
 
Abstract 
 
Computational intelligence techniques, e.g. neural networks, 
have been used for modeling and predicting physical rock 
properties and lithofacies types from wireline logs. This 
provides the essential data needed for reservoir 
characterization, without requiring extensive and costly coring 
or well testing data. We propose using abductive networks 
machine learning as an alternative approach to the problem. In 
contrast to neural networks, abductive networks offer 
simplified and more automated model synthesis, require less 
user intervention, and select only significant model input 
parameters. Analytical input-output relationships can be easily 
derived to give better insight into the modeled phenomena and 
allow comparison with other models. We used a dataset of 
well logs and corresponding core data to train and evaluate 
models for porosity and lithofacies. Results for porosity were 
compared with a neural network model developed on the same 
dataset. Simplified analytical relationships for porosity in 
terms of relevant input logs are generated, and we verify that 
such relationships adequately explain the dataset. A porosity 
model was trained on 293 samples selected randomly from 
one well dataset. Porosity was predicted for the remaining 100 
samples of the same well with a root-mean-square-error of 
3.8%. The model predicted porosity for the full 327 samples of 
another well in the same field with comparable accuracy. A 5-
class lithofacies model trained on 227 samples predicted the 
facies for remaining 100 samples of the same well with an 
overall accuracy of 93%. 
 
1. Introduction 
Determination of rock physical properties (e.g. porosity and 
permeability) and identification of lithofacies types (e.g. 
sandstone and mudstone) are important aspects of 
characterizing complex geological formations, estimating 
reserves, forecasting production, and planning enhanced 
recovery operations for oil reservoirs. Laboratory 
measurement of such parameters is possible using core 
samples extracted at the required depths. However, well bore 
conditions are not always favorable and the process is   tedious  
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and expensive, making it practical only at selected wells and 
depth intervals. An easier approach is to log the well using 
electronic equipment to measure and digitally record  
parameters such as rock density, sonic travel time, neutron 
backscatter, and natural gamma-ray emission. Rock 
parameters of interest at uncored locations can then be 
estimated by extrapolating the relationship between the log 
data and the corresponding core measurements to other 
intervals of a cored well or even to adjacent uncored wells. 
However, difficulties facing this task include: complex, non-
linear and often unknown relationships, inherent variability 
and incompleteness of the log data, effects of data acquisition, 
and statistical fluctuations in radiation log measurements.  
    Traditionally, both theoretical [1] and empirical [2] models, 
and statistical multiple linear regression (MLR) analysis [3] 
have been used to estimate rock properties in uncored intervals 
of oil wells. Theoretical approaches tend to oversimplify the 
behavior of the very complex porous media [4]. In addition to 
the difficulty in deriving a representative empirical 
relationship, results apply only to limited regions [5], and 
suffer from poor generalization [6]. With MLR, the 
fundamental assumption of a linear relationship between the 
modeled parameter and the well logs limits the usefulness of 
the technique [7]. Statistical classifiers such as discriminant 
analysis have been used to classify lithofacies types [8]. 
However, the technique suffers from limitations due to the 
assumption of a statistical normal distribution for the 
variables, particularly when the training set is small [9].  
    A recent trend in handling such difficulties has been to 
resort to artificial intelligence and machine learning 
techniques, such as neural networks, fuzzy logic, and genetic 
algorithms. With this approach, a model for the phenomenon 
considered is developed through training on an adequate 
number of solved examples. Once synthesized, the model can 
be used to perform fast predictions of outputs corresponding to 
new cases previously unseen during training. The method 
offers a number of advantages over conventional approaches, 
including increased tolerance to data errors and uncertainties 
and reduced need for knowledge on the modeled relationships 
or assumptions on the statistical properties of the data. 
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    Various forms of neural networks have been used to 
estimate permeability and porosity and identify lithofacies and 
from wireline logs [10-14]. However, the technique suffers 
from considerable user intervention during model 
development, non-transparent nature of the resulting models, 
the local minima problem, and the need for external stopping 
criteria to ensure adequate generalization. In some geophysical 
applications, performance of conventional neural networks 
alone was not adequate, and the method had to be 
supplemented by other techniques such as fuzzy logic [15] and 
genetic algorithms [16]. Neural network paradigms employing 
the gradient descent approach have been known to produce 
averaged, smoothed estimates that do not produce local 
variability of the reservoir permeability [5]. Extreme values 
were being underestimated or overestimated, rendering results 
unsatisfactory since fluid flow performance is more sensitive 
to extreme values rather than averages. 
    This paper proposes using abductive (or polynomial) 
networks based on the Group Method of Data Handling 
(GMDH) as an alternative approach that overcomes many of 
the neural network limitations. The technique has been used in 
a number of disciplines, including: weather forecasting [17], 
medical diagnostics [18], electrical load forecasting [19], 
credit evaluation [20], marketing [21], vibration monitoring 
[22], soil and agriculture [23], and nuclear spectroscopy [24]. 
However, the technique appears to be virtually unknown in the 
petroleum and gas industry, with only a few applications 
reported, e.g. estimating the useful life of drilling bits [25] and 
predicting oil Pressure-Volume-Temperature (PVT) properties 
[26]. Following a brief account of neural network limitations, 
the GMDH-based technique is introduced. Abductive network 
models for estimating porosity and lithofacies are described, 
and data on prediction performance are presented. Results on 
porosity are compared with a neural network model developed 
on the same dataset. Simplified analytical relationships are 
developed and used to explain the dataset.  
 
2. Limitations of Neural Networks 
Experience with neural networks has revealed a number of 
limitations with the technique, including the complexity of the 
design space [27].  With no analytical guidance on the choice 
of many design parameters, the developer often follows an ad-
hoc, trial-and-error approach of manual exploration that 
naturally focuses on just a small region of the potential search 
space. Architectural parameters that have to be guessed a 
priori include the number and size of hidden layers and the 
type of transfer function(s) for neurons in the various layers. 
Learning parameters to be determined include initial weights, 
learning rate, and momentum. Although acceptable results 
may be obtained, it is obvious that potentially superior models 
can be overlooked. The considerable amount of user 
intervention not only slows down model development, but also 
works against the principle of ‘letting the data speak’. To 
automate the design process, external optimization criteria, 

e.g. in the form of genetic algorithms, have been proposed 
[28]. Over-fitting or poor network generalization with new 
data during actual use is another problem [29]. As training 
continues, fitting of the training data improves, but 
performance of the network with new data previously unseen 
during training may deteriorate due to over-learning. A 
separate portion of the training data is often reserved for 
monitoring such performance in order to determine when to 
stop training. This reduces the amount of data used for actual 
training, which would be disadvantageous in many situations 
where training data are scarce. Network pruning algorithms 
[30] have been proposed to automate stopping of neural 
network training. Gradient descent employed by the back-
propagation algorithm to minimize training error suffers from 
the local minima problem, which may prevent reaching an 
optimal model [31]. Another limitation is the opacity or black-
box nature of neural network models. The associated lack of 
explanation capabilities is a handicap in many decision 
support applications such as medical diagnosis. Additional 
analysis is required to derive explanation facilities from neural 
network models, e.g. through rule extraction [32]. Model 
parameters are buried in large weight matrices, making it 
difficult to gain insight into the modeled phenomenon or 
compare the model with available empirical or theoretical 
models. Information on the relative importance of the various 
inputs to the model is not readily available, which hampers 
model reduction through discarding less significant inputs. 
Additional processing using techniques such as principal 
component analysis may be required for this purpose [33]. 

 
3. GMDH-based Abductive Networks 
An alternative modeling approach that helps overcome many 
of the above limitations is that based on the self-organizing 
group method of data handling [34]. GMDH-type algorithms 
can automatically synthesize adequate models that embody the 
inherent structure of complex and highly nonlinear systems. 
The automation of model synthesis not only lessens the burden 
on the analyst but also safeguards the model generated from 
being influenced by human biases and misjudgements. The 
GMDH approach is a formalized paradigm for iterated (multi-
phase) polynomial regression capable of producing a high-
degree polynomial model in effective predictors. The process 
is 'evolutionary' in nature, using initially simple (myopic) 
regression relationships to derive more accurate 
representations in the next iteration. The algorithm selects 
polynomial relationships and input combinations that 
minimize the prediction error in each phase. Iteration is 
stopped automatically at a point in time that strikes a balance 
between model complexity for accurate fitting of the training 
data, and model simplicity that enables it to generalize well 
with new data. It is seen that the algorithm has three main 
elements: estimation, selection, and stopping. The algorithm 
applies abduction heuristics for making decisions concerning 
some or all of the three elements [34] 
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    Practical implementations of the GMDH paradigm take the 
form of polynomial [19] or abductive networks [35]. The 
Abductory Induction Mechanism (AIM) tool [36] 
automatically synthesises mathematical models from 
relationships discovered in the training data.  It does so by 
trying out all potential relationships of linear, multiple and 
polynomial regressions on various combinations of existing 
variables. Like a neural network, the abductive model can be 
represented as a multi-layered network with inputs and outputs 
separated by processing layers. However, while the processing 
elements in neural networks are identical and restricted by the 
neuron analogy, AIM builds a network of various types of 
more powerful numerical functional elements based on 
prediction performance, see Fig. 1. While the neural network 
user needs to pre-specify the network structure, with AIM the 
network size, element types, connectivity, and coefficients for 
the optimum model are automatically determined, thus 
reducing user intervention. The algorithm automatically 
selects only the input variables that contribute significantly to 
the model. Discarding unnecessary inputs simplifies the 
resulting model and avoids degradation of model performance 
due to measurement errors or noise in discarded inputs. It also 
simplifies and economizes on data collection efforts required 
for model implementation. AIM adopts a well-defined 
automatic stopping criteria that does not require a dedicated 
subset of the training data for model validation during training. 
This is achieved by minimizing the predicted squared error 
(PSE) criterion [37] that penalizes model complexity to keep 
the model as simple as possible for best generalization. The 
criteria selects the most accurate model that does not overfit 
the training data, and therefore strikes a balance between the 
accuracy of the model in representing the training data and its 
generality which allows fitting previously unseen future data. 
In this way the model is optimized for the actual use for which 
it is developed, rather than only at the training phase. The user 
may optionally control this trade-off between accuracy and 
generality using the complexity penalty multiplier (CPM) 
parameter [36].  Values greater than the default value of 1 lead 
to simpler models that are less accurate but are more likely to 
generalize well with previously unseen data, while lower 
values produce more complex networks that may overfit the 
training data and degrade prediction performance with noise.  
The CPM is usually the only parameter that the user may need 
to experiment with during AIM model development, and 
adequate models are often obtained with the default CPM 
value. GMDH-based training achieves very fast convergence 
and does not suffer from the local minima problem [19]. 
Substitution of the equations of the various functional 
elements produces a mathematical expression for the overall 
model relationship, which makes it less of a black box 
compared to the neural network model. It is often instructive 
to compare resulting relationships with empirical or first-
principles models that may exist for the modeled phenomenon. 
Such relationships can also show directly relative importance 
of various inputs to the modeled output. 
 
 

Fig. 1. A typical AIM abductive network model showing various 
types of functional elements.     
 
    AIM models take the form of layered feed-forward 
abductive networks of functional elements (nodes) [36], see 
Fig. 1. Elements in the first layer operate on various 
combinations of the independent input variables (X's) and the 
single element in the final layer produces the predicted output 
for the dependent variable y. In addition to the functional 
elements in the main layers of the network, an input layer of 
normalizers converts the input variables into an internal 
representation as Z scores with zero mean and unity variance, 
and an output layer of unitizers restores the results to the 
original problem space. The used version of AIM supports the 
following main functional elements:  
(i) A white element that consists of a constant plus a linear 
weighted sum of all outputs of the previous layer, i.e.: 

nn XWXWXWWtWhiteOutpu ++++= ......22110   (1) 

Where:  X1, X2, …….Xn are the inputs to the element and W0, 
W1, W2, ….Wn are the element weights.  

(ii) Single, double, and triple elements which implement a 
third-degree polynomial expression, with possible cross-terms, 
for one, two, and three inputs respectively; for example,  
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The first step in solving a problem with AIM is acquiring a 
database of input-output solved examples for training and 
evaluating the model.  The database is often randomly split 
into a training set and an evaluation set, typically with 70% for 
training and 30% for evaluation. AIM uses the training set to 
synthesize the model network layer by layer until no further 
reduction in predicted squared error is possible. Performance 
of the derived model is then evaluated using the evaluation set. 
Often the default model obtained with CPM = 1 gives 
adequate performance, but simpler or more complex models 
can be tried by setting the appropriate CPM value prior to 
training. To obtain good AIM models, both the training and 
evaluation sets should be a good representation of the problem 
space. AIM’s learning task is also simplified by judicious 
selection of input variables in the training database.  
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4. Modeling of Porosity 
Log and core data available for one well (well # 1) were used 
to construct abductive network models for porosity. Log data 
consisted of the following seven parameters: 

• Depth in feet 
• Sonic slowness (DT) 
• Gamma ray (GR) 
• Neutron porosity (NPHI) 
• Normal pressure gradient (PORE) 
• Bulk density (ROHB) 
• Bulk density, calculated (ROHG) 

The core data consisted of depth in feet and measured 
porosity. Tolerating a mismatch in the region of ± 0.2 ft 
between the log and core depth measurements allowed 393 
data records to be used for model development. This dataset 
was randomly split into a training set of 293 records and an 
evaluation set of 100 records. All seven logs were declared as 
model inputs and the measured core porosity identified as the 
model output. The abductive network model obtained through 
training using the default CPM value of 1 is shown in the top 
row of Table 1. The 2-layer, 2-element model selects all input 
variables except ROHB. As ROHG and ROHB should be 
highly correlated, only one of them is selected. The linear 
White element in the first layer generates a weighted sum of 
DT, NPHI, PORE, and ROHG. A third degree polynomial 
represented by the Triple element in the second layer operates 
on the weighted sum together with the remaining two input 
parameters (Depth and GR). The model was evaluated on the 
remaining set of 100 records belonging to the same well used 
to train the model, and a scatter plot of predicted versus actual 
values for porosity is shown in Fig. 2(a). The root mean square 
error (RMSE) is 3.77 and the Pearson correlation coefficient 
(R) between the two sets of values is 0.92. Fig. 2(b) shows the 
results of model evaluation on the full dataset of 327 records 
belonging to another well (well # 2) in the same field. Values 
for RMSE and R are 3.90 and 0.90, respectively, which 
indicates acceptable accuracy for estimating porosity in 
uncored wells using models developed on cored adjacent 
wells.  
   The effect of varying the complexity of the abductive model 
was investigated, and the simpler models obtained with CPM 
= 2 and 5 are shown in Table 1. The increase in the CPM 
value from 1 to 2 reduces the number of model inputs selected 
from 6 to 3, and simplifies the model to a 1-element 1-layer 
model. At CPM = 5, the model is reduced to a simple wire 
element that makes a direct connection between the PORE 
input and the Porosity output, indicating that at this level of 
model simplicity the porosity is determined only by the 
normal pressure gradient. It is noted that among all seven 
input parameters, PORE has the largest correlation coefficient 
with core porosity (R = 0.88). Table 1 also gives data on 
relative  training  time  and  the  RMSE  error  and  the R value  
 
 
 

Table 1. Effect of the CPM parameter on the complexity and 
performance of porosity models. 

 

 
Fig. 2. Scatter plots for core and predicted porosity when the porosity 
model with CPM = 1 was evaluated: (a) on 100 new records of the 
same well, and (b) on 327 new records of a different well. 
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between the actual and predicted porosity values for the 
evaluation set in the same well. While increasing the CPM 
parameter significantly reduces model complexity and 
shortens training time, the simplified models still perform 
adequately in predicting porosity. The simplified models help 
derive manageable analytical expressions that can give better 
insight into the modeled relationship and be compared with 
other theoretical or empirical models that may be available. 
For example, equations synthesized for all the functional 
elements of the simplified model having CPM = 2 are shown 
in Fig. 3.  
 

Fig. 3. Details of the porosity model obtained with CPM = 2. 
 
Symbolic substitution for the equations gives the following 
nonlinear relationship for porosity in terms of the three input 
log parameters: 
 
Porosity = 32.1 – 0.7516 DT + 212.4483 NPHI – 2.7412 GR    

+ 0.0608 DT GR – 8.1575 NPHI GR            (3) 
 
Performing the same operation for the model with CPM = 5 
gives the following linear relationship: 
 
Porosity = 117.88 PORE – 2.35                                             (4) 
 
To verify that Eqn. (4) is an adequate representation of the 
dataset, Porosity is plotted versus the PORE log for the full 
dataset of 393 records for well # 1 in Fig. 4. The best line fit 
that has its intercept anchored to –2.35 has a slope of 116, 
which is very close to the slope of 117.88 in Eqn. (4).      
    Performance of the abductive models described above was 
compared with that of a neural network model developed on 
the same data using the NeuroSolutions 4.0 software for 
Windows. The (7-3-1) model had seven neurons in the input 
layer, 3 neurons having a hyperbolic tangent transfer function 
in a single hidden layer, and one neuron with a linear transfer 
function in the output layer. 20% of the training dataset were 
used for cross validation during training. Evaluating of the 
neural model on the 100 evaluation records from the same 
well gave RMSE = 3.76 and R = 0.92, which are comparable 
with the corresponding values for the default abductive model 
at CPM = 1. Other abductive models shown in Table 1 are 
much simpler than the neural network model, with only a 
small degradation in prediction performance.  
 

  
 

 
Fig. 4. Scatter plot of the core porosity versus the PORE log for the 
full dataset of 393 records of well # 1.  
 
5. Modeling of Lithofacies 
Data for well # 2 consisted of 327 records similar to those 
described for well # 1. As shown in Section 4, this full dataset 
was used to evaluate the porosity models developed using well 
# 1 on an entirely different well in the same field. In addition 
to core porosity data, information from well # 2 included 
lithofacies classification into five different types labeled as 1, 
2, 3, 4, and 5. Percentage abundance of these five types in the 
full dataset of well # 2 are 19, 20, 36, 17, and 8%, 
respectively. A single-output abductive network model was 
developed for the lithofacies types where the model output 
assumed an integer value from 1 to 5 representing the five 
facies classes. The model was trained on 227 records and 
evaluated on the remaining 100 records for the same well. Fig. 
5 shows the structure of the abductive network model 
synthesized using CPM  = 0.5.   

 
Fig. 5.  Lithofacies classification model synthesized with CPM = 0.5. 
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    This is a five-input, four-layer, highly nonlinear model. 
Only the depth, the two bulk density parameters, the gamma 
log, and the sonic log contribute to the model. The depth 
features strongly, and constitutes an input to all five Triple 
elements of the model. Classification performance of the 
model is shown in Table 2 in the form of a 5x5 confusion 
matrix. Classes 1 and 2 are each classified with 100% 
sensitivity. Class 8 is classified with 100% positive predictive 
value. Most classification errors occur with classes 4 and 5, 
which have the smallest population in the dataset. Overall 
classification accuracy is 93%. Neural network applications 
reported in the literature classify lithology from logs with 
approximately 90% accuracy [14].  
 
Table. 2. Confusion matrix for classifying the 100 evaluation records 
of the same well using the lithofacies model shown in Fig. 5. 

 
6. Conclusions 
We have demonstrated the use of abductive network machine 
learning as a new tool for estimating rock properties from well 
logs and core data. While estimation accuracy is comparable 
with neural networks, the new approach simplifies model 
development, automatically selects effective inputs, gives 
better insight into the modeled phenomena, and allows 
comparison with available analytical models. Future work will 
consider modeling other formation characteristics, including 
permeability and fluid saturation. Other areas of interest 
include seismic attributes analysis and synthesizing Magnetic 
Resonance Imaging (MRI) well logs from conventional 
geophysical logs.   
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