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Abstract:  

Short-term load modeling and forecasting are essential for operating power utilities profitably 

and securely. Modern machine learning approaches such as neural networks have been used for 

this purpose. This paper proposes using the alternative technique of abductive networks, which 

offers the advantages of simplified and more automated model synthesis and analytical input-

output models that automatically select influential inputs, provide better insight and 

explanations, and allow comparison with statistical and empirical models.  Using hourly 

temperature and load data for five years, 24 dedicated models for forecasting next-day hourly 

loads have been developed. Evaluated on data for the 6th year, the models give an overall mean 

absolute percentage error (MAPE) of 2.67%. Next-hour models utilizing load data up to the 

preceding hour give a MAPE of 1.14%, outperforming neural network models for the same 

utility data. Two methods are described for dealing with the load growth trend. Effects of 

varying model complexity are investigated and proposals made for further improving 

forecasting performance.  
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I. INTRODUCTION 

Accurate load forecasting is a key requirement for the planning and economic and secure 

operation of modern power systems.  Short-term load forecasting (STLF) (one hour to one 

week) [1] is important for scheduling functions, such as generator unit commitment, hydro-

thermal coordination, short-term maintenance, fuel allocation, power interchange, transaction 

evaluation, as well as network analysis functions, such as dispatcher power flow and optimal 

power flow. Another area of application involves security and load flow studies, including 

contingency planning, load shedding, and load security strategies. With ever-increasing load 

capacities, a given percentage forecasting error amounts to greater losses in real terms. Recent 

changes in the structure of the utility industry due to deregulation and increased competition 

also emphasize greater forecasting accuracies. STLF activities include forecasting the daily 

peak load, total daily energy, and daily load curve as a series of 24 hourly forecasted loads.  

Traditionally, power utilities have relied in the past on a few highly experienced in-

house human experts to perform judgmental forecasts manually  [2] using techniques such as 

the similar-day method. Increased demand on the accuracy, speed, and frequency of the 

forecasts have gradually led to forecast automation. Conventional techniques for forecasting the 

load curve included both static and dynamic methods. Static methods model the load as a linear 

combination of explicit time functions, usually in the form of sinusoids and polynomials [3]. 

The more accurate dynamic models take into account other important factors such as recent load 

behavior, weather parameters, and random variations. Techniques in this category include 

univariate time series models such as the Box-Jenkins integrated autoregressive moving average 

(ARIMA) [4]. Such methods suffer from limited accuracy because they ignore important 

weather effects, are time consuming, require extensive user intervention, and may be 

numerically unstable [5]. Multivariate causal models use multiple regression to express the load 

as a function of exogenous inputs including weather and social variables [6]. In addition to the 

complexity of the modeling process, regression models are often linear devices which attempt to 
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model distinctly nonlinear relationships [7]. Even when a nonlinear relationship is attempted, it 

is difficult to determine empirically the correct complex relationship that actually exists 

between the load and the other explanatory inputs.  

A recent trend in handling such problems that are difficult to solve analytically has been 

to resort to computational intelligence approaches. The availability of large amounts of 

historical load and weather data at power utilities has encouraged the use of data-based 

modeling approaches such as genetic algorithms and neural networks. With such techniques, the 

user does not need to explicitly specify the model relationship. This enhances their use in 

automatic knowledge discovery without bias or influence by prior assumptions. With neural 

networks, complex nonlinear input-output relationships can be modeled automatically through 

supervised learning using a database of solved examples. Once synthesized, the model can 

generalize to perform predictions of outputs corresponding to new cases. Feed-forward neural 

networks trained with error back-propagation have been widely used for load modeling and 

forecasting, e.g. [7-10]. However, the technique suffers from a number of limitations, including 

difficulty in determining optimum network topology and training parameters [8]. There are 

many choices to be made in determining numerous critical design parameters with little 

guidance available [7], and designers often resort to trial and error approaches [9] which can be 

tedious and time consuming. Such design parameters include the number and size of the hidden 

layers, the type of neuron transfer functions for the various layers, the training rate and 

momentum coefficient, and training stopping criteria to avoid over-fitting and ensure adequate 

generalization with new data. Another limitation is the black box nature of neural network 

models. The models give little insight into the modeled relationship and the relative significance 

of various inputs, thus providing poor explanation facilities [10]. The acceptability of, and 

confidence in, an automated load forecasting tool in an operational environment appear to be 

related to its transparency and its ability to justify results to human experts [11]. 
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To overcome such limitations, we propose using abductive networks [12] as an 

alternative machine learning approach to electric load forecasting. We have previously used this 

approach to model and forecast the monthly domestic energy consumption [13], and in 

forecasting the minimum and maximum daily temperatures [14,15]. Compared to neural 

networks, the method offers the advantages of faster model development requiring little or no 

user intervention, faster convergence during model synthesis without the problems of getting 

stuck in local minima, automatic selection of relevant input variables, and automatic 

configuration of model structure [8]. With the model represented as a hierarchy of polynomial 

expressions, resulting analytical model relationships can provide insight into the modeled 

phenomena, highlight contributions of various inputs, and allow comparison with previously 

used empirical or statistical models. The technique automatically avoids over-fitting by using a 

proven regularization criterion based on penalizing model complexity [12], without requiring a 

dedicated validation data set during training, as is the case with many neural network 

paradigms. 

Following a brief description of the abductive network modeling tool in Section II, the 

load and temperature data set used is described in Section III. Next-day hourly load forecasters 

that predict the full 24-hour load curve for a day in one go at the end of the preceding day are 

described in Section IV. Models were developed using two different approaches to account for 

the trend of load growth. Next-hour load forecasters that predict the load hour by hour utilizing 

all data available up to the forecasting hour are presented in Section V. Results are also given 

when such models are iteratively used to forecast the full next-day load curve. 

II. AIM ABDUCTIVE NETWORKS 

AIM (abductory inductive mechanism) [16] is a supervised inductive machine-learning tool for 

automatically synthesizing abductive network models from a database of inputs and outputs 

representing a training set of solved examples. As a group method of data handling (GMDH) 

algorithm [17], the tool can automatically synthesize adequate models that embody the inherent 
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structure of complex and highly nonlinear systems. The automation of model synthesis not only 

lessens the burden on the analyst but also safeguards the model generated from being influenced 

by human biases and misjudgements. The GMDH approach is a formalized paradigm for 

iterated (multi-phase) polynomial regression capable of producing a high-degree polynomial 

model in effective predictors. The process is 'evolutionary' in nature, using initially simple 

(myopic) regression relationships to derive more accurate representations in the next iteration. 

The algorithm selects polynomial relationships and input combinations that minimize the 

prediction error in each phase. AIM builds networks of various types of polynomial functional 

elements, based on prediction performance. The network size, element types, connectivity, and 

coefficients for the optimum model are automatically determined using well-proven 

optimization criteria, thus reducing the need for user intervention compared to neural networks. 

This simplifies model development and considerably reduces the learning/development time and 

effort. The models take the form of layered feed-forward abductive networks of functional 

elements (nodes) [16], see Fig.1. Elements in the first layer operate on various combinations of 

the independent input variables (X's) and the element in the final layer produces the predicted 

output for the dependent variable y. In addition to the main layers of the network, an input layer 

of normalizers convert the input variables into an internal representation as Z scores with zero 

mean and unity variance, and an output unitizer unit restores the results to the original problem 

space. The used version of AIM supports the following main functional elements:  

(i) A white element which consists of a constant plus the linear weighted sum of all outputs of 

the previous layer, i.e.: 

"White" Output  = W0 + W1X1 + W2X2 + W3X3 + .... + WnX n                                                                (1) 

where X1, X2,..., Xn  are the inputs to the element and W0, W1, ..., Wn are the element weights.  

(ii) Single, double, and triple elements which implement a third-degree polynomial expression 

with all possible cross-terms for one, two, and three inputs respectively; for example,  

"Double" Output = W0 + W1X1 + W2X2 + W3X12 + W4X22 + W5X1X2 + W6X13 + W7X23                        (2)                    
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The database of input-output solved examples is split into a training set and an 

evaluation set. AIM uses the training set to synthesize the model network layer by layer until no 

further improvement in performance is possible or a preset limit on the number of layers is 

reached. Within each layer, every element is computed and its performance scored for all 

combinations of allowed inputs. The best network structure, element types and coefficients, and 

connectivity are all determined automatically by minimizing the predicted squared error (PSE) 

criterion [18], which eliminates the problem of determining when to stop training in neural 

networks. This criterion selects the most accurate model that does not overfit the training data to 

strike a balance between the accuracy of the model in representing the training data and its 

generality which allows it to fit yet unseen future data. The user may optionally control this 

trade-off between accuracy and generality using the complexity penalty multiplier (CPM) 

parameter [16]. Larger values than the default value of 1 lead to simpler models that are less 

accurate but may generalize well with previously unseen data, while lower values produce more 

complex networks that may overfit the training data and degrade actual prediction performance.  

III. THE DATA SET 

The data set used consists of measured hourly load and temperature data for the Puget power 

utility, Seattle, USA, over the period 1 January 1985 to 12 October 1992. It is made available in 

the public domain by Professor A. M. El-Sharkawi, University of Washington, Seattle, USA 

[19]. We used the data for 5 years (1985-1989) for model synthesis and that of the following 

year (1990) for model evaluation. A few missing load and temperature data, indicated as 0’s in 

the data set, were filled-in by interpolating between neighboring values. Table 1 summarizes the 

load data for the six-year period and indicates an average annual growth rate of 3.5%. The mean 

hourly load decreased slightly in 1986, but has then kept steadily increasing. For the evaluation 

year of 1990, we estimated the mean hourly load using a straight line fit for the mean hourly 

loads of only the previous four years (1986-1989) having a steady increase in the load. Two 

approaches were attempted in accounting for the trend of load growth. In the first approach, all 
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hourly load data were first normalized so that all years have an annual hourly mean load equal 

to that of the last training year (1989). This was performed by multiplying the hourly value by 

the ratio between the mean load for 1989 and that for the relevant year. Values of this 

normalizing factor are given in the second column from right in Table 1. For the evaluation 

year, we use the estimated mean because in practice no actual data would be available for that 

year. With the second approach, no normalization of the hourly load data is necessary, and load 

growth was represented as an additional model input in the form of the ratio between the mean 

load for the relevant year and that for the first year in the data set (1985). Values of this 

normalizing factor are given in the last column of Table 1. This approach considerably reduces 

the data pre-processing work required prior to model development. 

IV. NEXT-DAY HOURLY LOAD FORECASTERS 

We have developed 24 models that forecast the full hourly load curve for the following day (d) 

in one go at the end of the preceding day (d-1). A model is dedicated for forecasting the load, 

EL (d,h), for each hour of the day. The models were trained using data for five years (1985-

1989) and evaluated on the year 1990. All models use the same set of inputs which includes: 24 

hourly loads at day (d-1) (L1,L2,L3,…,L24), the measured minimum (Tmin) and maximum 

(Tmax) air temperatures on day (d-1), the forecasted minimum (ETmin) and maximum (ETmax) 

air temperatures on day (d), and the day type for forecasting day (d). The day type was coded as 

four mutually exclusive binary inputs representing a working day (Monday to Friday) (WRK), a 

Saturday (SAT), a Sunday (SUN), and an official holiday (HOLI). Tmin and Tmax were taken 

as the minimum and maximum values of the 24 hourly temperatures provided for the day. In the 

absence of forecasted data for the minimum and maximum air temperatures for the following 

day, we used actual values instead, which would be the case with ideal temperature forecasts. 

We have investigated the effect of introducing Gaussian noise depicting temperature forecasting 

errors that would be present in practice. A record in the training dataset for the model for hour h 

(h=1,2,…,24) includes 32 input variables and takes the following form: 
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Inputs Output 

24 hourly loads       
for day (d-1) 

Extreme 
Temperatures 
for day (d-1) 

Forecasted 
Extreme 

Temperatures   
for day (d) 

Day type code           
for day (d) 

Load for 
hour (h) 

on day (d) 

L1, L2, L3, …, L24 Tmin, Tmax ETmin, ETmax WRK, SUN, SAT, HOLI L(d,h) 
 

Prior to training and evaluation, all hourly load data for inputs and output were 

normalized by multiplying by the normalization factors relative to 1989 mean, shown in Table 

1. In model evaluation, the effect of normalization was removed by dividing forecasted data for 

the year 1990 by the estimated normalization factor for that year before comparison with actual 

load data for that year. To avoid the effect of discontinuities at year boundaries (input loads for 

day (d-1) being multiplied by a different normalization factor from that of output load for day 

(d) as those two days fall in different years), the first day of each year was excluded as a 

forecasted day in both training and evaluation. This has left us with 1821 training records 

(1985-1989, 1988 being a leap year) and 364 evaluation records in 1990. Training was 

performed using the default value CPM = 1 for the complexity penalty multiplier. 

Fig. 2 shows the abductive network model synthesized for forecasting the load at hour 1 

(midnight). This is a single-element nonlinear model that uses only loads L3, L20, and L24 of 

the preceding day. Neither temperature nor day type inputs feature in the model, which is a 

nonlinear function of the load time series values only. Activities at that time of the day do not 

vary much from day to day. The figure shows the resulting equations for all functional elements, 

and the predicted output is calculated by substituting in the given set of five equations. Equation 

of the Triple element indicates the nonlinear nature of the model. The forecasting model for 

hour 12 shown in Fig. 3 is a more complex 4-layer model that uses both forecasted extreme 

temperatures and the SUN day type input. The model also uses the following loads for the 

preceding day: last load (L24), the load at the same forecasting hour (L12), as well as L7 and 

L22. Fig. 3 shows also the performance of the model in the form of scatter and time series plots 
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of the actual and forecasted data at that hour over the evaluation year. The scatter plot shows a 

best line fit and the value of the Parkinson’s correlation coefficient as 0.98, and the time series 

plot shows the mean absolute percentage error (MAPE) as 2.40%. Table 2 summarizes the 

model structure for all the 24 models, listing the model inputs selected and the number of layers 

and elements. Models for the first two hours discard temperature and day type information, 

relying only on the load time series. Forecasted temperature and day type inputs feature in all 

remaining models. Model complexity and nonlinearity increases as the forecasting hour 

progresses and the lead time increases. The second column in Table 3 lists the MAPE values for 

all hours, giving the overall value for the evaluation year as 2.67%.  

Values in the third column of the table were obtained with the other method of 

representing load growth trend as an additional input variable having a different value for each 

year as given in the last column of Table 1 and using actual non-normalized load data for both 

training and evaluation. The additional trend input was selected by all models except those for 

the first four hours of the day. The results are comparable on average with those for the data 

normalization method, but exhibit an exceptionally larger error for hour 14. All remaining 

results in this paper were obtained using the data normalization method for handling the trend. 

Full-day load curves were forecasted using all 24 models for four days of the evaluation year 

which represent a working day, a Saturday, a Sunday, and a holiday in the same season over the 

interval from 8 August to 3 September 1990, and the results are shown in Fig. 4. Forecasting 

accuracy is best for the working day and poorest for the holiday due to the fewer examples of 

holiday load patterns encountered during training.   

We have investigated the effect of simulated errors in the ideal forecasted extreme 

temperature values ETmin and ETmax for the load-forecasting day. As seen from Table 2, the 

model for hour 12 is an example of 13 load forecasters that use both ETmin and Etmax, and 

would therefore be affected most by such errors. There are nine other models, e.g. for hours 3 

and 18, that use either ETmin or Etmax only, and are therefore affected by such errors to a 
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lesser degree. The remaining two models for hours 1 and 2 do not use either variables. 

Simulated Gaussian random errors of zero mean and standard deviation σ were added to the 

ideal forecasted two temperature values in both the training and evaluation datasets for the load 

forecaster for hour 12. The MAPE of 2.40% for the noiseless case increased to 2.53% for σ = 1° 

F and to 2.60% for σ = 2° F, indicating an acceptable degradation in forecasting accuracy.  

The effect of varying the complexity of the resulting forecasting models was 

investigated for the model for hour 12. Table 4 shows the structure and performance of the 

resulting more complex model with CPM = 0.2 and the simpler model with CPM = 5, in 

comparison with the default model with CPM = 1. It is noted that load input L12 features in all 

three models, which indicates its importance in explaining the modeled output. The level of 

model complexity varies widely from a 37-input, 4-layer nonlinear model at CPM = 0.2 to a 

simple 2-input linear model at CPM = 5. While further model simplification significantly 

degrades forecasting accuracy, there are signs that more complex models may improve 

performance compared to the default model. As indicated in the table, more complex models 

require longer train times. 

V. NEXT-HOUR LOAD FORECASTERS 

We have developed 24 models for forecasting the load at the next hour (h) during day (d) using 

the full hourly load data on day (d-1) (L1,L2,L3,…,L24) and all available hourly load data on 

day (d) up to, and including, the preceding hour (h-1) (NL1, NL2, …, NL(h-1)) as well as 

extreme temperatures and day type information. Contrary to the case of next-day hourly 

forecasters, the number of load inputs here is not fixed, but varies from 24 for hour 1 to 47 for 

hour 24. With the number of model inputs limited to 50 for the AIM version used, we had only 

3 inputs left to represent temperature and day type information. Temperature was represented 

using the average temperature Ta on day (d-1) and the forecasted average temperature ETa for 

day (d). Again, ETa was taken as actual Ta for day (d). Day type for the forecasting day (d) was 

represented by a single binary input (WRK) that is 1 for a working day and 0 otherwise. A 
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record in the training dataset for the model for hour h (h=2,3,…,24) takes the following form: 

Inputs Output 

24 hourly loads  
for day (d-1) 

(h-1) available hourly 
loads on day (d) 

Average 
Temperature  
for day (d-1) 

Forecasted 
Average 

Temperature  
for day (d) 

Day type 
code       

for day (d) 

Load for 
hour (h) 

on day (d) 

L1, L2, …, 
L24 

NL1, NL2, …NL(h-1) Ta ETa WRK L(d,h) 

 

Training was performed on 1821 records (1985-1989) with the default value CPM = 1 

for the complexity penalty multiplier and 364 evaluation records in 1990. All load data were 

normalized to account for load growth as described in Section IV above. Table 5 summarizes 

the model structure for all the 24 hourly models, listing the model inputs selected and the 

corresponding time lags in the load time series and showing a sketch of the model structure. 

Compared to models for next-day hourly loads, next-hour models are much simpler, reflecting 

the relative ease of forecasting with previous load data as recent as the previous hour being 

available. For example, the model for hour 12 is a 3-input, 1-element as compared to a 7-input 

4-layer model for the corresponding next-day hourly model. Dependence on previous day loads 

is reduced, with half of the 24 models totally ignoring them in favor of the more recent loads on 

the forecasting day. The exogenous temperature variable is used by only one model, and the day 

type by two models. No use is made of the forecasted average temperature ETa, and therefore 

results are not affected by any forecasting errors in ETa in practice. The models are dominated 

by the load time series, with the time lag of 1 hour featuring in all models. The middle column 

in Table 6 lists the MAPE values for all hours, giving the overall value for the evaluation year 

as 1.14%, indicating the effectiveness of such models for very short-term load forecasting. A 

neural network trained on 3 months of the same utility data (working days only) was reported to 

give a MAPE of 1.41% when evaluated on 22 days [20]. Inputs to the neural network included 

measured loads and temperatures at the two immediately preceding hours, estimated 
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temperature at the forecasting hour, and an hour index. Table 7 summarizes the MAPE error 

histograms for all forecasting hours over the evaluation year for both next-day and next-hour 

models.  

The third column of Table 6 lists the MAPE values for next-day (day (d)) forecasting 

obtained by repetitive use of the next-hour models for all hours up to, and including, the 

forecasting hour (h). In practice, this would be performed at the end of day (d-1), with the load 

forecasted for hour (i) being fed, among other required inputs, to the next-hour model for hour 

(i+1). As expected, performance of this type of next-day forecasting is inferior to that given in 

Table 3, with the overall average MAPE being 4.87% as compared to 2.67%. This is because 

next-hour models are heavily dependant on recent hourly loads on the forecasting day. With 

these values being forecasted and not measured, forecasting errors accumulate. As seen from 

Table 6, next-hour models almost totally ignore temperature and day type information, and 

therefore should not be expected to form a basis for accurate next-day forecasting which 

depends heavily on such parameters as indicated in Table 2.  

Four of the next-hour models in Table 5 (hours 2, 3, 4, and 8) take the simple 1-input 

‘wire’ form, in which the functional element is a direct connection from the normalizer unit of 

the input to the unitizer unit generating the output. In all four cases, the model input is the load 

at the immediately preceding hour, indicating some form of load persistence.  However, due to 

the equations of both the normalizer and unitizer units, the input-output model relationship is 

not necessarily that of simple persistence where the forecasted load is equal to that of the 

preceding hour. Table 8 lists the overall model equations derived for the four wire models and 

compares their forecasting performance with that of simple persistence. MAPE values for 

persistence can be as high as 7 times those for the synthesized wire models.  

VI. CONCLUSIONS 

We have demonstrated the use of abductive network machine learning as an alternative 

tool for next-day and next-hour electric load forecasting. Compared to neural networks, the 
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approach simplifies model development, automatically selects effective inputs, gives better 

insight into the load function, and allows comparison with previously used analytical models. 

While next-day models utilized exogenous inputs such as temperature and day type variables, 

next-hour models developed were largely influenced by the load time series. Forecasting 

performance compares favorably with that of neural network models reported in the literature. 

Future work will attempt to further improve the forecasting accuracy through the inclusion of 

hourly temperature data and the development of dedicated seasonal models. The technique will 

be applied to other areas including peak load forecasting.  

ACKNOWLEDGEMENTS 

The author wishes to acknowledge the support of the Research Institute of King Fahd 

University of Petroleum and Minerals, Dhahran, Saudi Arabia.  

REFERENCES 

[1] G. Gross and F. D. Galiana, “Short-term load forecasting,” Proc. IEEE, vol. 75, pp. 1558-

1573, Dec. 1987. 

[2] M. C. Brace, V. Bui-Nguyen, and J. Schmidt, “Another look at forecast accuracy of neural 

networks,” in Proc. IEEE ANNPS, 1993, pp. 389–394. 

[3] W. R. Christianse, “Short term load forecasting using general exponential smoothing,” IEEE 

Trans. Power App. & Syst., vol. PAS-90, pp. 900-911, Mar./Apr. 1971. 

[4] S. Vemuri, D. Hill, and R. Balasubramanian, “Load forecasting using stochastic models,” in 

Proc. 8th PICA Conf., 1973, pp. 31-37.   

[5] A. S. AlFuhaid, M. A. El-Sayed, and M. S. Mahmoud, “Cascaded artificial networks for 

short-term load forecasting,” IEEE Trans. Power Systems, vol. 12, pp. 1524-1529, Nov. 1997. 

[6] A. D. Papalexopoulos and T. C. Hesterberg, “A regression-based approach to short-term 

system load forecasting,” IEEE Trans. Power Systems, vol. 5, pp. 1535–1547, Nov. 1990. 

[7] H.S.Hippert, C.E.Pedreira, and R.C.Souza, “Neural networks for short-term load 

forecasting: A review and Evaluation,” IEEE Trans. Power Systems, vol. 16, pp. 44–55, Feb. 

 13



2001.  

[8] A. P. Alves da Silva, U. P. Rodrigues, A. J. Rocha Reis, and L. S. Moulin, NeuroDem - a 

neural network based short term demand forecaster, Presented at the IEEE Power Tech. Conf., 

Porto, Portugal, 2001.  

[9] W. Charytoniuk and M. S. Chen, “Neural network design for short-term load forecasting,” in 

Proc. DRPT, 2000, pp. 554 –561. 

[10] T. Matsui, T. Iizaka, and Y. Fukuyama, “Peak load forecasting using analyzable structured 

neural network,” in Proc. IEEE Power Eng. Society Winter Meeting, vol. 2, 2001, pp. 405–410. 

[11] H. W. Lewis, III, “Intelligent hybrid load forecasting system for an electric power 

company,” in Proc. Mountain Workshop on Soft Compt. Ind. Appl., 2001, pp. 25-27. 

[12] G. J. Montgomery and K.C. Drake, “Abductive networks,” in Proc. SPIE Applications of 

Artificial Neural Networks Conf., 1990, pp. 56-64. 

[13] R. E. Abdel-Aal, A.Z. Al-Garni, and Y.N. Al-Nassar, “Modelling and forecasting monthly 

electric energy consumption in eastern Saudi Arabian using abductive networks,” Energy - The 

International Journal, vol. 22, pp. 911-921, Sep. 1997. 

[14] R. E. Abdel-Aal, and M. A. Elhadidy, A machine-learning approach to modelling and 

forecasting the minimum temperature at Dhahran, Saudi Arabia, Energy - The International 

Journal, vol. 19, pp. 739-749, July 1994. 

[15] R. E. Abdel-Aal and M.A. Elhadidy, “Modeling and forecasting the maximum temperature 

using abductive machine learning,” Weather and Forecasting, vol. 10, pp.310-325, June 1995. 

[16] AbTech Corporation, Charlottesville, VA, USA, AIM User's Manual, 1990. 

[17] S. J. Farlow, "The GMDH algorithm," in Self-Organizing Methods in Modeling: GMDH 

Type Algorithms, S. J. Farlow, Ed. New York: Marcel-Dekker, 1984, pp. 1-24. 

[18] A. R. Barron, "Predicted squared error: A criterion for automatic model selection. Self-

Organizing," in Self-Organizing Methods in Modeling: GMDH Type Algorithms, S. J. Farlow, 

Ed. New York: Marcel-Dekker, 1984, pp. 87-103. 

 14



[19] http://www.ee.washington.edu/class/559/2002spr/ 

[20] D. C. Park, M. A. El-Sharkawi, R. J. Marks II, L. E. Atlas, and M. J. Damborg, “Electric 

load forecasting using an artificial neural network,” IEEE Trans. Power Systems, vol. 6, pp. 

442-449, May 1991. 

Table 1. Summary of the 6-year load data showing information on the year-to-year growth and 
the factors used by the two methods adopted for dealing with the load growth trend. 
 

Year 

Total 
Annual 
Load, 
MWH 

Mean 
Hourly 

Load, MW 

Annual Load 
Growth 
(year-to-

year) 

Factor for 
Normalizing     
to 1989 Mean 

(Method 1) 

Factor for 
Normalizing     

to 1985 Mean 
(Method 2) 

1985 16,310,645 1862 1 1.130 1 

1986 16,017,335 1828 0.982 1.151 0.982 

1987 16,510,405 1885 1.031 1.116 1.012 

1988 17,563,434 2000 1.061 1.052 1.074 

1989 18,434,815 2104 1.052 1 1.130 

Actual 19,357,130 2210  1.050        0.952 1.187 
1990 

Estimated 19,184,400 2190 1.041 0.961 1.176 

Average Load Growth 1986-1990 (Actual) 1.035   
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Table 2. Summary of the abductive network models for the 24 next-day hourly load forecasters. 

Model Inputs Model Structure 

Temperature Day (d) 
Forecasting 

Hour Day (d-1) Load 
at Hours: Day 

(d-1) Day (d) 

Day (d)     
Day Type 

Number 
of 

Layers 

Total 
Number of 
Elements 

1 3,20,24    1 1 
2 17,21,24    1 1 
3 1-13,15,17-24 Tmin ETmin WRK 1 1 

4 1-24 Tmin ETmin WRK 1 1 

5 1,3-5,7-24 Tmin, 
Tmax 

ETmin WRK, SAT, 
SUN 1 1 

6 1-24 Tmin, 
Tmax 

ETmin, 
ETmax 

WRK, SAT, 
SUN 2 2 

7 1-24 Tmin, 
Tmax 

ETmin, 
ETmax 

WRK, SAT, 
SUN 2 2 

8 1-24 Tmin, 
Tmax 

ETmin, 
ETmax 

WRK, SAT, 
SUN 3 3 

9 1-6,8-10,12-24 Tmin ETmin, 
ETmax 

WRK, SAT, 
SUN 2 2 

10 1-24 Tmin, 
Tmax 

ETmin, 
ETmax 

WRK, SUN 3 3 

11 7,15,21,24  ETmax SUN 3 3 

12 7,12,22,24  ETmin, 
ETmax SUN 4 4 

13 8,12,22 Tmax ETmin, 
ETmax 

WRK, SUN 4 4 

14 2,8,13,22 Tmax ETmin, 
ETmax 

WRK, SUN 4 4 

15 7,9,13,16,18,22 Tmax ETmin, 
ETmax 

WRK 4 5 

16 1-15,17-24 Tmax ETmin, 
ETmax 

WRK, SUN 4 4 

17 2,7,18,22 Tmax ETmax WRK 4 4 

18 1-11,13-22,24 Tmin, 
Tmax 

ETmax WRK, SAT 2 2 

19 1-11,13,14,16-24 Tmin, 
Tmax 

ETmin, 
ETmax 

WRK, SUN 2 2 

20 4,8,20 Tmax ETmax WRK 3 3 
21 1,7,16,21 Tmax ETmax WRK 3 3 

22 1-13,15-24 Tmin, 
Tmax 

ETmin, 
ETmax 

WRK, SAT 2 2 

23 1-3,5-7,9-12, 
14,15-23 

Tmin, 
Tmax 

ETmin, 
ETmax WRK 3 3 

24 2,8,23 Tmin ETmax SUN 3 3 
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Table 3. Performance of the next-day load forecasting models over the evaluation year for two 
methods of accounting for the annual trend of load growth.  
 

 MAPE, % 
Forecasting hour, h Trend removed by    

normalizing data 
Trend represented               

as a separate input variable 

1 1.14 0.95 

2 1.60 1.32 

3 1.34 1.23 

4 1.58 1.47 

5 2.07 1.72 

6 2.68 2.49 

7 3.43 3.34 

8 3.40 3.26 

9 2.59 2.37 

10 2.06 1.86 

11 2.71 2.14 

12 2.40 2.32 

13 2.47 2.59 

14 2.66 4.64 

15 3.02 3.30 

16 3.18 3.48 

17 3.54 3.46 

18 3.56 3.57 

19 3.31 3.29 

20 3.65 3.29 

21 3.29 3.11 

22 3.05 3.01 

23 2.65 2.74 

24 2.84 2.84 

Average 2.67 2.66 
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Table 4. Effect of the CPM parameter on the complexity and performance of next-day load 
forecasting models for hour 12.  
 

CPM Model Structure  
Relative 
Training 

Time 

MAPE, 
% 

0.2 

 

1.20 2.21 

1 

 

1.00 2.40 

   5 
 

0.58 3.69 
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Table 5. Summary of the abductive network models for the 24 next-hour load forecasters. 
 

Model Input(s) 
Day (d) 

Forecasting 
Hour 

Day (d-1) 
Load at 
Hours: 

Day (d) 
Load at 
Hours: 

Other 

Load 
Time 
Lags 

Selected 

Model Structure 

2  1  1 
3  2  1 
4  3  1 

8  7  1 

 

7  6,5  1,2 

 

1 24,20,3   1,5,22 
5 10 4 WRK 1,19 
6 22 5,1  1,5,8 
9  8,6,4  1,3,5 
10 18 9,8  1,2,16 
11 16 10,9  1,2,19 
12  11,9,8  1,3,4 
13  12,10,7  1,3,6 
14  13,10,8  1,4,6 
15  14,11,8  1,4,7 
17 18,11 16  1,13,20 
19  18,16,9  1,3,10 
20 20,18 19  1,24,26 
21 22,20 20  1,23,25 
22 23,20 21  1,23,26 
23 23,21 22  1,24,26 

 

 

18  17,15,9 Ta 1,3,9 

 

 
24 
 

19,9 23,22 WRK 1,2,29,39

 

Triple 
Double

Triple 
 Triple

   Double 

  Triple 
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Table 6. Performance of the next-hour load forecasting models over the evaluation year (column 
2), and of the next-day load forecasts obtained using such models iteratively at the end of the 
preceding day (column 3). 
 

MAPE, % 
Forecasting hour, h Next-hour forecasting Next-day forecasting        

(Iterated application) 

1 1.14 1.14 

2 1.01 1.87 

3 0.93 2.53 

4 0.88 3.21 

5 1.08 4.16 

6 1.27 5.95 

7 2.08 8.39 

8 1.55 8.13 

9 1.28 5.98 

10 0.82 4.56 

11 0.94 4.16 

12 0.70 4.08 

13 0.80 4.17 

14 0.69 4.52 

15 0.70 4.91 

16 0.77 5.33 

17 1.27 5.73 

18 1.31 6.23 

19 1.48 6.48 

20 1.25 6.13 

21 1.59 6.07 

22 1.23 5.17 

23 1.20 4.20 

24 1.29 3.90 

Average 1.14 4.87 
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Table 7. Summary of the MAPE error histograms for all forecasting hours over the evaluation 
year for both next-day and next-hour hourly forecasting models.  
 
  

Percentage population of forecasting 
hours over evaluation year MAPE Error 

Next-day models Next-hour models 

≤ 1% 29% 57% 

≤ 3% 68% 95% 

≥ 6% 9% 0.25% 

 
 
 
 
 
 
Table 8. Comparison of the performance of the four next-hour ‘wire’ models in Table 5 with 
simple load persistence over the evaluation year.  
 

Abductive ‘Wire’ Model  Simple Persistence Forecasting 
Hour 

Equation MAPE, % Equation MAPE, % 

2  L(h) =1.020 L(h-1) – 105.86 1.01 4.90 

3 L(h) =1.034 L(h-1) – 77.68 0.93 1.95 

4 L(h) =1.045 L(h-1) – 62.97 0.88 1.17 

8 L(h) =1.087 L(h-1) – 92.70 1.55 

      L(h) = L (h-1) 

10.66 
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Fig. 1. A typical AIM abductive network model showing various types of functional 
elements. 
 
 

 

• Normalizer Equations:  
 
X1 = - 4.52 + 0.00303 L3 
X2 = - 4.66 + 0.00295 L20 
X3 = - 5.61 + 0.00315 L24 
 
• Triple Equation:  
 
Y   = 0.125 X1 + 0.868 X3 – 0.115 X1 X2 + 0.0506 X1 X3 + 0.0582 X2 X3 
 
• Unitizer Equation:  

                                       
EL1  = 1600 + 312 Y  
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Fig. 2. Structure and equations for the next-day load forecasting model for hour 1. 
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Fig. 3. Structure and performance of the next-day load forecasting model for hour 12 over 
the evaluation year. 
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Fig. 4. Performance of the 24 next-day hourly forecasters on four typical days representing a working day, a Saturday, a Sunday, and a 
public holiday during the summer of the evaluation year.  
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Inputs Output 

24 hourly loads       
for day (d-1) 

Extreme 
Temperatures 
for day (d-1) 

Forecasted 
Extreme 

Temperatures   
for day (d) 

Day type code           
for day (d) 

Load for 
hour (h) 

on day (d) 

L1, L2, …, L24 Tmin, Tmax ETmin, ETmax WRK, SUN, SAT, HOLI L(d,h) 

 
 
 
 
 
 

Inputs Output 

24 hourly loads   
for day (d-1) 

(h-1) available hourly 
loads on day (d) 

Average 
Temperature  
for day (d-1) 

Forecasted 
Average 

Temperature  
for day (d) 

Day type 
code       

for day (d) 

Load for 
hour (h) 

on day (d) 

L1, L2, …, L24 NL1, NL2, …NL(h-1) Ta ETa WRK L(d,h) 
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 MAPE, % 
Forecastin
g hour, h Trend removed by     

normalizing data 
(Method 1) 

Trend represented        
as a separate model input  

(Method 2) 

1 1.14 0.95 

2 1.60 1.32 

3 1.34 1.23 

4 1.58 1.47 

5 2.07 1.72 

6 2.68 2.49 

7 3.43 3.34 

8 3.40 3.26 

9 2.59 2.37 

10 2.06 1.86 

11 2.71 2.14 

12 2.40 2.32 

13 2.47 2.59 

14 2.66 4.64 

15 3.02 3.30 

16 3.18 3.48 

17 3.54 3.46 

18 3.56 3.57 

19 3.31 3.29 

20 3.65 3.29 

21 3.29 3.11 

22 3.05 3.01 

23 2.65 2.74 

24 2.84 2.84 

Average 2.67 2.66 
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