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Summary 
 

This paper demonstrates the use of abductive network classifier committees trained on different 

features for improving classification accuracy in medical diagnosis. In an earlier publication, 

committee members were trained on different subsets of the training set to ensure enough diversity 

for improved committee performance. In situations characterized by high data dimensionality, i.e. a 

large number of features and a relatively few training examples, it may be more advantageous to 

split the feature set rather than the training set. We describe a novel approach for tentatively ranking 

the features and forming subsets of uniform predictive quality for training individual members. The 

abductive network training algorithm is used to select optimum predictors from the feature set at 

various levels of model complexity specified by the user. Using the resulting tentative ranking, the 

features are grouped into mutually exclusive subsets of approximately equal predictive power for 

training the members. The approach is demonstrated on three standard medical diagnosis datasets 

(Breast Cancer, Heart Disease, and Diabetes). Three-member committees trained on different 

feature subsets and using simple output combination methods reduce classification errors by up to 

20% compared to the best single model developed with the full feature set. Results are compared 

with those reported previously with members trained through splitting the training set. Training 

abductive committee members on feature subsets of approximately equal predictive power achieves 

both diversity and quality for improved committee performance. Ensemble feature subset selection 

can be performed using GMDH-based learning algorithms. The approach should be advantageous in 

situations characterized by high data dimensionality.  
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1. Introduction 

Machine learning classification techniques provide support for the decision-making process in many 

areas of health care, including screening, diagnosis, prognosis, monitoring, therapy, survival 

analysis, and hospital management. Tools used include Bayesian and nearest-neighbor classifiers, 

rule induction methods, decision trees, fuzzy logic, artificial neural networks, and abductive 

networks [1] based on the group method of data handling (GMDH) algorithm [2]. Compared to 

neural networks, abductive networks allow easier model development and provide more 

transparency and greater insight into the modeled phenomena, which are important advantages in 

medicine. Medical applications of GMDH-based techniques include modeling obesity [3], analysis 

of school health surveys [4], drug detection from EEG measurements [5], medical image 

recognition [6], and screening for delayed gastric emptying [7].  

 
Accuracy is very important in classifiers used for medical applications. A high percentage of false 

negatives in screening systems increases the risk of real patients not receiving the attention they 

need, while a high false alarm rate causes unwarranted worries and increases the load on medical 

resources. In quest for higher classification accuracies and improved diagnosis, the concept of 

committee (ensemble) classifiers has been adopted in medicine, e.g. [8-11]. With this approach, a 

number of committee members (base classifiers) are trained on different aspects of the problem and 

then interrogated simultaneously, with their outputs combined to produce the final predicted 

committee output. Simple methods of combining the outputs of individual members, such as 

majority voting or weighted averaging, often lead to useful gains in classification performance. 

When member classifiers are independent, the resulting diversity in the decision making process is 

expected to boost generalization performance, thus improving the accuracy, robustness, and 

reliability of classification. Individual member models are expected to be simpler, and therefore 

train and execute faster than a single monolithic model. Since the members train and execute 
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independently in parallel, this approach can also achieve a reduction in the overall training and 

classification times compared to the monolithic approach. Obviously, combining the outputs of 

several identical classifiers produces no gain, and improvement is expected only when members err 

in different ways so that errors may cancel out [12]. It can be shown [13] that the mean squared 

error in the averaged committee output contains as a component the covariance of the outputs of 

individual committee members, therefore individual members should ideally be uncorrelated or 

even negatively correlated. Krogh and Vedelsby [14] have shown that the committee error can be 

expressed as two terms, one measuring the average generalization error of individual members and 

the other measuring the diversity or disagreement among the members. An ideal committee would 

therefore consist of highly accurate classifiers that disagree as much as possible.  

 
While neural network committees have been widely reported in the literature, there appears to be 

little mention of GMDH-based abductive (or polynomial) network committees. Due to the self-

organizing and self-stopping nature of such networks, the absence of initial random weights and the 

little room for user intervention during training, there is less scope for introducing diversity in 

member models synthesized using the same training data. In [15] we have described abductive 

network committees that train on mutually exclusive subsets of the training set to achieve the 

diversity required for good ensemble performance. Many medical applications are characterized by 

a large number of features (attributes) and relatively few training examples. Splitting such a small 

training set may not provide adequate training for the committee’s base classifiers. Moreover, using 

the full set of features to train individual members with the further reduced training sets may lead to 

overfitting due to the dimensionality problem. This paper proposes training individual members of 

the abductive network committee on different subsets of the input features using the full number of 

training examples available. This approach should improve the quality of the base classifiers and the 

committee performance in applications characterized by high dimensionality. Splitting the feature 
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set should also speed up the training of individual members as compared to splitting the training set. 

Classifier ensembles trained on different feature subsets have been used in medicine for classifying 

cancer using gene expression data derived from DNA arrays [16], diagnosing acute appendicitis 

with Bayesian classifiers [17], and diagnosing hearing impairment in children using the multi-

dimensional voice profile data [18].  

2. Background 

In many medical applications, enough features may be available to allow training of all base 

classifiers on mutually exclusive feature subsets. However, the feature subsets used should be 

carefully selected to ensure good quality of the individual classifiers, as well a high degree of 

diversity and independence amongst them to encourage constructive disagreements that enhance 

ensemble performance [19]. Feature selection for this purpose is somewhat different from 

traditional feature selection used for data reduction in areas characterized by high dimensionality 

due to the large number of available features, e.g. in remote sensing [20], seismic data processing 

[21], speech recognition [22], and drug design [23]. In single classifier applications, dimensionality 

reduction attempts to select a smaller subset of optimum features by excluding irrelevant and 

redundant features in order to avoid overfitting, improve performance, and speedup both training 

and prediction for the classifier. This form of feature reduction has been applied to several areas in 

medicine, including: classification of EEG signals for operating brain-computer interfaces [24], 

detection of mass lesions in digital mammograms [25], segmenting digital chest radiographs [26], 

and detection of seizure events in newborn children using EEG data [27].   

 
Techniques for feature subset selection can be classified into three main categories: embedded, 

filter, and wrapper techniques [28]. With embedded techniques, feature subset selection is part of 

the induction learning algorithm itself, as is the case with the CART classification tree. In filter 

techniques [29], subset selection is performed prior to induction and the selected subset serves as an 

 5



input to the induction algorithm. Wrapper techniques [30] search for an optimal subset of features 

by starting with an empty set and adding or removing features depending on the performance of the 

induction algorithm, which forms part of the feature search engine. Feature selection techniques 

based on the rough set theory have also been proposed [31]. The random subspace method (RSM) 

[32] was used to build decision tree ensemble classifiers based on different features. Tsymbal and 

Puuronen [17] use the RSM method to randomly select subsets of features, but follow this with a 

hill-climbing refinement search to optimize the subsets selected. Skrypnyk et. al. [18] use 

correlation-based feature selection [33] to select optimum subsets of features, each subset excelling 

in distinguishing one class of the population from the others. Each class is represented by an 

ensemble member trained on the relevant feature subset. Cho and Ryu [16] use a number of 

measures based on correlation, distance, information gain, mutual information, and signal-to-noise 

ratio to extract a set of features. Out of this set, correlation analysis is used to determine two 

negatively correlated features for training the base classifiers. Genetic algorithms have been used to 

search among a set of randomly selected feature subsets to maximize a fitness function based on 

accuracy and diversity for the resulting base classifiers [34] 

 
This paper describes the development of abductive network classifier committees where members 

train on different feature subsets. A novel technique is presented for feature subset selection, which 

uses the GMDH learning algorithm [1,2] to automatically select optimum predictors [35] at various 

levels of model complexity specified by the user. Information collected in this way is used to 

tentatively rank the available features according to their predictive quality. This ranking is then used 

to assign features to individual committee members such that the overall quality of the features used 

is approximately the same for all members. This should avoid large variations in the classification 

accuracy amongst individual members, thus improving the ensemble performance. Training on 

mutually exclusive feature subsets should ensure diversity, as each subset represents a different 
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view of the problem space. The technique is demonstrated using three standard medical datasets 

from the UCI Machine Learning Repository [36]. Feature ranking according to quality gives insight 

into the most effective markers for the diagnosis problem. Section 3 gives a brief introduction to the 

GMDH algorithm and the abductive network modeling tool used. It describes the approaches 

adopted for constructing the abductive network committees and selecting the feature subsets. 

Section 4 gives a brief outline of the three medical datasets used in the investigation. Section 5 

presents the results obtained. In all cases, the resulting committees outperformed both the best 

monolithic model utilizing all features and the best committee member. Conclusions are made and 

suggestions for future work given in Section 6. 

3.  Computational Methods 

3.1 GMDH and AIM Abductive Networks  

AIM (abductory inductive mechanism) [37] is a supervised inductive machine-learning tool for 

automatically synthesizing abductive network models from a database of inputs and outputs 

representing a training set of solved examples. As a GMDH algorithm, the tool can automatically 

synthesize adequate models that embody the inherent structure of complex and highly nonlinear 

systems. Automation of model synthesis not only lessens the burden on the analyst but also 

safeguards the model generated against influence by human biases and misjudgments. The GMDH 

approach is a formalized paradigm for iterated (multi-phase) polynomial regression capable of 

producing a high-degree polynomial model in effective predictors. The process is 'evolutionary' in 

nature, using initially simple (myopic) regression relationships to derive more accurate 

representations in the next iteration. To prevent exponential growth and limit model complexity, the 

algorithm selects only relationships having good predicting powers within each phase. Iteration is 

stopped when the new generation regression equations start to have poorer prediction performance 

than those of the previous generation, at which point the model starts to become overspecialized and 

 7



therefore unlikely to perform well with new data. The algorithm has three main elements: 

representation, selection, and stopping. It applies abduction heuristics for making decisions 

concerning some or all of these three aspects.  

To illustrate these steps for the classical GMDH approach, consider an estimation data base of ne 

observations (rows) and m+1 columns for m independent variables (x1, x2, ..., xm) and one 

dependent variable y. In the first iteration we assume that our predictors are the actual input 

variables. The initial rough prediction equations are derived by taking each pair of input variables 

(xi, xj ; i,j = 1,2,...,m) together with the output y and computing the quadratic regression polynomial 

[2]:  

 y = A + B xi + C xj + D xi
2 + E xj

2 + F xi xj                                                                    (1) 

Each of the resulting m(m-1)/2 polynomials is evaluated using data for the pair of x variables used 

to generate it, thus producing new estimation variables (z1, z2, ..., zm(m-1)/2) which would be expected 

to describe y better than the original variables. The resulting z variables are screened according to 

some selection criterion and only those having good predicting power are kept. The original GMDH 

algorithm employs an additional and independent selection set of ns observations for this purpose 

and uses the regularity selection criterion based on the root mean squared error rk over that dataset, 

where: 
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ss n
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Only those polynomials (and associated z variables) that have rk below a prescribed limit are kept 

and the minimum value, rmin, obtained for rk is also saved. The selected z variables represent a new 

database for repeating the estimation and selection steps in the next iteration to derive a set of 

higher-level variables. At each iteration, rmin is compared with its previous value and the process is 

continued as long as rmin decreases or until a given model complexity is reached. An increasing rmin 

is an indication of the model becoming overly complex, thus over-fitting the estimation data and 
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performing poorly on the new selection data.  Keeping model complexity checked is an important 

aspect of GMDH-based algorithms, which keep an eye on the final objective of constructing the 

model, i.e. using it with new data previously unseen during training. The best model for this 

purpose is that providing the shortest description for the data available [38]. Computationally, the 

resulting GMDH model can be seen as a layered network of partial quadratic descriptor 

polynomials, each layer representing the results of an iteration. 

A number of GMDH methods have been proposed which operate on the whole training dataset thus 

eliminating the need for a dedicated selection set. The adaptive learning network (ALN) approach, 

AIM being an example, uses the predicted squared error (PSE) criterion [38] for selection and 

stopping to avoid model overfitting, thus solving the problem of determining when to stop training 

in neural networks. The criterion minimizes the expected squared error that would be obtained when 

the network is used for predicting new data. AIM expresses the PSE as: 

2)2( pNKCPMFSEPSE σ+=                                                                                                (3) 

where FSE is the fitting squared error on the training data, CPM is a complexity penalty multiplier 

selected by the user, K is the number of model coefficients, N is the number of samples in the 

training set, and  is a prior estimate for the variance of the error obtained with the unknown 

model. This estimate does not depend on the model being evaluated and is usually taken as half the 

variance of the dependent variable y [38]. As the model becomes more complex relative to the size 

of the training set, the second term increases linearly while the first term decreases. PSE goes 

through a minimum at the optimum model size that strikes a balance between accuracy and 

simplicity (exactness and generality). The user may optionally control this trade-off using the CPM 

parameter. Larger values than the default value of 1 lead to simpler models that are less accurate but 

2
pσ
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may generalize well with previously unseen data, while lower values produce more complex 

networks that may overfit the training data and degrade actual prediction performance.  

AIM builds networks consisting of various types of polynomial functional elements. The network 

size, element types, connectivity, and coefficients for the optimum model are automatically 

determined using well-proven optimization criteria, thus reducing the need for user intervention 

compared to neural networks.  This simplifies model development and considerably reduces the 

learning/development time and effort. The models take the form of layered feed-forward abductive 

networks of functional elements (nodes) [37], see Fig. 1. Elements in the first layer operate on 

various combinations of the independent input variables (x's) and the element in the final layer 

produces the predicted output for the dependent variable y. In addition to the main layers of the 

network, an input layer of normalizers convert the input variables into an internal representation as 

Z scores with zero mean and unity variance, and an output unitizer unit restores the results to the 

original problem space. AIM supports the following main functional elements:  

(i) A white element which consists of a constant plus the linear weighted sum of all outputs of the 

previous layer, i.e. 

"White"  Output  = w0 + w1x1 + w2x2 + w3x3 + .... + wnx n                                                              (4) 

 where x1, x2,..., xn  are the inputs to the element and w0, w1, ..., wn are the element weights.  

(ii) Single, double, and triple elements which implement a third-degree polynomial expression with 

all possible cross-terms for one, two, and three inputs respectively; for example,  

"Double"  Output = w0 + w1x1 + w2x2 + w3x1
2 + w4x2

2 + w5x1x2 + w6x1
3 + w7x2

3                     (5) 

 

 

 

3.2  Abductive Network Committees 
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Fig. 2 is a schematic of the abductive network committees developed. All committees consisted of 

only three members (n = 3). The full set of m features available is split into three subsets of 

comparable predictive quality, each containing approximately m/3 features, using the feature 

selection technique described in Section 3.3 below. Each of the individual members is trained on the 

full training set available using only the designated feature subset. During classification, the trained 

member networks are simultaneously interrogated, each with the relevant subset of the input vector, 

and their continuous outputs yi;  i = 1,2,3 are combined to generate the final predicted committee 

output zc. The committees adopt cooperation schemes in the form of simple combination rules 

implemented by the output combination module in Fig. 2. Such rules include simple majority voting 

of categorical member outputs and simple averaging of continuous member outputs [15]. 

Categorical (classification) outputs are derived from corresponding continuous values by simple 

rounding (thresholding at 0.5).  

 
3.3  Selection of the Feature Subsets  

To ensure good classification performance by all committee members, the members need to train on 

feature subsets of comparable overall predictive quality. One way to achieve this is to assign 

features to the n members in groups of n features of similar quality, one feature for each member. 

The process is then repeated with the next group of n features, and so on until all features are 

assigned to the members. Fig. 3 shows a scheme where all available m features are arranged 

according to predictive quality, with feature 1 having the highest quality. Cho and Ryu  [16] 

determine such ranking using performance scoring on a set of statistical, similarity, and 

information-theoretical measures. With n = 3 as depicted in the figure, the top-ranking three 

features (numbered 1, 2, and 3) are assigned to the committee members # 1, 2, and 3, respectively, 

with member # 1 receiving feature 1. The second best group of three features (numbered 4, 5, and 6) 

are assigned to members # 2, 3, and 1, respectively. The number for the committee member 
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receiving the best feature among the group of three features is shifted by one, in a modulo n 

manner, each time a new group is assigned. This ensures that member # 1 does not always get the 

first (and best) feature in each group. The assignment procedure continues until all features are 

exhausted.  

 
In this paper we perform tentative ranking of the input features according to predictive quality by 

using the GMDH-based learning algorithm of the AIM tool to automatically select optimum 

predictors at various stages of model complexity. With all input features available for use by the 

model, we start by using a large CPM value to synthesize a simple model consisting of a single 

White or Triple element of only three input features. Such features would be those having the best 

predictive quality among the feature set. The modeling process is then repeated with a lower CPM 

value to allow the synthesis of a slightly more complex that selects in three more features that will 

have lower predictive quality than the first three. The process continues until all features are 

selected. In this way, features will be determined in groups of three. Features within each group will 

be arbitrarily assigned to the three committee members, since no information exists on the ranking 

of predictive quality within each group. Recommended values for the CPM parameter range from 

10 for the simplest model down to 0.1 for the most complex model [37]. If the most complex model 

still leaves some features unselected, all features selected thus far can be disabled as inputs to 

enforce selection from the remaining features and allow completion of the feature ranking process. 

3.4  Software and Hardware Implementations  

Results reported in this paper were obtained using the AIM abductive network software version 1.0 

for Macintosh computers [37]. A version of the software has later been developed for PCs running 

Windows [39]. Contrary to neural networks where hardware implementations have been available 

for some time in the form of VLSI chips from several vendors, there appears to be no integrated 

circuit implementations of abductive or polynomial networks available at present.  
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4. Data Sets for Training and Evaluation 

Three standard medical diagnosis datasets from the UCI Machine Learning Repository [36] were 

used for this study. These include the Wisconsin breast cancer dataset, the Cleveland heart disease 

dataset, and the Pima Indian diabetes dataset. Out of the 699 cases for the breast cancer dataset, 16 

records containing missing attributes were omitted, leaving 683 for use. In all cases, the dataset was 

randomly split into a training set comprising approximately 70% of the data and an evaluation set 

consisting of the remaining 30%. Table 1 lists important statistics on the datasets, including the 

percentage prevalence of positives in the total, training, and evaluation sets. Table 2 lists the names 

or brief descriptions of the features for each dataset.  The feature number used in the table is the 

column number for the feature in the dataset, and will be used to identify the feature throughout this 

paper. Following is a brief description of each dataset: 

 
4.1 The Wisconsin Breast Cancer Dataset (WBCD) 

This dataset [40] was obtained from Dr. William H. Wolberg of the University of Wisconsin 

Hospitals, Madison, Wisconsin, USA. The set includes nine features of ordinal variables having 

integer values in the range of 1 to 10 that describe visually assessed characteristics of fine needle 

aspiration (FNA) samples. The feature names are listed in the second column of Table 2. The 

feature number used in the table is the column number for the feature in the dataset after the column 

containing the sample code number in the original dataset was removed. A binary-valued class 

variable indicates diagnosis as malignant (1) or benign (0). A classifier constructed using the multi-

surface method (MSM) of pattern separation successfully diagnosed 97% of new cases [40]. 10-fold 

cross-validation average classification accuracies reported in the literature for a single classifier are 

96.9% and 94.7% using backpropagation neural networks and the C4.5 decision tree tool, 

respectively [41].  
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4.2 The Cleveland Heart Disease Dataset 

This dataset [42] is based on data from the Cleveland Clinic Foundation and consists of 270 records, 

each having 13 input features (a subset of an original set of 75 features). Brief feature description is 

shown in the third column of Table 2. A binary-valued class variable indicates the presence (1) or 

absence (0) of heart disease. 10-fold cross-validation average classification accuracies reported in 

the literature for a single classifier are 81.8% and 77.1% using backpropagation neural networks 

and the C4.5 decision tree tool, respectively [41].  

4.3 The Pima Indians Diabetes Dataset 

This dataset [43] was donated by Vincent Sigillito of the Johns Hopkins University, Baltimore, 

Maryland, USA. It consists of 768 records of female patients at least 21 years old of Pima Indian 

heritage. There are eight numerical features representing physiological measurements and medical 

test results. Brief feature description is shown in the fourth column of Table 2. A binary-valued 

class variable indicates whether the patient shows signs of diabetes according to World Health 

Organization criteria (1) or not (0). This dataset is particularly difficult to classify, with 10-fold 

cross-validation average classification accuracies reported in the literature for single classifiers 

being 76.4% and 74.6% for backpropagation neural networks and the C4.5 decision trees tool, 

respectively [41].  

5. Results 

5.1 The Breast Cancer Data 

Feature subset selection for a 3-member committee was carried out using the training set of 483 

cases with all nine features available as inputs. Training was performed in three steps of increasing 

model complexity corresponding to CPM = 2.5, 2, and 1.5. Models synthesized at these complexity 

levels are shown in Fig. 4. Table 3(a) lists features selected for each model, indicating the new 

 14



group of three features introduced at each stage. All the resulting models were evaluated on the 

same evaluation set of 200 cases, and the corresponding percentage classification errors are shown. 

The model at CPM = 2 is the optimum monolithic model encountered, with a classification error of 

2.5%. Table 3(b) lists the feature subsets, each comprising three features, assigned to the three 

committee members. Each member was trained on the full training set at the CPM value given in 

the table. Shown also are the percentage classification errors obtained when the individual members 

were evaluated on the evaluation set. When the member outputs were combined, the committee 

achieved a classification error of 2% using either simple majority voting of categorical member 

outputs or simple averaging of continuous member outputs prior to thresholding. This value is 50% 

lower than that for the best committee member and 20% lower than that for the best monolithic 

module developed with the full feature set. 10-fold cross validation classification error rates on the 

same dataset for 10-member neural networks using the bagging and boosting resampling techniques 

are 3.3% and 3.9%, respectively [41]. Table 3(c) gives a detailed performance comparison between 

that committee and the default monolithic output (CPM = 1), showing improvements in overall 

classification accuracy as well as sensitivity, specificity, and positive and negative predictive 

values.  

 
Results in Table 3(a) suggest that feature numbers 2, 6, and 7 are the best markers for diagnosing 

breast cancer from the given dataset, while the poorest features are 3, 4, and 9, see Table 2 for the 

corresponding feature names. To verify these results, two models were synthesized at the same level 

of default model complexity (CPM = 1): one using only features {2, 6, 7} as inputs and the other 

using only features {3, 4, 9} as inputs. When run on the evaluation set, the first model gave 7 errors 

while the second gave 10 errors. Referring to Table 2, the best features are: Uniformity of cell size, 

Bare nuclei, and Bland chromatin. Rough set data analysis of the breast cancer dataset reveals that 
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Uniformity of cell size has a high classification quality and that Bare nuclei with Bland chromatin 

can account for 100% of the cases considered [44].    

5.2 The Heart Disease Data 

Feature subset selection for a 3-member committee was carried out using the training set of 190 

cases with all 13 features available as inputs. Training was performed in four steps of increasing 

model complexity corresponding to CPM = 4, 2, 1.5, and 1. Table 4(a) lists features selected for 

each model, indicating the new group of features introduced at each stage. The table also shows the 

corresponding percentage classification errors obtained when the models were evaluated on the 

same evaluation set of 80 cases. The model at CPM = 2 is the optimum monolithic model 

encountered, with a classification error of 15%. Table 4(b) lists the feature subsets, each containing 

4 to 5 features, assigned to the three committee members. Each Member was trained on the full 

training set at the CPM value given in the table. Shown also are the percentage classification errors 

obtained when the individual members were evaluated on the evaluation set. When the member 

outputs were combined using simple majority voting of categorical member outputs, the committee 

achieved a classification error of 12.5%. This value is 28.6% lower than that for the best committee 

member and 16.7% lower than that for the best monolithic model developed with the full feature 

set. 10-fold cross validation classification error rates on the same dataset for 10-member neural 

networks using the bagging and boosting resampling techniques are 16.7% and 19.1%, respectively 

[41]. Table 4(c) gives a detailed performance comparison between the committee and the default 

monolithic output (CPM = 1) showing improvements in overall classification accuracy as well as 

sensitivity, specificity, and positive and negative predictive values. The committee classifier 

increases the sensitivity and the positive predictive value by approximately 7 percentage points.  

The overall classification accuracy of 87.5% is significantly better than the best value of 80% 

 16



reported previously for a 2-member committee trained on a split training set [15]. The relatively 

small dataset makes training on different feature subsets a more viable option in this case. 

 
Results in Table 4(a) suggest that feature numbers 9, 12, and 13 are the best markers for diagnosing 

heart disease from the given dataset, while the poorest features are 6, 7, 11, and 1. To verify these 

results, two models were synthesized at the same default level of model complexity (CPM = 1): one 

using only features {9, 12, 13} as inputs and the other using only features {6, 7, 11, 1}as inputs. 

When run on the evaluation set, the first model gave 16 errors while the second gave 25 errors. 

Referring to Table 2, the best features are: Exercise induced angina (EXANG), Number of major 

vessels colored by fluoroscopy (CA), and Thal.  Duch, Adamczak, and Grabczewski [45] derive the 

following rule as one of three classification rules that describe the dataset: 

R1:   CA = 0 AND (Thal = 0 OR EXANG = 0)                                                                                 (6) 

 

5.3 The Diabetes Data 

Feature subset selection for a 3-member committee was carried out using the training set of 518 

cases with all 8 features available as inputs. Training was performed in three steps of increasing 

model complexity corresponding to CPM = 3, 1.8, 0.5. Table 5(a) lists features selected for each 

model, indicating the new group of features introduced at each stage. The table also shows the 

corresponding percentage classification errors obtained when the models were evaluated on the 

same evaluation set of 250 cases. Both models with CPM = 3 and CPM = 0.5 give optimum 

performance for monolithic models, with a classification error of 24.4%. Table 5(b) lists the feature 

subsets, each containing 2 to 3 features, assigned to the three committee members. Each Member 

was trained on the full training set at the CPM value given in the table. Shown also are the 

percentage classification errors obtained when the individual members were evaluated on the 

evaluation set. With the linear outputs of the three committee member combined using simple 

 17



averaging, the committee achieved a classification error of 22.4%. This value is 12.5% lower than 

that for the best committee member and 8.2% lower than that for the best monolithic module 

developed with the full feature set. 10-fold cross validation classification error rates on the same 

dataset for 10-member neural networks using the bagging and boosting resampling techniques are 

23.2% and 22.8%, respectively [41]. Table 5(c) gives a detailed performance comparison between 

the committee and the default monolithic output (CPM = 1) showing improvements in overall 

classification accuracy as well as specificity and positive and negative predictive values. About 5 

and 10 percentage points are gained on specificity and positive predictive value, respectively, at the 

expense of approximately 2 points lost on sensitivity. The relatively few number of features 

available in this dataset makes ensembling using different feature subsets less attractive, and it may 

be responsible for the comparatively poorer performance of the resulting committee. The overall 

classification accuracy of 77.6% is lower than the value of 78.8% reported previously for a 3-

member committee trained on a split training set [15]. The relatively large dataset and small feature 

set in this case makes training on different subsets of the training data a more viable option. 

 
Results in Table 5(a) suggest that feature numbers 2, 6, and 8 are the best markers for diagnosing 

diabetes from the given dataset, while the poorest is feature 4. Features 7, 5, 1, and 3 have 

intermediate predictive quality. To verify these results, two models were synthesized at the same 

default level of model complexity (CPM = 1): one using only features {2, 6, 8} as inputs and the 

other using only features {1, 3, 4} as inputs. When run on the evaluation set, the first model gave 60 

errors while the second gave 80 errors. Referring to Table 2, the best three features are: Plasma 

glucose concentration in an oral glucose tolerance test, Body mass index, and Age. Zhu and Guan 

[46] have found that the first two of these three features score the highest values for the relative 

importance factor (RIF), respectively, among all features of the dataset. 
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6. Conclusions 

Abductive network committees with members trained on different feature subsets can help improve 

classification performance compared to a single model trained on the full feature set. Committee 

classifiers also train and executes faster. Splitting the feature set, rather than the training examples, 

among the committee members is a more effective way of introducing diversity while avoiding the 

high dimensionality problem in situations where a few training examples but a large number of 

features exist. A novel approach for ensemble feature subset selection is introduced which assigns 

subsets of approximately equal overall predictive quality to the committee members. The approach 

relies on ranking the features according to their predictive power. Feature ranking is performed 

using the property of the GMDH-based abductive network learning algorithm of automatically 

selecting optimum predictive features at various levels of model complexity imposed by the user. 

Committees comprising only three members and training on as few as 8 features in total achieve an 

appreciable gain in classification performance compared to the best single models and the best 

committee members. Performance is comparable with results reported in the literature using other 

ensembling techniques including bagging and boosting. Results were compared with those reported 

earlier on two of the datasets using abductive networks trained by splitting the training set. The 

comparison indicates that splitting the feature subset would be particularly advantageous for small 

datasets having an adequate number of features, e.g. the heart disease dataset. As a by product, the 

feature ranking performed gives an insight into the contribution of the various disease markers to 

the diagnosis problem at hand, which should be of interest to medical practitioners. Information 

gained in this regard match findings reported in the literature using other methods for feature 

ranking and selection. Future work would attempt to further refine the feature ranking procedure 

and apply the technique for reducing the dimensionality of single classifiers. 
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Table 1. Summary statistics for the three datasets used. 

Whole Dataset Training Set Evaluation Set 

Dataset      
Number 

of 
Features Number 

of Cases 
Prevalence, 

% 
Number of 

Cases 
Prevalence, 

% 
Number of 

Cases 
Prevalence, 

% 

Breast       9 683 35 483 35.6 200 33.5 

Heart 13 270 44.4 190 44.7 80 43.8 

Diabetes 8 768 34.9 518 35.1 250 34.4 
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Table 2. Brief description of the features in the three datasets used. 
 

Feature Description Feature 
Number  

in 
Dataset   Breast Cancer Dataset Heart Disease Dataset Diabetes Dataset 

1 Clump thickness            Age              Number of pregnancies  

2 Uniformity of cell size Sex     
Plasma glucose 
concentration in an oral 
glucose tolerance test 

3 Uniformity of cell 
shape Chest pain type  (4 values) Diastolic blood pressure 

(mm Hg) 

4 Marginal adhesion Resting blood pressure  Triceps skin fold thickness 
(mm) 

5 Single epithelial cell 
size  Serum cholesterol in mg/dl Two-hour serum insulin 

(µU/ml) 

6 Bare nuclei Fasting blood sugar > 120 mg/dl  Body mass index 

7 Bland chromatin  Resting electrocardiographic 
results  (values: 0,1,2) Diabetes pedigree function 

8 Normal nucleoli Maximum heart rate achieved   Age (years) 

9 Mitoses  Exercise induced angina 
(EXANG)  

10  Oldpeak = ST depression induced 
by exercise relative to rest  

11  Slope of the peak exercise ST 
segment   

12  Number of major vessels (0-3) 
colored by fluoroscopy (CA)  

13  Thal: 3 = normal; 6 = fixed defect; 
7 = reversible defect  
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Table 3. Results for the Breast Cancer data. (a): Single models of increased complexity synthesized 
using the full set of features. (b): Composition and performance of the three member models and the 
resulting committee. (c): Detailed performance comparison between the committee in (b) and the 
default single model.  
 
(a) 

Step 
Number  CPM Features Automatically 

Selected  
Classification 

Error, % 
Remarks 

1 2.5 2, 6, 7  4 Simplest model 

2 2 2, 6, 7 1, 5, 8  2.5 Best monolithic model encountered 

3 1.5 2, 6, 7 1, 5, 8 3, 4, 9 5.5  

 
(b) 

3-Member Committee 

Member 
Number 

Feature 
Subset 

Assigned  
 CPM Classification 

Error, % 
Remarks Output 

Combining 
Method 

Classification 
Error, % 

1 2, 1, 9 2 5  

2 6, 5, 4 2 4.5  

3 7, 8, 3 1 4 Best 
member  

Simple 
averaging or 

Majority voting  
2 

 
(c) 

Model                     Sensitivity, 
% 

Specificity, 
% 

Positive 
Predictive 
Value, % 

Negative 
Predictive 
Value, % 

Overall 
Classification 
Accuracy, % 

Default Monolithic Model  
(All attributes, CPM = 1)      92.5 98.5 96.9 96.3 96.5 

3- Member Committee        
in (b) above 95.5 99.2 98.5 97.8 98 
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Table 4. Results for the Heart Disease data. (a): Single models of increased complexity synthesized 
using the full set of features. (b): Composition and performance of the three member models and the 
resulting committee. (c): Detailed performance comparison between the committee in (b) and the 
default single model.  
 
(a) 

Step 
Number  CPM Features Automatically Selected  Classification 

Error, % 
Remarks 

1 4 9, 12, 13  18.75 Simplest model 

2 2 9, 12, 13 3, 2, 10  15 Best monolithic 
model encountered 

3 1.5 9, 12, 13  3, 2, 10 4, 8, 5  16.25  

4 1 9, 12, 13  3, 2, 10 4, 8, 5 6, 7, 11, 1 17.5  

 
(b) 

3-Member Committee 

Member 
Number 

Feature Subset 
Assigned   CPM Classification 

Accuracy, % 
Remarks Output 

Combining 
Method 

Classification 
Accuracy, % 

1 9, 3, 4, 6 1 21.25  

2 12, 2, 8, 7, 1 2 22.25  

3 13, 10, 5, 11 1 17.5 Best member 

Majority 
Voting 12.5% 

 
(c) 

Model                     Sensitivity, 
% 

Specificity, 
% 

Positive 
Predictive 
Value, % 

Negative 
Predictive 
Value, % 

Overall 
Classification 
Accuracy, % 

Default Monolithic Model  
(All attributes, CPM = 1)      71.4 91.1 86.2 80.4 82.5 

3- Member Committee        
in (b) above 77.1 95.6 93.1 84.3 87.5 
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Table 5. Results for the Diabetes data. (a): Single models of increased complexity synthesized using 
the full set of features. (b): Composition and performance of the three member models and the 
resulting committee. (c): Detailed performance comparison between the committee in (b) and the 
default single model.  
 
(a) 

Step 
Number  CPM Features Automatically 

Selected  
Classification 

Error, % 
Remarks 

1 3 2, 6, 8  24.4 Simplest model 

2 1.8 2, 6, 8 7, 5, 1, 3  25.2  

3 0.5 2, 6, 8 7, 5, 1, 3 4 24.4 Best monolithic model encountered 

 
(b) 

3-Member Committee 

Member 
Number 

Feature 
Subset 

Assigned  
 CPM Classification 

Error, % 
Remarks Output 

Combining 
Method 

Classification 
Error, % 

1 2, 1, 3 0.5 25.6 Best member 

2 6, 7, 4 0.5 31.2  

3 8, 5 1 31.6  

Simple 
averaging  22.4 

 
(c) 

Model                     Sensitivity, 
% 

Specificity, 
% 

Positive 
Predictive 
Value, % 

Negative 
Predictive 
Value, % 

Overall 
Classification 
Accuracy, % 

Default Monolithic Model  
(All attributes, CPM = 1)      53.1 89 75 75.3 75.2 

3- Member Committee        
in (b) above 51 94.2 84.5 75.5 77.6 
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Fig. 1. AIM abductive network showing various types of functional elements. 
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            Fig. 2. Schematic of a network committee trained on different feature subsets. 
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Fig. 3. Schematic showing the procedure for ensemble feature subset selection  
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Step CPM Resulting Model Structure  
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   3 1.5 

 

 
 

Fig. 4. Models synthesized at three levels of increasing model complexity for the breast cancer 
data. Numbers at input nodes refer to features automatically selected by the learning algorithm. 
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