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Summary 
 

Objectives: To introduce abductive network classifier committees as an ensemble method for 

improving classification accuracy in medical diagnosis. While neural networks allow many ways 

to introduce enough diversity among member models to improve performance when forming a 

committee, the self-organizing, automatic-stopping nature, and learning approach used by 

abductive networks are not very conducive for this purpose. We explore ways of overcoming this 

limitation and demonstrate improved classification on three standard medical datasets. 

Methods: Two standard 2-class medical datasets (Pima Indians Diabetes and Heart Disease) and 

a 6-class dataset (Dermatology) were used to investigate ways of training abductive networks 

with adequate independence, as well as methods of combining their outputs to form a network 

that improves performance beyond that of single models. 

Results: Two- or three-member committees of models trained on completely or partially 

different subsets of training data and using simple output combination methods achieve 

improvements between 2 and 5 percentage points in the classification accuracy over the best 

single model developed using the full training set.   

Conclusions: Varying model complexity alone gives abductive network models that are too 

correlated to ensure enough diversity for forming a useful committee. Diversity achieved through 

training member networks on independent subsets of the training data outweighs limitations of 

the smaller training set for each, resulting in net gain in committee performance. As such models 

train faster and can be trained in parallel, this can also speed up classifier development.  

Keywords:  

Abductive networks, Neural networks, Ensemble methods, Network Committee, Committee of 

experts, Classification accuracy, Medical diagnosis, Diabetes, Heart disease, Dermatology.  
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1. Introduction 

Data mining and machine learning techniques for classification, association detection, 

sequential/temporal pattern recognition, and clustering/segmentation offer new and effective 

approaches to handle the data overload problem in medical informatics. They automatically 

discover patterns in medical data to provide support for the decision-making process in many 

health care areas, including screening, diagnosis, prognosis, monitoring, therapy, survival 

analysis, and hospital management.  Tools used for performing such functions include: Bayesian 

and nearest-neighbor classifiers, rule induction methods, decision trees, genetic algorithms, fuzzy 

logic, and artificial neural networks (ANNs). The latter tool has been proposed for various 

medical applications, including diagnostic systems, biochemical analysis, and image analysis. In 

spite of the wide use of ANNs as a modeling tool, their opaque (black box) nature has limited 

their acceptance in medicine [1]. Learned knowledge is concealed in a maze of connections and 

weights, making it difficult to provide justifications and explanations often sought by physicians 

[2]. Techniques to improve the comprehensibility of neural networks, such as rule extraction [3], 

have been used in medicine [4]. Other limitations with neural networks include the difficulty in 

determining optimum network topology and training parameters. There are many choices to be 

made in determining numerous critical design parameters with little guidance available [5], and 

designers often resort to trial and error approaches which can be tedious and time consuming. 

Such design parameters include the number and size of the hidden layers, the type of neuron 

transfer functions for the various layers, the learning rate, momentum coefficient, and stopping 

criteria to avoid over-fitting and ensure adequate generalization with new data.  

Compared to neural networks, the alternative approach of self-organizing abductive or 

polynomial networks based on the group method of data handling (GMDH) algorithm offers the 
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advantages of more automated and faster model development requiring little or no user 

intervention [6]. The method offers automatic selection of relevant input variables, automatic 

configuration of model structures, and faster convergence without the problem of getting stuck in 

local minima [7]. With the resulting model represented as a hierarchy of polynomial expressions, 

derived analytical relationships can provide better insight into the modeled phenomena and allow 

comparison with previously used empirical models. The technique automatically avoids over-

fitting through using a criterion for penalizing complexity [8], without requiring a dedicated 

validation dataset; thus leaving more training data for use in actual training. Medical applications 

of GMDH-based techniques include modeling obesity [9], analysis of school health surveys [10], 

drug detection from EEG measurements [11], medical image recognition [12], and screening for 

delayed gastric emptying [13]. A simplified abductive network model for the waist-to-hip ratio 

[9] automatically selects only two out 13 input variables, giving a manageable analytical 

relationship and allowing greater insight into the data. A neural network model would provide no 

information as to which of the 13 inputs are most influential or how they affect the model output. 

 
The importance of classification accuracy for medical diagnosis cannot be over-emphasized. In 

screening applications, for example, a high percentage of false negatives increases the risk of real 

patients not receiving the thorough investigation they need. On the other hand, a larger portion of 

false positives causes unnecessary inconvenience and increases the load on medical resources. In 

quest for higher classification accuracies and improved diagnosis, the concept of committee 

(ensemble) classifiers has been adopted in medicine, e.g. [14-20]. With this approach, a number 

of classifiers are used simultaneously and their outputs combined to produce the final predicted 

committee output, see Fig. 1. The output combination module in Fig. 1 often performs simple 

functions on the outputs of individual members, such as majority voting or weighted averaging, 
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without involving the input vectors of attributes [21]. Alternatively, a gating network may use 

the input vectors to determine the optimum weighting factors for each case to be classified [22]. 

In the stacked generalization approach, the combiner takes the form of another higher-level 

network trained on the outputs of individual members to generate the committee classification 

output [23]. When member classifiers are independent, the resulting diversity in the decision 

making process is expected to boost generalization performance, thus improving the accuracy, 

robustness, and reliability of classification. Obviously, combining the outputs of several identical 

classifiers produces no gain, and improvement is expected only when members err in different 

ways so that errors may cancel out [24]. It can be shown [25], that the mean squared error in the 

averaged committee output contains as a component the covariance of the outputs of individual 

committee members, therefore individual members should ideally be uncorrelated or even 

negatively correlated. Krogh and Vedelsby [26] have shown that the committee error can be 

expressed as two terms, one measuring the average generalization error of individual members 

and the other measuring the diversity or disagreement among the members. An ideal committee 

would therefore consist of highly accurate classifiers that disagree as much as possible. In the 

‘committee of experts’ approach, members are developed using different machine learning 

techniques that adopt different ways to build decision boundaries for the classification problem 

at hand, such as neural networks, nearest neighbor classifiers, classification and regression trees 

(CART), etc. This allows training adequate individual models on the full training dataset 

available while ensuring a good degree of diversity among them. However, in many situations a 

committee is restricted to use only one machine learning technology. Neural networks allow 

great diversity in the available architectures (multi-layer perceptron (MLP), radial basis function 

(RBF), etc.), learning algorithms (back propagation, simulated annealing, etc.), and in the 
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parameters that can be varied during training (e.g. network topology, neuron transfer functions, 

initial random weights, learning rate, momentum, stopping criteria, etc.). This allows many 

possibilities for constructing individual committee members that are reasonably independent 

using the same training data. 

Although neural network committees have been reported for many applications, there appears to 

be no mention of GMDH-based abductive (or polynomial) network committees in the literature. 

Due to the self-organizing and self-stopping nature of such networks, the absence of initial 

random weights, and the little room for user intervention during training, there is less diversity in 

the models that can be synthesized using the same training data. This paper investigates ways of 

obtaining diverse committee members and demonstrates that committees made up of abductive 

networks trained on independent subsets of the available training data can give better 

classification performance than individual committee members and single models that utilize the 

full training dataset. In effect, this may lead to better utilization of a given training dataset 

through splitting it into n subsets and forming an n-member committee from models trained on 

those subsets. Individual member networks are expected to train faster than the single model. 

They can also train in parallel, thus reducing the overall training time. Section 2 gives a brief 

introduction of the GMDH algorithm and the abductive network modeling tool used, and 

describes the approach adopted for constructing abductive network committees through training 

individual members and combining their outputs.  Section 3 gives a brief outline of the three 

medical datasets used in the investigation. Section 4 presents classification results obtained using 

abductive network committees that employ various methods of combining outputs from 

individual members. The main objective here has been to demonstrate the effectiveness of 

abductive networks in improving performance over single models in spite of the limited scope 
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for injecting diversity. Therefore, no special efforts were taken to optimize the performance of 

individual models or compare results with committees using other machine learning techniques. 

Conclusions are made and suggestions for future work given in Section 5. 

2.  Methods 

2.1  GMDH and AIM Abductive Networks  

AIM (abductory inductive mechanism) [27] is a supervised inductive machine-learning tool for 

automatically synthesizing abductive network models from a database of inputs and outputs 

representing a training set of solved examples. As a GMDH algorithm, the tool can automatically 

synthesize adequate models that embody the inherent structure of complex and highly nonlinear 

systems. Automation of model synthesis not only lessens the burden on the analyst but also 

safeguards the model generated against influence by human biases and misjudgments. The 

GMDH approach is a formalized paradigm for iterated (multi-phase) polynomial regression 

capable of producing a high-degree polynomial model in effective predictors. The process is 

'evolutionary' in nature, using initially simple (myopic) regression relationships to derive more 

accurate representations in the next iteration. To prevent exponential growth and limit model 

complexity, the algorithm selects only relationships having good predicting powers within each 

phase. Iteration is stopped when the new generation regression equations start to have poorer 

prediction performance than those of the previous generation, at which point the model starts to 

become overspecialized and therefore unlikely to perform well with new data. The algorithm has 

three main elements: representation, selection, and stopping. It applies abduction heuristics for 

making decisions concerning some or all of these three aspects.  

To illustrate these steps for the classical GMDH approach, consider an estimation data base of ne 

observations (rows) and m+1 columns for m independent variables (x1, x2, ..., xm) and one 

 7



dependent variable y. In the first iteration we assume that our predictors are the actual input 

variables. The initial rough prediction equations are derived by taking each pair of input 

variables (xi, xj ; i,j = 1,2,...,m) together with the output y and computing the quadratic regression 

polynomial [28]:  

 y = A + B xi + C xj + D xi
2 + E xj

2 + F xi xj                                                                    (1) 

Each of the resulting m(m-1)/2 polynomials is evaluated using data for the pair of x variables 

used to generate it, thus producing new estimation variables (z1, z2, ..., zm(m-1)/2) which would be 

expected to describe y better than the original variables. The resulting z variables are screened 

according to some selection criterion and only those having good predicting power are kept. The 

original GMDH algorithm employs an additional and independent selection set of ns 

observations for this purpose and uses the regularity selection criterion based on the root mean 

squared error rk over that dataset, where: 

1)/2m1,2,...,m(k   ;y)z(yr
ss n
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ll                                                                   (2) 

Only those polynomials (and associated z variables) that have rk below a prescribed limit are kept 

and the minimum value, rmin, obtained for rk is also saved. The selected z variables represent a 

new database for repeating the estimation and selection steps in the next iteration to derive a set 

of higher-level variables. At each iteration, rmin is compared with its previous value and the 

process is continued as long as rmin decreases or until a given model complexity is reached. An 

increasing rmin is an indication of the model becoming overly complex, thus over-fitting the 

estimation data and performing poorly on the new selection data.  Keeping model complexity 

checked is an important aspect of GMDH-based algorithms, which keep an eye on the final 

objective of constructing the model, i.e. using it with new data previously unseen during training. 

The best model for this purpose is that providing the shortest description for the data available 
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[8]. Computationally, the resulting GMDH model can be seen as a layered network of partial 

quadratic descriptor polynomials, each layer representing the results of an iteration. 

A number of GMDH methods have been proposed which operate on the whole training dataset 

thus eliminating the need for a dedicated selection set. The adaptive learning network (ALN) 

approach, AIM being an example, uses the predicted squared error (PSE) criterion [8] for 

selection and stopping to avoid model overfitting, thus solving the problem of determining when 

to stop training in neural networks. The criterion minimizes the expected squared error that 

would be obtained when the network is used for predicting new data. AIM expresses the PSE as: 

2)2( pNKCPMFSEPSE σ+=                                                                                                (3) 

where FSE is the fitting squared error on the training data, CPM is a complexity penalty 

multiplier selected by the user, K is the number of model coefficients, N is the number of 

samples in the training set, and  is a prior estimate for the variance of the error obtained with 

the unknown model. This estimate does not depend on the model being evaluated and is usually 

taken as half the variance of the dependent variable y [8]. As the model becomes more complex 

relative to the size of the training set, the second term increases linearly while the first term 

decreases. PSE goes through a minimum at the optimum model size that strikes a balance 

between accuracy and simplicity (exactness and generality). The user may optionally control this 

trade-off using the CPM parameter. Larger values than the default value of 1 lead to simpler 

models that are less accurate but may generalize well with previously unseen data, while lower 

values produce more complex networks that may overfit the training data and degrade actual 

prediction performance.  

2
pσ

AIM builds networks consisting of various types of polynomial functional elements. The 

network size, element types, connectivity, and coefficients for the optimum model are 
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automatically determined using well-proven optimization criteria, thus reducing the need for user 

intervention compared to neural networks.  This simplifies model development and considerably 

reduces the learning/development time and effort. The models take the form of layered feed-

forward abductive networks of functional elements (nodes) [27], see Fig. 2. Elements in the first 

layer operate on various combinations of the independent input variables (x's) and the element in 

the final layer produces the predicted output for the dependent variable y. In addition to the main 

layers of the network, an input layer of normalizers convert the input variables into an internal 

representation as Z scores with zero mean and unity variance, and an output unitizer unit restores 

the results to the original problem space. AIM supports the following main functional elements:  

(i) A white element which consists of a constant plus the linear weighted sum of all outputs of 

the previous layer, i.e. 

"White"  Output  = w0 + w1x1 + w2x2 + w3x3 + .... + wnx n                                                              (4) 

 where x1, x2,..., xn  are the inputs to the element and w0, w1, ..., wn are the element weights.  

(ii) Single, double, and triple elements which implement a third-degree polynomial expression 

with all possible cross-terms for one, two, and three inputs respectively; for example,  

"Double"  Output = w0 + w1x1 + w2x2 + w3x1
2 + w4x2

2 + w5x1x2 + w6x1
3 + w7x2

3                     (5) 

2.2  Abductive Network Committees 

2.2.1 Training individual members 

As described in Section 2.1 above, abductive networks adopt a radically different learning 

approach from that used to build neural networks. With neural networks, the user can choose the 

size and number of hidden layers, the type of neuron transfer function for the various layers, the 

values of the initial random weights, the training parameters, and the stopping time or criteria. 

While this makes reaching an optimum design difficult, it opens the scope for greater diversity 
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among the resulting models. On the other hand, while self-organizing and self-stopping features 

of abductive networks simplify model development and reduce user intervention, they are not 

very conducive in the way of increasing diversity and independence of models generated from a 

given training dataset. Only a few parameters can be controlled by the user when developing 

AIM abductive networks, and their default values are often used. The most effective of these is 

the CPM parameter, which directly influences the complexity of the resulting model. We have 

investigated the effect of changing the CPM value on the correlation between the resulting 

models. As the results given in Section 4.1 indicate, errors by such models turn out to be highly 

correlated, leading to poor diversity among the committee members and therefore poor gain in 

classification performance. One alternative is to use different training sets, each of size NT cases, 

to train the individual members. Splitting the full training set available into n mutually exclusive 

subsets to train an n-member committee ensures the greatest possible model independence, but 

this may reduce the quality of individual models, particularly when the total data available for 

training is limited. However, since no separate validation set is required to stop training to avoid 

overfitting (as is the case with neural networks), this reduces the severity of this problem with 

abductive networks as more data is made available for actual training. Results in Section 4 

indicate that the diversity obtained by training on different subsets of data can outweigh the 

limitation of smaller training sets for the individual models, leading to a net gain in committee 

performance. Resampling in a form similar to cross validation partitioning may also help strike a 

balance between accuracy and independence of committee members. The bagging [29] and 

boosting [30] ensembling techniques use bootstrap resampling. 

2.2.2 Combining individual network outputs 

We have adopted cooperation schemes in the form of simple combination rules to generate the 

committee output from the outputs of individual members, see Fig. 1. Consider an n-member, 2-
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class classification committee. The negative class is represented by 0 and the positive class is 

represented by 1.  Let yi and zc be the continuous outputs from member i and from the committee 

combiner, respectively. Unless otherwise specified, corresponding categorical (classification) 

outputs are derived from these values by simple rounding (thresholding at 0.5).  Following is a 

brief account of the various output combination methods used: 

a. Simple majority vote of categorical members outputs: 

The categorical committee output from the combiner is obtained directly by a simple majority 

vote among the categorical outputs of individual members. For this purpose n should preferably 

be an odd number, with a minimum value of 3. 

b. Simple averaging of continuous members outputs: 

In this basic ensemble method, the continuous committee output is obtained by simple averaging 

of individual outputs using the relationship [21]: 

∑
=

=
n

i
ic y

n
z

1

1                                                                                                                                   (6) 

c. Weighted averaging of continuous members outputs using static certainty measures: 

In method b above, outputs from all members are assumed to be of equal accuracy. In practice, 

some outputs may have greater certainty than others, and individual outputs may be weighted to 

reflect this fact [21]. The committee output is the weighted sum of the outputs of all members: 

∑
=

=
n

i
iic yz

1

α ,                                                                                                                                 (7) 

where .                                                                                                                            (8) 1
1

=∑
=

n

i
iα

As a static measure, the certainty ci of the output from member (i) can be expressed as the 

inverse of the variance of the error ( ) by that member over its training set [31]: 2
iσ
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and the weight iα  is then determined by: 

∑
=

= n

j
j

i
i

c

c

1

α ,                                                                                                                                  

(10) 
which satisfies the condition on the weights in equation (8). 
 
d. Weighted averaging of continuous members outputs using dynamic certainty measures: 

Here the certainty of the output from each member is defined for each input vector classified, 

and is determined by the closeness of the continuous output to one of the target classification 

outputs. The output yi is first limited to the region {0,1} and the certainty of yi is given by [21]: 

⎩
⎨
⎧ ≥

=
otherwise   y-1

0.5  y if       y 
yc

i

ii
i )(                                                                                                           

(11) 

The weights are determined using equation (10) for each case being classified with c(yi) 

replacing ci, and then the continuous committee output is obtained using equation (7). 

3. Material 

Three standard medical classification datasets from the UCI Machine Learning Repository [32] 

were used for this study. Following is a brief description of each dataset: 

3.1   The Pima Indians Diabetes Dataset 

This dataset [33] consists of 768 records of female patients at least 21 years old of Pima Indian 

heritage. There are eight numerical attributes representing physiological measurements and 

medical test results, including: number of pregnancies, plasma glucose concentration in an oral 

glucose tolerance test, diastolic blood pressure (mm Hg), triceps skin fold thickness (mm), 2-

hour serum insulin (µU/ml), body mass index, diabetes pedigree function, and age (years). A 
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binary-valued class variable indicates whether the patient shows signs of diabetes according to 

World Health Organization criteria (1) or not (0). The percentage of positives in the whole 

dataset is approximately 34.9%. This dataset is particularly difficult to classify, with 10-fold 

cross-validation average classification accuracies reported in the literature for single classifiers 

being 76.4% and 74.6% for backpropagation neural networks and the C4.5 decision trees tool, 

respectively [34].  

3.2  The Heart Disease Dataset 

This dataset [35] is based on data from the Cleveland Clinic Foundation and consists of 270 

records, each having 13 attributes (a subset of an original set of 75 attributes). The attributes 

include age, sex, chest pain type (4 values), resting blood pressure, serum cholesterol (mg/dl), a 

binary variable indicating if fasting blood sugar exceeds 120 mg/dl or not, resting 

electrocardiographic results (values 0,1,2), maximum heart rate achieved, exercise induced 

angina, oldpeak = ST depression induced by exercise relative to rest, the slope of the peak 

exercise ST segment, number of major vessels (0-3) colored by flourosopy, thal: 3 = normal; 6 = 

fixed defect; 7 = reversable defect. A binary-valued class variable indicates the presence (1) or 

absence (0) of heart disease. The percentage of positives in the whole dataset is approximately 

44.4%. 10-fold cross-validation average classification accuracies reported in the literature for a 

single classifier are 81.8% and 77.1% using backpropagation neural networks and the C4.5 

decision tree tool, respectively [34]. 

3.3  The Dermatology Dataset 

This multiple-class dataset [36] has been used for the differential diagnosis of Erythemato-

Squamous diseases. It consists of 366 records, each having 34 attributes including age, family 

history, 10 other clinical attributes, and 22 histopathological features determined by the analysis 
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of skin samples under the microscope. Each attribute other than age and family history was given 

a degree in the range 0 to 3, where 0 indicates the feature being absent, 3 indicates the largest 

amount possible, and 1, 2 indicate intermediate values. The class variable is an integer code 

ranging from 1 to 6 that indicates one of the following six possible diseases: psoriasis, seboreic 

dermatitis, lichen planus, pityriasis rosea, cronic dermatitis, and pityriasis rubra pilaris. Eight 

records in the original dataset had the age attribute missing, and these were excluded leaving 358 

records for use in this study. 

4. Results 

4.1  The Pima Indians Diabetes Data 

The 768-case diabetes dataset was randomly split into a training set of 669 cases and an 

evaluation set of 99 cases, with the percentages of positives in each being 34.1% and 40.4%, 

respectively. Classification performance reported here may be somewhat degraded by the larger 

percentage of positives in the evaluation set as compared to the training set. Our first experiment 

was to construct a 3-member committee from three models, each trained on the full training set 

but having different levels of model complexity (different CPM values of 0.5, 1, and 2, 

respectively). The top row of Table 1 gives the individual classification accuracies as well as the 

average value for the three models over the evaluation set. Pair-wise scatter plots for the errors in 

the continuous outputs of the three models over the evaluation set are shown in the left hand side 

of Fig. 3. The plots show that errors by the three models are highly correlated and that different 

values for the CPM parameter do not give enough diversity and independence in models trained 

on the same data. Table 1 gives the root mean square (RMS) value of the three correlation 

coefficients as a measure of the average correlation between the three models. The table shows 

also the percentage of cases in the evaluation set for which all three models err together 
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(unanimous error). When this occurs, there is no way a committee can make the correct decision. 

The more correlated (less independent) the models are, the larger this percentage will be and the 

poorer the classification performance of the committee. As a simple committee example, the 

table gives the classification accuracy for a committee classifier that adopts simple majority vote 

(combination method a in Section 2.2.2).  

The second experiment involved randomly splitting the training set into 3 equal subsets (each 

containing 223 cases). Using the resampling approach, we synthesized 3 models, each trained 

using two of the three subsets (446 cases) and leaving out the third subset in a manner similar to 

cross-validation partitioning. In this way, each model differs from each of the other two models 

in 50% of its training data. All three models were trained using the default value of CPM = 1. 

The middle row of Table 1 lists the corresponding results. The greater independence among the 

models introduced by the difference in their training data has led to a reduction in both the 

average correlation coefficient and the percentage of unanimous errors. In the third experiment, 

the models were trained on the three mutually exclusive subsets of 223 cases each, thus ensuring 

100% independence in their training data, and the results are shown in the bottom row of Table 

1. This has led to a significant drop in the average correlation coefficient and a reduction in the 

percentage of unanimous errors. Scatter plots for the model errors in this case are shown at the 

right hand side of Fig. 3. It is noted that in all three experiments the majority vote network did 

not achieve any gain in classification accuracy over the best member model. However, results in 

experiment 3 are more promising, as the committee achieves a larger performance gain over the 

average member (a gain of 3.1 percent points). This corresponds to the largest diversity among 

the three committee members as evidenced by the lowest average correlation and the smallest 
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percentage of unanimous errors. Other methods described below for combining the model 

outputs achieve a net gain in classification accuracy beyond that of the best committee member. 

We have investigated the use of the four methods described in Section 2.2.2 above for combining 

the three model outputs in experiment 3, and the results are shown in Table 2. All output 

combination methods except majority vote (method a) lead to a gain in classification accuracy 

compared to that of the best member model, given in Table 1 as 76.8%. It is noted that all four 

methods give superior performance to all single models utilizing the full training set of 669 cases 

at different model complexities (Experiment 1 in Table 1). This indicates that committees formed 

using abductive network models trained on mutually exclusive subsets of a given training set 

may outperform a single model trained on the full training set. Diversity in decision making by 

the committee members compensates for the poorer performance expected from individual 

members due to the smaller training dataset. As member models can train in parallel and are 

expected to train faster because of the smaller individual training sets, this approach may also 

achieve a reduction in the overall training time required compared to a single model. 

Combination methods b and c give identical performance because the three member models have 

nearly identical error variances on the training dataset, and weighting by method c roughly 

amounts to simple averaging. Best committee performance is achieved using output combination 

method d which gives a classification accuracy of 78.8%, a 5.1 percentage points improvement 

over the best single model. Table 3 gives a more detailed comparison of the performance of these 

two classifiers, showing an improvement of 8.7 percentage points in the positive predictive value 

for the committee classifier.   

4.2 The Heart Disease Data 
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The 270-case heart disease dataset was randomly split into a training set of 220 cases and an 

evaluation set of 50 cases, with the percentages of positives in each being 42.7% and 52%, 

respectively. Classification performance reported here may be somewhat degraded by the larger 

percentage of positives in the evaluation set as compared to the training set. Three models were 

developed on the full training set using different CPM values of 1, 2, and 0.5. The best model has 

a classification accuracy of 76% on the evaluation set and the average RMS value for the 

Pearson correlation coefficient for the evaluation errors by the three models is 0.84. The full 

training set was then split randomly into two subsets, each of 110 cases, and a model was trained 

on each subset with CPM = 1. The best of the two models scored a classification accuracy of 

78%, and the correlation coefficient between the errors of the two models was 0.60. Table 4 

compares the classification accuracy of the 3-member committee and the 2-member committee 

using various methods of output combination.  The table indicates the superior performance of 

the 2-member committee over the 3-member committee due to the greater independence between 

the constituent members. Best performance is obtained using the method of simple averaging and 

the method of weighting with a dynamic certainty measure, where the accuracy of the 2-member 

committee exceeds that of the best single model trained on the full training set. 

4.3 The Dermatology Data 

The 358-case dermatology dataset was randomly split into a training set of 258 cases and an 

evaluation set of 100 cases. Three models were developed using the full training set with CPM = 

1, 0.5, and 0.2. The training set was also randomly split into two halves, each having 129 cases. 

Table 5 shows classification performance for the various single models and committees formed 

using a number of output combination methods. In all cases, raw model outputs were first limited 

to the region {0.5,6.5} prior to combination or derivation of class categorical outputs through 
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simple rounding.  Committee C1 consists of 3 models trained on the full training set with 

different CPM values. Committee C2 consists of models M4 and M5, developed on the different 

subsets of 129 cases each, and M2 developed on the full training set of 258 cases, all using CPM 

= 0.5. This committee achieves an improvement of two percentage points compared to the best 

single model that uses the full training data. It is noted that this network adopts some form of 

resampling for the training data, as models M4 and M5 differ from M2 in only 50% of the data. 

Results show that the best combination method is to take the committee class output as the class 

categorical output having the simple majority among the members. If no such majority exists 

(i.e. all categorical outputs of the three members are different), then the class output is obtained 

by averaging all outputs followed by simple rounding. Table 6 gives the confusion matrix for 

committee C2 on the 100-case evaluation set. It shows that classes 1 and 4 are classified with 

100% sensitivity and that classes 1 and 6 have 100% positive predictive values.  

5. Conclusions 

Abductive networks can overcome the opacity and incomprehensibility limitations of neural 

networks that hamper their wide acceptability in medical diagnosis.  This is achieved through 

automatic selection of only significant inputs and providing analytical model relationships. Other 

advantages include the more automated model synthesis through self-organization and self-

stopping. However, when forming abductive network committees such advantages, coupled with 

the regression-based approach to learning, tend to limit the diversity that can be achieved among 

resulting models, thus degrading committee performance. We explored ways to overcome this 

limitation and demonstrated gain in classification accuracy on standard binary and multi-class 

medical datasets. Two- or three-member committees of models trained on completely or partially 

different datasets using simple output combination methods achieve improvements between 2 
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and 5 percentage points in the classification accuracy over the best single model developed using 

the full training set. For binary classification, best results were obtained with member outputs 

being combined by simple averaging or through weighting using a dynamic certainty measure. 

Future work would investigate the effect of other ensembling techniques that use bootstrap 

sampling, such as bagging and boosting. 
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Table 1. Summary of results for the three experiments performed on the diabetes dataset.         

NT is the training dataset size for individual models. 

Members Classification Accuracies, % 

Experiment  Approach to 
Member Training NT 

Average 
(RMS) of    
the 3 Error 
Correlation 
Coefficients 

Member 
1 

Member
2 

Member 
3 Average 

% 
Unanimous 

Errors 

 Majority 
Vote 

Committee  

Classification 
Accuracy, % 

1 
Full training set, 
Different CPMs     

(CPM = 0.5, 1, 2) 
669 0.96 73.7 72.7 71.7 72.7 23.2 73.7 

2 

Re-sampling        
(3-fold cross 

validation 
partitioning)   

(Same CPM of 1) 

446 0.90 71.7 73.7 72.7 72.7 18.2 71.7 

3 Split training set 
(Same CPM of 1) 223 0.80 74.7 69.7 76.8 73.7 16.2 76.8 

 
 
 

Table 2. Classification performance of the committee in experiment 3 (Table 1) using four 

methods of combining members outputs. 

Outputs Combination Method  Classification 
Accuracy, % 

a Majority Vote 76.8 

b Simple averaging of raw outputs 77.8 

c 
Weighted averaging using static 
certainty measure based on error 
variance on training sets 

77.8 

d Weighted averaging using dynamic 
certainty measure 78.8 
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Table 3. Comparison of classification performance for the committee in experiment 3 (Table 1) 

and the best single model that uses the full training dataset. 

Model                     Sensitivity, 
% 

Specificity, 
% 

Positive 
Predictive 
Value, % 

Negative 
Predictive 
Value, % 

Overall 
Classification 
Accuracy, % 

Single model               
(NT = 669, CPM = 0.5)       

(Table 1) 
57.5 84.7 71.9 74.6 73.7 

Committee of Experiment 3 
in Table 1, using 

combination method d in 
Table 2 

62.5 89.8 80.6 77.9 78.8 

 
 
 

Table 4. Comparison of classification performance of two committees for the heart disease 

dataset using four methods of combining members outputs. 

Classification Accuracy, % 

Outputs Combination Method  
3-Member Committee,   

Same training set 
(NT=220)        

Different CPMs      
(CPM = 0.5, 1, 2) 

2-Member Committee,  
Different  training sets 

(NT=110)             
Same CPM of 1  

a Majority Vote 76 - 

b Simple averaging of raw outputs 78 80 

c 
Weighted averaging using static 
certainty measure based on error 
variance on training sets 

76 76 

d Weighted averaging using dynamic 
certainty measure 76 80 

Best single model among committee members 76 78 
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Table 5. Summary of results for experiments performed on the dermatology dataset.  
 
 

For Single Models: 
Model/Committee 

NT CPM  

For Committees: 
Output Combination 

Method  

Classification 
Accuracy, % Remarks 

Model M1 258 1 - 84  

Model M2 258 0.5 - 91  

Model M3 258 0.2 - 87  

- 
Simple averaging of 

raw outputs after 
limiting to {0.5,6.5} 

90  

Committee C1: 
{M1,M2,M3} 

- Majority of 
categorical outputs  91 

Average categorical 
outputs if no 

majority exists 

Model M4 129 0.5 - 82 

Model M5 129 0.5 - 85 

Two independent 
training sets 

through splitting 
the full training set 

- 
Simple averaging of 

raw outputs after 
limiting to {0.5,6.5} 

91  

Committee C2: 
{M4,M5,M2} 

- Majority of 
categorical outputs  93 

Average categorical 
outputs if no 

majority exists 

 26



 
Table 6. Confusion matrix showing best performance of committee C2 (Table 5) on the 

evaluation set of the dermatology data.  

 

  Predicted 

 Class 1 2 3 4 5 6 Total 

1 34 0 0 0 0 0 34 

2 0 12 2 1 0 0 15 

3 0 1 15 0 0 0 16 

4 0 0 0 10 0 0 10 

5 0 0 0 1 17 0 18 

   
  T

ru
e 

6 0 0 0 1 1 5 7 

 Total 34 13 17 13 18 5 100 
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        Fig. 1. Schematic of a network committee. 

 

Fig. 2. AIM abductive network showing various types of functional elements. 
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Fig. 3.  Pair-wise scatter plots for the raw prediction errors on the evaluation dataset of the 

diabetes data by individual models used to form the committee in experiment 1 (left) and the 

committee in experiment 3 (right) in Table 1. 
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