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Problem decomposition and divide-and-conquer strategies have been proposed to improve the 

performance and realization of neural network solutions for complex problems. This paper reports 

on an experimental evaluation of performance gains brought about by problem decomposition for 

abductive network classifiers that classify four noisy waveform patterns having two waveform 

types (sine/cosine) and two different frequencies. Two-stage problem decomposition improves 

overall classification accuracy from 87.2% to 99%. Problem decomposition classifiers were found 

to be much more tolerant to model simplification and reduction in the training set size compared to 

monolithic solutions. This allows trading off some of the large gain in classification performance 

for some other advantages that may be quite desirable in some applications, such as simpler models 

that execute faster and are easier to implement, smaller training sets, and shorter training times. A 

problem decomposition classifier is more accurate than a monolithic classifier in spite of the former 

being five times simpler, executing over two times faster, requiring one fifth of the training data, 

and synthesized in one eleventh of the training time. Performance is comparable with a neural 

network solution using the same decomposition method and significantly superior to an abductive 

network committee approach.  
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I. INTRODUCTION 
 

In spite of being demonstrated on many small-sized problems, artificial neural networks do not 

scale up well [22]. Their performance deteriorates rapidly with the increase in the network size due 

to the larger increase in the training time and connection complexity. Classification represents an 

important application area of neutral networks that suffers from such limitations. The divide-and-

conquer approach has been proposed to improve the performance and realization of neural network 

solutions to real life problems through problem decomposition. Instead of tackling the whole 

complex problem in one go, the problem is divided into a number of simpler, more manageable 

sub-problems, each of which can be solved by a separate network. The resulting network modules 

are simpler than a single (monolithic) network that attempts to solve the problem as a whole, and 

therefore would generalize better, thus improving prediction performance. Simpler networks also 

train faster, with the possibility of training in parallel to further reduce training time. They would 

also be easier to realize physically as VLSI circuits where practical limitations exist on the number 

of connections associated with a node [28]. Resulting smaller modular networks reduce the 

requirement on training sample size, which is useful in handling high-dimensionality data as in 

remote sensing applications [32]. Problem decomposition has been applied to phoneme 

classification from acoustic spectra, leading to an order of magnitude reduction in neural network 

training time for comparable performance [28]. The technique has greatly simplified the training of 

neural networks required to steer a tractor-trailer truck to dock while backing up through 

decomposing the control problem into a number of smaller subtasks [19]. A 2-level modular neural 

networks approach for classifying the auditory brainstem response has proved simpler, trained 

faster, and yielded higher recognition rates as compared to non-modular networks [33]. More 

recently, problem decomposition has been used in finding real roots of polynomials [15], predicting 

crosstalk in VLSI circuits [17], and in automatic face detection [9]. A number of approaches exist 

for decomposing a complex problem into a set of simpler ones. In the manual approach, 

decomposition is performed by the designer prior to training based on knowledge of the problem, 
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e.g. [17,19]. For multi-class classification problems, manual class decomposition is a straight 

forward approach, where for example, a K-class classifier can be replaced by K two-class modules, 

each trained to recognize one class from its complement [5]. Techniques have also been described 

for performing the decomposition automatically during training without requiring any prior 

knowledge on the decomposition of the problem, e.g. [14]. Another closely related approach for 

modular networks is that of network committees or ensembles [l8], where individual modules 

cooperate to improve performance. With this approach, a number of classifiers are used in parallel 

and their outputs combined to produce the final committee output. Individual classifier outputs are 

often combined using simple measures such as majority voting or weighted averaging, without 

involving the input vector of attributes [20]. Alternatively, a gating network uses the input vector to 

determine the optimum weighting factors for each case to be classified [31]. In the stacked 

generalization approach, the combiner takes the form of another higher-level network trained on the 

outputs of individual members to generate the committee classification output [13]. When member 

classifiers are independent, the resulting diversity in the decision making process is expected to 

enhance generalization performance, thus improving the accuracy, robustness, and reliability of 

classification. With neural network committees, increased diversity among individual members is 

attempted through training on different parts of the dataset [25] or different input features [29], or 

through using different network architectures [27], different learning paradigms [26], or different 

training parameters [8]. Resampling methods, such as bootstrap sampling, have been used to 

increase independence among training subsets for individual committee members. They form the 

basis for the bagging [7] and boosting [12] ensembling methods. Techniques for automatically 

enhancing negative correlation between individual members of a network committee have been 

described [34].  

Abductive or polynomial networks [24] based on the self-organizing group method of data 

handling (GMDH) [10] offer an alternative machine learning approach that has been somewhat 

neglected in the literature. Compared to neural networks, the method offers the advantages of 
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automated model synthesis requiring little or no user intervention, faster convergence during model 

synthesis without the problems of getting stuck in local minima, automatic selection of relevant 

input variables, and automatic configuration of model structures [4]. With the model represented as 

a hierarchy of polynomial expressions, resulting analytical model relationships can provide insight 

into the modeled phenomena, highlight contributions of various inputs, and allow comparison with 

previously used empirical models. Training stops automatically to avoid over-fitting by using a 

proven regularization criterion that penalizes model complexity and does not require a separate 

cross validation data set. Abductive networks have been used for modeling, prediction, and 

classification in a variety of applications, e.g. [1,2,16,21,30].   

Although modular solutions have been described in many forms using neural networks, such 

techniques have not been applied to abductive networks. With the two machine learning 

approaches being distinctly different in many ways, an investigation is warranted into the use of 

modular approaches with abductive network. This paper reports on an experimental investigation 

into performance gains with abductive network classifiers through problem decomposition for a 

typical application of classifying noisy waveforms. Following an overview of GMDH and 

abductive network modeling, the classification problem of discriminating is described. Monolithic 

classifiers using various combinations of model complexity and training set size are presented and 

their performance evaluated. Two-stage problem decomposition is then introduced and 

performance is compared with that of the monolithic approach. Results are compared with neural 

network modular solutions developed on the same data, and with an abductive network committee 

approach. Various scenarios are considered for trading off some of the significant improvement in 

classification accuracy brought about by problem decomposition for other benefits such as simpler 

models, faster training, and smaller training sets.  
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II. GMDH and AIM ABDUCTIVE NETWORKS 

AIM (abductory inductive mechanism) [3] is a supervised inductive machine-learning tool for 

automatically synthesizing abductive network models from a database of inputs and outputs 

representing a training set of NT solved examples. As a GMDH algorithm, the tool can 

automatically synthesize adequate models that embody the inherent structure of complex and highly 

nonlinear systems. The automation of model synthesis not only lessens the burden on the analyst 

but also safeguards the model generated from influence by human biases and misjudgments. The 

GMDH approach is a formalized paradigm for iterated (multi-phase) polynomial regression capable 

of producing a high-degree polynomial model in effective predictors. The process is 'evolutionary' 

in nature, using initially simple (myopic) regression relationships to derive more accurate 

representations in the next iteration. To prevent exponential growth and limit model complexity, 

the algorithm selects only relationships having good predicting powers within each phase. Iteration 

is stopped when the new generation regression equations start to have poorer prediction 

performance than those of the previous generation, at which point the model starts to become 

overspecialized and therefore unlikely to perform well with new data. The algorithm has three main 

elements: representation, selection, and stopping. It applies abduction heuristics for making 

decisions concerning some or all of these three aspects.  

To illustrate these steps for the classical GMDH approach, consider an estimation database of ne 

observations (rows) and m+1 columns for m independent variables (x1, x2, ..., xm) and one 

dependent variable y. In the first iteration we assume that our predictors are the actual input 

variables. The initial rough prediction equations are derived by taking each pair of input variables 

(xi, xj ; i,j = 1,2,...,m) together with the output y and computing the quadratic regression polynomial 

[10]:  

 y = A + B xi + C xj + D xi2 + E xj2 + F xi xj                                                       (1) 

Each of the resulting m(m-1)/2 polynomials is evaluated using data for the pair of x variables used 
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to generate it, thus producing new estimation variables (z1, z2, ..., zm(m-1)/2) which would be 

expected to describe y better than the original variables. The resulting z variables are screened 

according to some selection criterion and only those having good predicting power are kept. The 

original GMDH algorithm employs an additional and independent selection set of ns observations 

for this purpose and uses the regularity selection criterion based on the root mean squared error rk 

over that data set, where 
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Only those polynomials (and associated z variables) that have rk below a prescribed limit are kept 

and the minimum value, rmin, obtained for rk is also saved. The selected z variables represent a 

new database for repeating the estimation and selection steps in the next iteration to derive a set of 

higher-level variables. At each iteration, rmin is compared with its previous value and the process 

is continued as long as rmin decreases or until a given complexity is reached. An increasing rmin is 

an indication of the model becoming overly complex, thus over-fitting the estimation data and 

performing poorly in predicting the new selection data.  Keeping model complexity checked is an 

important aspect of GMDH-based algorithms, which keep an eye on the final objective of 

constructing the model, i.e. using it with new data previously unseen during training. The best 

model for this purpose is that providing the shortest description for the data available [6].  

Computationally, the resulting GMDH model can be seen as a layered network of partial quadratic 

descriptor polynomials, each layer representing the results of an iteration. 

A number of GMDH methods have been proposed which operate on the whole training data set 

thus avoiding the use of a dedicated selection set. The adaptive learning network (ALN) approach, 

AIM being an example, uses the predicted squared error (PSE) criterion [6] for selection and 

stopping to avoid model overfitting, thus eliminating the problem of determining when to stop 

training in neural networks. The criterion minimizes the expected squared error that would be 

obtained when the network is used for predicting new data.  AIM expresses the PSE error as: 
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Where FSE is the fitting squared error on the training data, CPM is a complexity penalty multiplier 

selected by the user, K is the number of model coefficients, n is the number of samples in the 

training set, and σp
2 is a prior estimate for the variance of the error obtained with the unknown 

model. This estimate does not depend on the model being evaluated and is usually taken as half the 

variance of the dependent variable y [6]. As the model becomes more complex relative to the size 

of the training set, the second term increases linearly while the first term decreases. PSE goes 

through a minimum at the optimum model size that strikes a balance between accuracy and 

simplicity (exactness and generality). The user may optionally control this trade-off using the CPM 

parameter. Larger values than the default value of 1 lead to simpler models that are less accurate 

but may generalize well with previously unseen data, while lower values produce more complex 

networks that may overfit the training data and degrade actual prediction performance.  

AIM builds networks consisting of various types of polynomial functional elements. The network 

size, element types, connectivity, and coefficients for the optimum model are automatically 

determined using well-proven optimization criteria, thus reducing the need for user intervention 

compared to neural networks. This simplifies model development and reduces the 

learning/development time and effort. The models take the form of layered feed-forward abductive 

networks of functional elements (nodes) [3], see Fig. 1. Elements in the first layer operate on 

various combinations of the independent input variables (x's) and the element in the final layer 

produces the predicted output for the dependent variable y. In addition to the main layers of the 

network, an input layer of normalizers convert the input variables into an internal representation as 

Z scores with zero mean and unity variance, and an output unitizer unit restores the results to the 

original problem space.  

The used version of AIM supports the following main functional elements:  

 (i) A white element which consists of a constant plus the linear weighted sum of all outputs of 

the previous layer, i.e.: 
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"White" Output  = w0 + w1x1 + w2x2 + .... + wnxn                                                                 (4) 

where x1, x2,..., xn  are the inputs to the element and w0, w1, ..., wn are the element weights.  

(ii) Single, double, and triple elements which implement a third-degree polynomial expression 

with all possible cross-terms for one, two, and three inputs respectively, for example, 

"Double" Output = w0 + w1x1 + w2x2 + w3x1
2 + w4x2

2 + w5x1x2 + w6x1
3 + w7x2

3                 (5) 

III. THE CLASSIFICATION PROBLEM 

We considered the classification problem of identifying four waveform patterns buried in noise. 

Two patterns are sine waves with two different frequencies while the other two represent cosine 

waves having the same two frequencies as the sine waves. A noisy sinusoid was simulated as:  

50,...,2,1);( 2sin)( =+= iie
T

iAiy π
                                               (6) 

where A is the amplitude and T is the period. Samples are uniformly spaced in time and the sample 

spacing is taken as 1 second for simplicity. All four patterns have zero phase and the same nominal 

amplitude value A = 5.  The higher frequency pattern had a period T  = T1  = 25 while the lower 

frequency pattern had T  = T2 = 30. This applies also for the two cosine patterns with the cos 

function replacing the sin function.  Classes 1 and 2 are sine waves with periods T1 and T2, 

respectively, while classes 3 and 4 are cosine waves with periods T1 and T2, respectively. The 

additive noise component e(i) represents samples of a white gaussian noise process with zero mean 

and standard deviation σ. The value of σ is chosen to produce the required signal to noise ratio, 

SNR, given in decibels by: 

2

2

2
log10

σ
ASNR =                                                              (7) 

All work described here used SNR = 0 dBs, which gives σ = 3.536 for A = 5. Each waveform 

record consists of 50 samples which constitute the input variables to AIM.  Table 1 lists values for 

two separability measures for all possible pair combinations of the four waveform classes, as well 

as an estimate for the upper bound on the Bayes error. Each class is represented by 500 waveform 
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records. For Gaussian distributions, the Bhattacharyya Distance, B, between two classes is given by 

[11]: 
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where M1 and M2 are the mean vectors and Σ1 and Σ2 are the covariance matrices for the two 

classes, respectively. With the two classes being equiprobable, an upper bound on the Bayes error 

is given by [11] 

-B
u e 5.0=ε                                                                                                                                   (9)  

A J-measure of class separability based on scatter matrices is given by [11]: 
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where bS  is the between-class covariance matrix and wS  is the within-class covariance matrix. For 

equiprobable classes, wS  is the average of the two covariance matrices for the two classes and bS  

is given by:  
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where 12M  is the global mean of the combined distribution of the two classes, 

2
21

12
MMM +

=                                                                                                                         (12) 

Both measures show classes 1 and 4 to have the smallest separability, with 1.14% being the 

percentage upper bound on error probability. Separability decreases and the classification error 

probability increases at lower values of the signal to noise ratio. 

IV. THE MONOLOTHIC CLASSIFIER 

For the monolithic solution, a single abductive network was synthesized to identify all four 

waveform patterns in one go through training on 2000 examples (NT = 2000) consisting of 500 
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examples of each of the four patterns. Records for the AIM training/evaluation database were 

derived by appending to each simulated waveform record the corresponding known pattern 

classification. A typical complete data record is represented as: 

Inputs:                Output:   

Values of the Waveform Samples         Pattern Classification (Categorical Variable)    
 
y(1)   y(2)   y(3) …  y(50)         1 (=  Sine, T = 25) 
      2 (=  Sine, T = 30) 
      3 (=  Cosine, T = 25) 
      4 (=  Cosine, T = 30) 
A. Default Model 

The top row in Table 2 shows the abductive network model generated using the default value of 1 

for the CPM complexity parameter. Here yi indicates y(i), the ith time sample of the waveform. The 

classifier is a 4-layer network comprising four triple elements and one white element and operates 

on 42 different samples out of the 50 samples of the input waveform. Large numbers for the model 

layers and selected inputs characterize complex models and increase model execution 

(classification) time. For comparison with other model configurations, we consider training times 

relative to the training time for this monolithic network with CPM = 1, which is taken as unity. The 

number of different waveform samples selected by AIM as model inputs and the relative training 

times are also shown in the table. The network classification performance was evaluated on a total 

of 1000 waveform records (250 of each of the four patterns) representing new data previously 

unseen during training. The computed real output from the classifier was converted into a 

categorical predicted classification output (1, 2, 3, or 4) by rounding according to the following 

rule: 

IF computed output < 1.5 THEN Predicted Classification = 1 (Sine, T = 25) 

IF 1.5 ≤ computed output < 2.5 THEN Predicted Classification = 2 (Sine, T = 30) 

IF 2.5 ≤ computed output < 3.5 THEN Predicted Classification = 3 (Cosine, T = 25) 

IF 3.5 ≤ computed output THEN Predicted Classification = 4 (Cosine, T = 30)      (13) 
 
Table 3 shows the results of classifying the four patterns of the evaluation data set in the form of 
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percentage values for waveform (sine/cosine), period (T1/T2), and overall classification accuracies. 

The period classification accuracy was derived only for those waveforms (sines and cosines) that 

were correctly classified. Therefore, the overall classification accuracy is the product of the other 

two parameters. Shown also in the table are the mean and standard deviation values for the absolute 

error between the predicted output (before rounding) and the known classification output. The top 

row of Table 3 indicates an overall classification accuracy of 87.2% for the default monolithic 

model.   

B. Simpler Model 

We enforced the synthesis of a simpler classifier by setting the CPM parameter to 5 instead of the 

default value of 1. Simpler network structures are easier to implement and have the advantages of 

reduced training time, faster classification, and simpler model description. Table 2 shows the 

resulting classifier which consists of only 3 layers with the first layer consisting of a simpler White 

element as compared to the Triple element for the default model. The simpler network uses only 21 

waveform samples as opposed to 42 samples used by the previous model and has a relative training 

time of 0.78. Performance of this classifier on the evaluation set is shown in Table 3, which gives 

the Sine/Cosine, period, and overall classification accuracies as 92.6%, 86.4%, and 80%, 

respectively. Such simplification of the monolithic classifier degrades all three measures of 

classification accuracy.  

C. Smaller Training Set 

We have also investigated the effect of reducing the size of the training set on classifier 

performance. In some applications, e.g. medical diagnostics, training examples may be scarce due 

to the difficulty or high cost involved in obtaining solved examples. Instead of training on 2000 

waveform records (500 of each pattern) as described earlier, we restricted training to only 400 

records (100 of each pattern), with the same evaluation set of 1000 records (250 of each pattern) 

used to evaluate the models. This presented a grater challenge to the resulting classifiers, as they 
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would be evaluated on a population 2.5 times larger than the training population. Table 2 shows the 

classifier obtained using the smaller training set with the default complexity of CPM = 1. Although 

the model still uses 4 layers, it is simpler than that of the default model in the top row of the table. 

The first layer is just a White element and only 31 waveform samples are used as opposed to 42 

samples before. A simpler model is expected since it is easier to reconcile input-output variations 

within a smaller training set. The relative training time drops to 0.29. Table 3 shows the 

classification performance and gives the Sine/Cosine, period, and overall classification accuracies 

as 91.2%, 90.6%, and 82.7%, respectively. The overall classification accuracy exceeds that of the 

simpler model trained on the full training set (NT = 2000, CPM = 5).  

D. Simpler model with a Smaller Training Set 

Table 2 shows the classifier obtained using the smaller training set with CPM set to 5 for a simpler 

model. This leads to a significant drop in model complexity, with the classifier consisting of only 

two elements organized in two layers and using only four waveform samples as inputs. The relative 

training time drops to 0.23. Table 3 shows the classification performance and gives the 

Sine/Cosine, period, and overall classification accuracies as 89.6%, 65.7%, and 58.9%, 

respectively. While performance remains reasonably adequate for the simpler task of sine/cosine 

discrimination, over-simplification of the model causes significantly poorer period recognition and 

overall classification.  It is obvious that the monolithic learning of the classification problem at 

hand is too complex to be supported adequately with the level of model simplification attempted 

(NT = 400, CPM = 5). The monolithic approach does not allow us to take advantage of desirable 

benefits of model simplification (e.g. smaller training sets, reduced training times, simpler and 

smaller model networks, and faster classification) as this adversely affects classification 

performance.  

We use the z statistic to test the statistical significance of the difference in performance levels 

exhibited by two model configurations.  The statistic tests the hypothesis that the means of the 
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output absolute error for two error distributions are equal, and therefore belong to the same 

distribution, and is expressed as [23]: 

 
nn

 
z

2

2
2

1

1
2

21

σσ
µµ

+

−
=                                                                                                                           (14) 

where ,, ii σµ and ni are the error mean and standard deviation, and the sample size for the ith error 

distribution, respectively, and i ∈  1,2. At the 95% confidence level (α = 0.05), the hypothesis is 

accepted for -1.96 < z < 1.96. Performing this test on the absolute error data in Table 3 (with n1 = 

n2 = 1000) between data for the top row and data for each of the remaining three rows, the 

hypothesis is rejected in all three cases. Therefore, degradations in classification performance by 

the default model at the top row of the table (NT=2000, CPM=1) attributed to model changes 

introduced in the remaining three rows are all statistically significant. Such changes reduce model 

complexity or the training set size, or both, by a factor of 5. 

V. CLASSIFICATION WITH PROBLEM DECOMPOSITION  

We adopt a manual (explicit) approach based on knowledge of the problem to decompose the 

classification of the four waveform patterns into a set of simpler tasks. A straight-forward class 

decomposition approach would use four separate 2-class classifier modules, each trained to 

separate each of the four patterns from its complement [5]. This method has the advantage that all 

four modules are trained and interrogated independently in parallel, which simplifies development 

and operation, and speeds up both training and classification. A serious limitation is the gross 

imbalance in the composition of the training sets for individual modules. Examples representing a 

class would be only one third of those representing its complement, which is expected to slow 

down training and reduce classification accuracy [5]. To avoid such limitations we use a 

hierarchical 2-stage decomposition where the waveform type is first determined as either sine or 

cosine and then the waveform is classified as having one of the two waveform periods (T1 or T2). 

By simplifying the learning tasks one hopes that, compared to the monolithic approach, the 
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resulting models would perform more accurately and that simpler models would still give adequate 

performance. In place of a single monolithic network, the decomposition classifier requires three 

network modules as shown in Fig. 2. Network Net1 performs the initial sine/cosine waveform type 

classification and networks Net2 and Net3 perform the period classification for the classified sine 

and cosine waveforms, respectively. Net2 is activated only when Net1 detects a sine waveform, 

while Net3 is activated only for patterns classified as cosines by Net1. To compare classification 

performance with and without problem decomposition, the same data sets used for training and 

evaluating the monolithic classifiers (without decomposition) were used to train and evaluate 

decomposition classifier. Net1 was trained on all the 2000 training records, but with those records 

identified only as either sines or cosines. Net2 was trained on the 1000 sine records in the training 

set, with those records identified as having a period T1 or T2. Similarly, Net3 was trained on the 

cosines of the training data. All three classifier modules are thus trained using balanced datasets, 

where the classes being classified are equally represented. A typical data record for the 

training/evaluation of Net1 is represented as: 

Inputs:                 Output:   

Values of the Waveform Samples         Waveform Type (Categorical Variable)    
 
y(1)   y(2)   y(3) …  y(50)          1 (=  Sine) 
       2 (=  Cosine) 
 
Records for use with Net2 would take the form: 
 
Values of the Waveform Samples (all sines)    Waveform Period (Categorical Variable)    
 
y(1)   y(2)   y(3) …  y(50)          1 (Period  = T1 = 25) 
       2 (Period  = T2 = 30) 
 
Similarly for network Net3 for cosines.     

The three dedicated classifier networks synthesized with NT = 2000 and CPM = 1 are shown in top 

row of Table 4. As each network solves a simpler problem than that of the monolithic solution, the 

modules are considerably simpler than the corresponding monolithic network in the top row of 

Table 2. The only functional elements used are the White and the Single elements, and the period 
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classifier for cosines uses only 3 layers. This should considerably simplify the mathematical 

expression for the models as compared to the corresponding monolithic network dominated by the 

more complex Triple element. The sine/cosine classifier uses the largest number of waveform 

samples for inputs ( = 34) while the two period classifiers for sines and cosines use only 29 inputs 

each. It is interesting to note that in all cases represented in Table 4, the period classifiers for sines 

and cosines use an identical number of waveform samples. The number of inputs used by the 

individual networks is always lower than the number of inputs used by the monolithic network in 

Table 2. Relative to the training time for the monolithic network, the training times for Net1, Net2, 

and Net3 are given in Table 4 as 0.65, 0.31, and 0.30, respectively. Since training of the three 

decomposition networks can take place simultaneously, total training time is determined by the 

longest of the three times, i.e. 0.65. This shows that problem decomposition can effectively reduce 

training time by a factor of 1.54.  

As shown in Fig. 2, classification with problem decomposition takes place in two stages executed 

sequentially, namely determining the waveform type (sine/cosine) and then recognizing the period 

type (T1/T2) for the waveform type determined. Maximum execution time for a complete 

classification is the sum of the execution time of the sine/cosine network and the largest of the two 

execution times for the period classifiers for the sines and the cosines. A rough indicator of the 

classification execution time is the number of layers in the network, although this does not account 

for variations in the complexity of functional elements in each layer. For the modular network in 

the top row of Table 4, network depth corresponding to the maximum classification execution time 

is 4 + 4 = 8. Compared to the depth of 4 for the corresponding monolithic classifier in Table 2, this 

suggests that the decomposition solution classifies at half the speed of the monolithic classifier. In 

practice, however, the simpler function elements and the smaller number of network inputs 

improve the classification speed of the decomposition classifier. 

Performance of the decomposition classifier was measured using the same evaluation set of 1000 
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waveform records (250 of each of the four patterns). First, the sine/cosine classifier (Net1) was 

evaluated on the full set but with the waveform records identified only as either sines (500 records) 

or cosines (500 records). The computed real output from the classifier was converted into a 

categorical predicted classification output (1 or 2) by rounding according to the following rule:  

IF computed output < 1.5 THEN Predicted Classification = 1 (Sine) 

IF 1.5 ≤ computed output THEN Predicted Classification = 2 (Cosine)       (15) 
 

Net2 and Net3 were evaluated on the waveforms classified by Net1 as sines and cosines, 

respectively. In both cases, the computed real output from the classifier was converted into a 

categorical predicted classification output (1 or 2) by rounding according to the following rule: 

IF computed output < 1.5 THEN Predicted Classification = 1 (Period = T1 = 25) 

IF 1.5 ≤ computed output THEN Predicted Classification = 2 (Period = T2 = 30)      (16) 
 
Table 5 shows the evaluation results for the modular approach. Only 5 records of each of the sine 

and cosine patterns were misclassified by Net1. Net2 and Net3 performed the period (T1/T2) 

classification with 100% accuracy for all the waveform records correctly classified by Net1 (495 

sine and 495 cosine records, respectively). In practice, Net2 and Net3 would also receive cosine 

records misclassified as sines and sine records misclassified as cosines, respectively. This was 

taken into account when calculating the values shown in Table 5 for the mean and standard 

deviation of the absolute error between the predicted output (before rounding) and the known 

classification output.  Comparison between the results in Tables 3 and 5 shows improvement in all 

aspects of classification performance with problem decomposition, with the overall classification 

accuracy rising from 87.2% to 99%. Performing the z statistic test on the absolute error data in the 

top row of both Tables 3 and 5 shows that the error reduction attributed to problem decomposition 

is statistically significant. 

VI. POSSIBLE TRADE-OFFS FOR PROBLEM DECOMPOSITION GAINS 

Results given in Section V indicate that problem decomposition leads to a significant improvement 
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in classification accuracy and some reduction in training time, at the expense of some possible 

increase in the classification execution time. In many situations, classification accuracy is the prime 

concern and improvements therein would be most welcome even if obtained with more 

computationally demanding training or somewhat slower classification. Abundance of low cost, 

high speed computing power that can be used in parallel alleviates such limitations for most 

practical applications. However, in some demanding online applications we may be willing to 

sacrifice some classification accuracy for improved classification speed. Another improvement area 

that would be welcome in many disciplines is reducing the size of the data set required to train the 

classifier. We have investigated a number of scenarios for trading-off some of the improvement in 

prediction accuracy gained from problem decomposition for other benefits, such as further model 

simplification, reductions in training time and computational requirements, improvement in 

classification speed, and reduction in the size of the training data set required.  

A. Simpler Modular Classifiers 

With a full training set (NT = 2000), we enforced the synthesis of simpler networks for the 

decomposition solution by setting the CPM parameter to 5 instead of the default value of 1. The 

expected simpler network structures have the advantages of reduced computational requirements 

and faster classification. Table 4 shows the models obtained for Net1, Net2, and Net3. Compared 

with the corresponding networks using CPM = 1 (top row in the same table), it is clear that the 

modules became much simpler. For example, the period classifier for cosines is now only a 2-layer 

network operating on just 10 waveform samples. For CPM = 1, the corresponding network has 3 

layers and operates on 29 samples. With the training times for Net1, Net2, and Net3 shown in the 

table, the relative overall total training time for the decomposition solution networks (if performed 

in parallel) is 0.57, indicating a reduction in training time by a factor of 1.75 from the monolithic 

case with CPM = 1. Table 5 shows the values of the three classification performance parameters as 

98.6%, 99.7%, and 98.3%. These values are very close to those for the decomposition case with 

CPM = 1, which demonstrates that problem decomposition allows significant model simplification 
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while maintaining adequate classification accuracy.  This has not been the case with the monolithic 

approach, where model simplification reduced the overall classification accuracy from 87.2% to 

80%, see Table 3.  

B. Smaller Training Set 

Another area where improved classification accuracy through problem decomposition can be traded 

off is reducing the size of the training set required. This should prove useful in situations where 

training examples are scarce due to the difficulty or high cost of obtaining solved examples. Instead 

of training on 2000 waveform records (500 of each pattern) as described in Section V, we restricted 

the training to 400 records (100 of each pattern). However, the evaluation set remained the same, 

1000 records (250 of each pattern). Table 4 shows the models obtained for Net1, Net2, and Net3 at 

the default model complexity (CPM = 1). Compared with the networks obtained using the full 

training set of 2000, it is clear that networks became much simpler. For example, the sine/cosine 

classifier is now a 3-layer network operating on 19 waveform samples as compared to a 4-layer 

network operating on 34 samples. With the training times for Net1, Net2, and Net3 shown, the 

relative overall total training time for the decomposition solution networks (if performed in 

parallel) is 0.20, indicating a reduction in training time by a factor of 5 compared to the monolithic 

case with CPM = 1. Table 5 shows the classification performance parameters as 98.7%, 99.6%, and 

98.3%. These are almost identical to those with NT = 2000 and CPM = 1, which demonstrates that 

a 5-fold reduction in the size of the training set is quite affordable with problem decomposition. 

This has not been the case with the monolithic approach, where model simplification reduced the 

overall classification accuracy from 87.2% to 82.7%, see Table 3.  

C. Simpler Modular Classifiers with a Smaller Training Set 

Further gains in model simplicity and reduction in classification time, training time and the training 

data required can be obtained using simpler classifiers (CPM = 5) that are trained on the smaller 

training set (NT = 400). Table 4 shows the models obtained for Net1, Net2, and Net3. Compared 
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with other rows in the table, the networks are the simplest obtained so far, each being a single 

functional element operating on just 3 samples of the waveform. The most complex is the 

sine/cosine classifier that uses a Triple element, while the period classifiers for both the sines and 

the cosines use a linear White element. Classification time would be the fastest obtained so far, 

being determined by the execution time of only two layers, as opposed to eight layers for the 

decomposition approach with NT = 2000 and CPM = 1 (top row of Table 4). With the training 

times for Net1, Net2, and Net3 shown in Table 4, the relative overall total training time for the 

decomposition solution networks (if performed in parallel) is 0.09, indicating a reduction in 

training time by a factor of 11 compared to the monolithic case with NT = 2000 and CPM = 1. The 

simpler networks allow simple analytical expressions to be derived for the classifier. As an 

example, Fig. 3 shows details of the equations for the function elements of the sine/cosine Net1 

classifier. Substituting symbolically for these equations gives the following overall relationship for 

the classifier output in terms of the relevant waveform samples:  

Output =  - 0.04331 y(9)  - 0.040745 y(10) – 0.047598 y(12) + 0.0016083 y(9) y(10)                                

– 0.00013939 y(9) y(12)  – 0.0011048 y(10) y(12) + 0.0011623 y(9) y(10) y(12)             

+ 1.4798                                                                                                                          (17) 

Sine/cosine classification is then performed by rounding the output according to the rule in 

Equation (15). For example, with A = 5 and T = 25, a noiseless sine has y(9) = 3.852566, y(10) = 

2.938926, and y(12) = 0.626666, while a noiseless cosine has y(9) = -3.187120, y(10) = -4.045085, 

and y(12) = -4.960574. Substituting for both cases in Equation (17) gives the computed output as 

1.19 and 1.94, respectively, leading to correct classification in both cases.  

Table 5 shows the three classification performance parameters as 93.1%, 96%, and 89.4%. While 

these are significantly poorer than all other problem decomposition results in Table 5, they are still 

better than nearly all the monolithic results in Table 3. In particular, the overall classification 

accuracy is still better than that for the default monolithic solution (NT = 2000, CPM = 1). This 
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demonstrates that problem decomposition makes it affordable to combine significant model 

simplification with considerable reduction in the size of the training data without seriously 

affecting classification performance. This was not possible with the monolithic approach, where the 

overall classification accuracy deteriorated sharply from 87.2% to the unacceptably low value of 

58.9%, see Table 3. Tests using the z statistic shows that  performance for each row in Table 5 

(with problem decomposition) is significantly superior to that of the corresponding row in Table 3 

for the monolithic case. Moreover, performance of each of the problem decomposition models in 

rows 2 and 3 of Table 5 is significantly superior to that of the default monolithic model (NT=2000, 

CPM=1) in the top row of Table 3.     

 

VII. COMPARISON WITH OTHER TECHNIQUES 

We have compared the performance of the abductive problem decomposition approach proposed 

with another abductive network method for improving classification accuracy based on network 

committees [18]. A committee of five abductive networks was used. The five member networks 

were trained using CPM = 1 on different and equal subsets of the training set of 2000 records. 

Therefore for each network, NT = 400 and each waveform class was represented with 100 cases. 

The committee was evaluated using the same evaluation set of 1000 cases. Overall classification 

accuracies for individual member networks were 82.7%, 86.9%, 82.3%, 85.1%, and 82.1%. The 

final committee output was determined by simple averaging of the raw outputs of the five 

individual member networks, followed by rounding according to Equation (13). Overall 

classification accuracy for the committee was 88.4%. Table 6 lists performance figures for the 

committee approach as well as the monolithic and problem decomposition approaches for 

comparison. Compared an improvement of 11.8 percentage points in the overall classification 

accuracy by problem decomposition, the network committee gives a much smaller improvement of 

only 1.2 points. In the latter case, change in the mean absolute error is not statistically significant. 

Moreover, error reduction by problem decomposition over the committee approach is statistically 
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significant.  

Comparison was also made with both monolithic and problem decomposition neural network 

models developed and evaluated on the same data used for the abductive models. The 

backpopagation neural network models were developed using the PathFinder neural network 

software for Windows. Networks were trained trained and evaluated using the same data used with 

the corresponding abductive models. 20% of the training data were used for cross validation. All 

neural models had one hidden layer containing 6 neurons with a sigmoid transfer function.  

Performance results are shown in the last two rows of Table 6. The monolithic neural model 

outperforms the monolithic abductive model, with the overall classification accuracy being 93.9% 

and 87.2%, respectively, and reduction in the mean absolute error is statistically significant. 

However, problem decomposition solutions using the two techniques give nearly the same 

performance, and variations in the mean absolute errors are not statistically significant. In both 

cases, the period classifiers give 100% classification accuracy for waveforms correctly classified by 

the sine/cosine classifier stage.  

VIII. DISCUSSION 

Table 7 summarizes the results obtained by listing data on model complexity, training time, and 

overall classification accuracy. Model complexity is described in terms of the CPM parameter, the 

number of waveform samples used as classifier inputs, and the model depth in layers to execute a 

classification. Training time is relative to that of the default monolithic classifier (NT=2000, CPM 

=1). With problem decomposition, training of the three classifier modules is assumed to take place 

in parallel, and training time is taken as the longest of the three classifier modules. Data in the table 

indicates that for the same size of the training set and CPM value, problem decomposition always 

results in significantly higher classification accuracies and lower training times. These 

improvements are attributed to the simpler modular networks for the problem decomposition 

solution, which generalize better, train faster, and allow training to be performed in parallel. Such 

improvements are more significant with simpler models obtained with smaller training sets, higher 
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CPM values, or both. For example, with NT = 400 and CPM = 5, problem decomposition increases 

classification accuracy by 51.8% and reduces training time by 60.9% as compared to only 13.5% 

and 35%, respectively for NT = 2000 and CPM = 1. With task simplification brought about by 

problem decomposition, the approach is much more tolerant to model simplification as compared 

to the monolithic approach. A five-fold reduction in training set size combined with a five-fold 

increase in the CPM parameter decrease classification accuracy of the problem decomposition 

classifier by only 9.7% as compared to 32.4% for the monolithic classifier. This forms the basis for 

trading off improved classification accuracy benefits due to problem decomposition for other 

advantages such as further model simplification (with faster training and faster classification) and 

reduction in the amount of training data required which can be very useful in many situations. 

Forcing the synthesis of simpler models is far easier to implement with abductive networks             

(specifying a higher CPM value) as compared to neural networks. Serial execution of modules in a 

problem decomposition classifier implies slower classification, as suggested by the larger values 

for the classifier depth in Table 7. However, layers of the decomposition classifier modules are 

made up of much simpler functional elements operating on fewer waveform inputs, which speeds 

up execution compared to the corresponding monolithic classifier. Moreover, this problem 

becomes less severe with simpler models. For example, both the monolithic and problem 

decomposition solutions for NT = 400 and CPM = 5 have the same depth of 2 layers and because of 

its simpler function elements, the problem decomposition classifier would actually execute faster. 

The problem decomposition technique described gives superior performance to that of a an 

abductive network committee and a comparable performance to that of a neural network scheme 

developed on the same data using the same approach to problem decomposition  
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Table 1. Pair-wise values for two separability measures for the four waveform classes and the 
corresponding upper bound on the Bayes error. 500 records for each class. 
 

 
 

Class Pair 
 Bhattacharyya 

Distance, B 
J4 Separability 

Measure 
Upper Bound on Bayes error        

uε = 0.5 e-B 

1-2 7.57 0.269 2.57 x 10-4 

1-3 13.59 0.504 6.28 x 10-7 

1-4 3.78 0.119 1.14 x 10-2 

2-3 23.88 0.837 2.12 x 10-11 

2-4 12.67 0.462 1.57 x 10-6 

3-4 9.00 0.342 6.20 x 10-5 
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Table 2. Networks for monolithic classifiers synthesized with two sizes of the training set at two 
levels of model complexity. Shown also are the number of different waveform samples selected as 
model inputs and the training time relative to the network at the top row. 
 

Training 
Set Size, 

NT 
CPM Monolithic Classifier Network 

Number 
of 

Inputs 

Relative 
Training 

Time 

1 

 

42 1.0 

2000 
 

5 

 

21 0.78 

1 

 

31 0.29 

   400 

5 

 

4 0.23 
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Table 3.  Performance of the monolithic classifier for two sizes of the training set and two levels of 
model complexity. 
 
 

Classification Accuracy, % Output Absolute Error 

NT CPM 
Sine/Cosine Period Overall Mean, µ 

Standard 
Deviation, σ 

1 95.9 90.9 87.2 0.249 0.273 

2000 
5 92.6 86.4 80 0.328 0.311 

1 91.2 90.6 82.7 0.295 0.320 
400 

5 89.6 65.7 58.9 0.619 2.451 
 
 



 

 

30 

Table 4. Networks for problem decomposition classifiers synthesized with two sizes of the training set at two levels of model complexity. a = the 
number of different waveform samples selected as model inputs and b = the training time relative to the monolithic network at the top row of Table 2. 
 

Decomposition Classifier Networks Training 
Set Size, 

NT 
CPM 

Sine/Cosine Classifier (Net1) a b Period Classifier                 
for Sines (Net2) a b Period Classifier             

for Cosines (Net3) a b 

1 

 

34 0.65 

 

29 0.31 

 

29 0.30 

2000 
 

5 

 

12 0.57 

 

10 0.31 

 

10 0.24 

1 

 

19 0.20 

 

17 0.11 

 

17 0.11 

   400 

5 

 

3 0.09 

 

3 0.04 

 

3 0.05 
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Table 5. Performance of the modular (problem decomposition) classifier for two sizes of the 
training set and two values of model complexity. 
 

Classification Accuracy, % Output Absolute Error 

NT CPM 
Sine/Cosine Period Overall Mean, µ 

Standard 
Deviation, σ 

1 99 100 99 0.011 0.057 

2000 
5 98.6 99.7 98.3 0.054 0.115 

1 98.7 99.6 98.3 0.027 0.098 
400 

5 93.1 96 89.4 0.233 0.211 

 
 
 
 
Table 6. Performance comparison between abductive network problem decomposition, 
abductive network committee, and neural network problem decomposition for the same data. 
 

Classification Accuracy, % Output Absolute Error 

Technique Approach 
Sine/Cosine Period Overall Mean, µ 

Standard 
Deviation, σ

Monolithic 95.9 90.9 87.2 0.249 0.273 

Abductive 
(NT=2000, 
CPM=1) 

Problem 
Decomposition 99 100 99 0.011 0.057 

Abductive 
(NT=5 x 400, 

CPM=1) 

5-Member 
Committee 95.1 93 88.4 0.250 0.271 

Monolithic 99.3 94.6 93.9 0.149 0.245 Neural 
Network 
(50-6-1) Problem 

Decomposition  99.7 100 99.7 0.008 0.057 
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Table 7.  Summary of comparison results between monolithic and problem decomposition 
classifiers for two sizes of the training set at two levels of model complexity. 
 

Model Complexity 
Modeling 
Approach 

Training 
Set Size, 

NT  CPM Number of 
inputs1 

Total Classifier 
Depth2 

Relative 
Total 

Training 
Time3 

Overall 
Classification 
Accuracy, % 

 

1 42 4 1 87.2 
2000 

5 21 3 0.78 80 

1 31 4 0.29 82.7 
Monolithic 

400 
5 4 2 0.23 58.9 

1 34 8 0.65 99 
2000 

5 12 6 0.57 98.3 

1 19 6 0.20 98.3 

Problem 
Decomposition 

400 
5 3 2 0.09 89.4 

 
1 For a problem decomposition solution, this is the largest number of inputs among the three 
classifier modules. 
 
2 Maximum number of layers for executing a classification.  
 
3 For a problem decomposition solution, we assume that training of the three classifier modules is 
performed in parallel. 
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Fig. 1. AIM Abductive network example.
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                Fig. 2. Block diagram of the modular (problem decomposition) classifier. 
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Fig. 3. Details of the Sine/Cosine classifier in the third row of Table 4 (NT = 400, CPM = 5). 
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