset should 

address the issue of poor separability between classes 2 and 4. They employed a back propagation 

neural network classifier augmented by a mixture-of-experts network for enhancing the separation of 

the two overlapping classes. Here we propose a two-stage hierarchical problem decomposition 

classification scheme based on their findings, with class subsets {2,4} and {1,3,5,6} forming category 

1 and category 2, respectively. This allows handling classes 2 and 4 by a dedicated classifier optimized 

for their adequate separation at the second classifier stage.   

Table 7 shows model structures for the three classifier modules, the CPM value used, as well as 

their performance on the evaluation set of 100 cases. The total number of different input features 

required by the three models is 18 features, amounting to two thirds of features used by the monolithic 

model in Fig. 4. Out of the 18 features used by this classifier, 13 have been used by that described in 

Section 4.3.1. The subset of 16 discarded features is {1,2,3,8,9,10,13,14,17,18,19,23,24,30,32,34}, 

which includes 8 of the 9 features discarded by the data reduction procedure in [21]. Net 1 

distinguishes between the two main disorder categories with 100% accuracy, and is the most complex 

of the three models. However, this 14-input, 3-layer model is simpler than the corresponding 18-input, 

4-layer model for the other problem decomposition approach described in Section 4.3.1. Identifying 

classes within each group proves to be a much simpler task. Both Net 2 and Net 3 are single element, 

3-input models. Net 2 classifies classes 2 and 4 with a single error while Net 3 classifies classes 1, 3, 5, 

and 6 with no errors. The optimum form of Net 3 was synthesized with CPM = 2 (i.e. is a simpler 

model than Net 2). These two observations confirm the fact that category 2 classes are easier to 
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separate than category 1 classes.  Net 2 uses features 4, 5, and 26 to separate class 2 from class 4. 

Referring to the approximate profiling column in Table 5, it is noted that feature 5 forms part of the 

intersection between the two feature subsets characterizing classes 2 and 4. Inspection of the full data 

set revealed that the value of feature 5 has averages of 0.033 and 1.167 and standard deviations of 

0.258 and 0.808 for classes 2 and 4, respectively. Using the number of cases given in Table 2 for the 

two classes in the total dataset, the z-statistic shows the difference between the means of the two 

features statistically significant at the 99% confidence level (α = 0.01). Overall accuracy of the 

problem decomposition classification scheme is 99%, which is identical to that achieved by the other 

problem decomposition approach of Section 4.3.1. The confusion matrix giving details of the 

classification performance is shown in Table 3(d). 

5. Conclusions 

Problem decomposition offers several advantages in dealing with the difficult problem of 

diagnosing multiple disorders of similar symptoms and signs. Starting by judiciously decomposing the 

problem into simpler subtasks, the whole exercise instills better understanding of the diagnosis 

problem. Simpler classifier models handling the smaller subtasks perform better and should execute 

faster. With GMDH-based abductive networks, automatic selection of only relevant inputs validates 

knowledge on the diagnostic value of disease markers, simplifies classification models, and helps 

explain and justify diagnostic decisions. In addition to improving classifier performance, the resulting 

data reduction helps simplify, and reduce the cost of, diagnostic tests required and offset the problems 

of high dimensionality, e.g. by allowing adequate training on smaller datasets. We have demonstrated 

the effectiveness of hierarchical classifiers employing problem decomposition approaches in 

improving the performance and reducing the cost of classifying multiple disorders of a standard 

dermatology dataset. Clinical-based and informatics-based problem decompositions achieved up to 

47% reduction in the number of features used and 99% classification accuracy. The latter value is a 
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theoretical upper limit reported in the literature. This accuracy far exceeds that of monolithic models as 

well as network ensembles trained on different subsets of the dataset. Findings on the diagnostic value 

of various features agree with clinical knowledge and with results from previous studies on the dataset. 

It was found that the histopathological feature number 15 (Fibrosis of the papillary dermis) alone could 

discrminate between class 2 (Seborrheic Dermatitis) and class 5 (Chronic Dermatitis) with 100% 

accuracy. Simple classifier models can be represented as manageable analytical relationships that 

directly relate the classsifier output to the relevant input features. Future work would apply similar 

approaches to other mutliclass medical data such as the thyroid dataset.  
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Table 1. Brief description of the dataset input features. All features take the value 0, 1, 2, or 3, except 
family history (0 or 1) and age which takes integer values in the range 0 to 70 years. 
 

Feature Number   
in Dataset Name 

1 Erythema 
2 Scaling 
3 Definite borders 
4 Itching 
5 Koebner phenomenon 
6 Polygonal papules 
7 Follicular papules 
8 Oral mucosal involvement 
9 Knee and elbow involvement 
10 Scalp involvement 
11 Family history 
12 Melanin incontinence 
13 Eosinophils in the infiltrate 
14 PNL infiltrate 
15 Fibrosis of the papillary dermis 
16 Exocytosis 
17 Acanthosis 
18 Hyperkeratosis 
19 Parakeratosis 
20 Clubbing of the rete ridges 
21 Elongation of the rete ridges 
22 Thinning of the suprapapillary epidermis 
23 Spongiform pustule 
24 Munro microabcess 
25 Focal hypergranulosis 
26 Disappearance of the granular layer 
27 Vacuolisation and damage of basal layer 
28 Spongiosis 
29 Saw-tooth appearance of retes 
30 Follicular horn plug 
31 Perifollicular parakeratosis 
32 Inflammatory monoluclear inflitrate 
33 Band-like infiltrate 
34 Age 
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Table 2. Distribution of the six output classes in the total, training, and evaluation datasets. 
 

Total Dataset         
(358 Cases) 

Training Set             
(258 Cases) 

Evaluation Set           
(100 Cases) 

Code    Class 
Number 
of Cases 

Prevalence, 
% 

Number of 
Cases 

Prevalence, 
% 

Number of 
Cases 

Prevalence, 
% 

1       Psoriasis 111 31.0 77 29.9 34 34.0 

2 Seborrheic 
Dermatitis 60 16.8 45 17.5 15 15.0 

3 Lichen 
Planus  71 19.8 55 21.3 16 16.0 

4 Pityriasis 
Rosea  48 13.4 38 14.7 10 10.0 

5 Chronic 
Dermatitis 48 13.4 30 11.6 18 18.0 

6  Pityriasis 
Rubra Pilaris   20 5.6 13 5.0 7 7.0 
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Table 3. Confusion matrices showing detailed classification performance for: (a) Monolithic model of 
Fig. 4, (b) Class decomposition models of Table 4, (c) Clinical-based hierarchical problem 
decomposition models of Table 6, and (d) Separability-based hierarchical problem decomposition 
models of Table 7. 

 (a) Predicted 

 Class 1 2 3 4 5 6 Total 
1 34 0 0 0 0 0 34 
2 1 11 2 1 0 0 15 
3 0 0 16 0 0 0 16 
4 0 0 0 9 1 0 10 
5 0 0 0 1 17 0 18 

   
  T

ru
e 

6 0 0 0 1 2 4 7 
 Total 35 11 18 12 20 4 91% 
         

(b) Predicted 

 Class 1 2 3 4 5 6 Total 
1 34 0 0 0 0 0 34 
2  11 4 15 
3  14 2 16 
4 0 0 0 10 0 0 10 
5 0 0 0 0 18 0 18 

   
  T

ru
e 

6 3 4 7 
 Total  91% 
         

(c) Predicted 

 Class 1 2 3 4 5 6 Total 
1 34 0 0 0 0 0 34 
2 0 14 1 0 0 0 15 
3 0 0 16 0 0 0 16 
4 0 0 0 10 0 0 10 
5 0 0 0 0 18 0 18 

   
  T

ru
e 

6 0 0 0 0 0 7 7 
 Total 34 15 16 10 18 7 99% 
         

(d) Predicted 

 Class 1 2 3 4 5 6 Total 
1 34 0 0 0 0 0 34 
2 0 15 0 0 0 0 15 
3 0 0 16 0 0 0 16 
4 0 1 0 9 0 0 10 
5 0 0 0 0 18 0 18 

   
  T

ru
e 

6 0 0 0 0 0 7 7 
 Total 34 16 16 9 18 7 99% 
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Table 4. Structures and performance of the modular classifiers synthesized with the class 
decomposition approach.

Class Model Structure  

Number 
of Input 
Features 

Used  

Number of Wrong 
Classifications     

(/100 cases of the 
evaluation set)  

Class 1 

 

4 0 

Class 2 20 4 

Class 3  1 2 

Class 4 

 

23 0 

Class 5 
 

2 0 

Class 6  1 3 

Overall Classification Scheme 
28 

Different 
Features 

Classification 
Accuracy: 91% 
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Table. 5. Comparison of the features selected to represent each of the dermatology classes by the class 
decomposition approach, the approximate profiling approach [38], and the classification rule approach 
[39].   
 

Classification Rules [39] 

Class Class Decomposition              Approximate 
Profiling [38] Features Used Fitness on 

Testing Set 

1 
(Psoriasis) {20,22,28,31} {22} {20,31} 0.973 

2 
(Seborrheic 
Dermatitis) 

{1,3,4,5,6,8,9,12,13, 
14,15,16,18,19,20,23,26,28,31,33} {5,15,22,33,34} {5,27,28} 0.855 

3     
(Lichen 
Planus) 

{33} {33} {33} 0.979 

4 
(Pityriasis 

Rosea) 

{1,2,4,5,7,8,9,13,14, 
15,17,19,20,21,22,23,25,26,27,28, 

29,31,33} 
{5,22,33} {9,11,17,25,28,

32} 0.783 

5     
(Chronic 

Dermatitis) 
{5,15} {15} {12,15,24} 1.000 

6    
(Pityriasis 

Rubra 
Pilaris)    

{31} {34} {7,31} 1.000 
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Table 6. Structures and performance of the modular classifiers synthesized for the clinical-based  
hierarchical problem decomposition.

Network Model Structure  

Number 
of Input 
Features 

Used  

Number of 
Wrong 

Classifications  

Net 1 18 1 

Net 2  1 0 

Net 3 
 

3 1 

Overall Classification Scheme 
19 

Different 
Features 

Classification 
Accuracy: 

99% 
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Table 7. Structures and performance of the modular classifiers synthesized for the separability-
based problem decomposition. 

Network CPM Structure  

Number 
of Input 
Features 

Used  

Number of 
Wrong 

Classifications  

Net 1 1 

 

14 0 

Net 2 1 

 

3 1 

Net 3 2 
 

3 0 

Overall Classification Scheme 
18 

Different 
Features 

Classification 
Accuracy: 

99% 
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Fig. 1. AIM abductive network showing various types of functional elements. 
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      Fig. 2. A schematic diagram showing the class decomposition approach to multiclass classification 
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Fig. 3.  A schematic diagram showing a two-stage hierarchical problem decomposition approach to 
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Fig. 4. Structure of the best monolithic model for classifying the dermatology dataset using CPM = 0.5. 
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