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Abstract 

 
Accurate daily peak load forecasts are important for secure and profitable operation of modern 

power utilities, with deregulation and competition demanding ever-increasing accuracies. 

Machine learning techniques including neural and abductive networks have been used for this 

purpose. Network committees have been proposed for improving regression and classification 

accuracy in many disciplines, but is yet to be widely applied to load forecasting. This paper 

presents a formal approach to apply the technique using historical load and temperature data 

spanning multiple years, with individual committee members trained on different years. 

Correlation among data for successive years is investigated and methods to enhance 

independence between member models for improving committee performance are described. 

Both neural and abductive networks implementations are presented and compared.  An abductive 

network 3-member committee was developed on data for 3 successive years and evaluated on the 

fourth year. Compared to a monolithic model trained on the same full 3-year data, the committee 

reduces the mean absolute percentage error from 2.52% to 2.19%. The corresponding reduction 

in the mean of the absolute error from 70 MW to 61 MW is statistically significant at the 95% 

confidence level. 

 
 
Keywords:  Machine learning, Neural networks, Abductive networks, GMDH, Network 

Committee, Network ensemble, Modeling, Forecasting, Load forecasting, Daily peak load, 

Power system planning. 
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1   Introduction 
 

Accurate short-term load forecasting (STLF) [1] is important for performing many power utility 

functions, including generator unit commitment, hydro-thermal coordination, short-term 

maintenance, fuel allocation, power interchange, transaction evaluation, as well as network 

analysis functions, security and load flow studies, contingency planning, load shedding, and load 

security strategies. STLF forecasting covers the daily peak load, total daily energy, and daily 

load curve as a series of 24 hourly forecasted loads. With ever-increasing load capacities, a given 

percentage forecasting error amounts to greater losses in real terms. Recent changes in the 

structure of the utility industry due to deregulation and increased competition also emphasize 

greater forecasting accuracies. The availability of large amounts of historical load and weather 

data at power utilities has encouraged the use of data-based machine learning modeling methods. 

With such techniques, the user does not need to explicitly specify the model relationship, which 

enhances automatic knowledge discovery without bias or influence by prior assumptions. 

Complex nonlinear input-output relationships can be modeled automatically through supervised 

learning using a database of solved examples. Once synthesized, the model can generalize to 

perform predictions of outputs corresponding to new cases. Neural networks of various 

architectures and learning paradigms have been widely used for STLF forecasting, e.g. [2-6]. 

Polynomial or abductive networks [7] based on the self-organizing group method of data 

handling (GMDH) [8] have also been utilized for this purpose [9,10]. Historical load and weather 

data often span a number of successive years, and conventionally a single model trained on 

multiple year data is used. In this case, the problem of dealing with the annual trend due to load 

growth should be addressed. This paper proposes a modular approach in which a committee 

(ensemble) is formed of individual networks, each trained on the data for one year. Combining 
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the outputs of such networks can improve the accuracy and reliability of the forecasts beyond 

those of individual networks and of the single monolithic model developed using the full data for 

all years.   

 Network committees have been proposed for improving accuracy and reliability in many 

classification and regression applications, including medical diagnosis [11], image recognition 

[12], analysis of seismic data [13], financial forecasting [14], speech recognition [15], and 

prediction of traffic flow in telecommunication networks [16]. However, the technique is yet to 

be formally and widely applied to load forecasting. It should be noted that the committee 

approach is different from modular solutions reported widely in the load forecasting literature 

where different neural network modules are used to model various aspects of load variations, e.g. 

weekly, daily, and hourly, and their outputs combined to produce the final forecast [17]. With the 

committee approach all member modules of the committee tackle the same forecasting problem, 

albeit from different perspectives arising, for example, from using different training data or 

adopting different learning algorithms. Early thoughts on network ensembling for load 

forecasting, though not identified as such at the time, were described by Matsumoto et. al. [18]. 

The authors compared two approaches for forecasting summer peak load for one year from 

summer data on the previous four years: using four separate models each trained on the data for 

one year, and using a single model trained on the collective data for all four years. They 

described methods for selecting the best among the four models based on the norm distance 

between the input vector for the forecasting day and those of the corresponding training days. A 

dedicated neural network was also developed for predicting the best individual module. In the 

final analysis, however, the authors concluded that the single model developed on the full data 

provides the best results.  In [19], Drezga and Rahman used simple averaging to combine the 
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outputs of two local neural networks trained on different data to improve the accuracy of next-

hour load forecasts.  

 This paper proposes a formal approach to building network committees for forecasting 

the daily peak load using multiple-year data. The approach is demonstrated using both neural and 

abductive networks. Statistically significant improvements in forecasting accuracy compared to 

conventional single-model approaches are reported. Section 2 gives an overview of the network 

committee technique. Section 3 describes the load and temperature data set used, presents the 

monolithic and committee approaches adopted for forecasting the daily peak load, and introduces 

the abductive network modeling technique employed. Section 4 presents results obtained using 

both neural and abductive network ensembles.  

 

2   Network Committees 

In the network committee approach, n networks are trained to solve the same problem 

independently. During prediction the networks operate simultaneously on the input data and their 

outputs are combined to produce the final committee output, see Fig. 1. The output combination 

module in Fig. 1 often performs simple functions on the outputs of individual members, such as 

majority voting for classification and simple/weighted averaging for regression, without 

involving the input vectors of attributes [20]. Alternatively, a gating network may use the input 

vectors to determine the optimum weighting factors used with individual member outputs for 

each case to be classified [21]. In the stacked generalization approach, the combiner takes the 

form of another higher-level network trained on the outputs of individual members to generate 

the committee classification output [22].  
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Simple averaging provides a simple and effective method of combining continuous outputs from 

individual committee members using the relationship [20]: 

∑
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where ; i  = 1,2,…,n  are the outputs from committee members and ziy c is the combined 

committee output, see Fig. 1.  

The above relationship assumes that outputs from all members are of equal accuracy. In practice, 

some outputs may have greater certainty than others, and individual outputs may be weighted to 

reflect this fact [20]. The committee output is then the weighted sum of the outputs of all 

members: 
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which satisfies the condition on the weights in Eqn. (3). 
 

When member networks are independent, the resulting diversity in the decision making process 

is expected to boost generalization performance, thus improving the accuracy, robustness, and 

reliability of predictions. Obviously, combining the outputs of several identical networks 
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produces no gain, and improvement is expected only when members err in different ways so that 

errors may cancel out [24]. It can be shown [25], that the mean squared error in the averaged 

committee output contains as a component the covariance of the outputs of individual committee 

members, therefore individual members should ideally be uncorrelated or even negatively 

correlated. Krogh and Vedelsby [26] have shown that the committee error can be expressed as 

two terms, one measuring the average generalization error of individual members and the other 

measuring the diversity or disagreement among the members. An ideal committee would 

therefore consist of highly accurate networks that disagree as much as possible. In the 

‘committee of experts’ approach, members are developed using different machine learning 

techniques that adopt different ways to build decision boundaries for the classification problem 

at hand, such as neural networks, nearest neighbor classifiers, classification and regression trees 

(CART), etc. This allows training adequate individual models on the full training dataset 

available while ensuring a good degree of diversity among them. However, in many situations a 

committee is restricted to use only one machine learning technology.  

Neural networks provide a wide range of available architectures (e.g. multi-layer 

perceptron (MLP) and radial basis function (RBF)), learning algorithms (e.g. back propagation 

and simulated annealing), and parameters that can be varied during training (e.g. network 

topology, neuron transfer functions, initial random weights, learning rate, momentum, and 

stopping criteria). This allows many possibilities for constructing individual committee members 

that should be reasonably independent. Enhancing diversity among individual members of neural 

network committees has been attempted through training on different parts of the dataset [27], on 

different input features [28], or using different network architectures [29], different learning 

paradigms [12], or different training parameters [30]. Techniques for automatically enhancing 
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negative correlation between individual committee members during training have been described 

[31]. Resampling methods, such as bootstrap sampling, have been used to increase independence 

among training subsets for individual committee members. They form the basis for the bagging 

(bootstrap aggregating) [32] and boosting [33] ensembling methods which were originally 

described for classification with decision trees. Both techniques attempt to approximate the ideal 

averaged model that does not depend on the training set used, through aggregating the outputs of 

many models trained on different bootstrap subsamples drawn randomly with replacement from 

the available training set. Each of the subsamples has the same size as the full training set. 

Bagging simply builds different models using the subsamples generated, and combines their 

outputs using equal weights. Boosting, however, generates different models sequentially. It 

modifies the weights of training examples used to build a new model based on the performance 

of previous models to make the new model concentrate more on training examples that were 

previously misclassified. Outputs of the different models are combined using weights that 

depend on model performance. Various approches have been proposed for modifying bagging 

and boosting for use on regression problems [34]. A modification of the AdaBoost boosting 

algorithm was used with neural networks to predict drug dissolution profiles [35]. With such 

modifications, the bagging and boosting ensembling techniques may prove useful in improving 

the accuracy of load forecasts.   

Abductive networks offer several advantages over neural networks [9], including simpler 

and more automated model synthesis, automatic selection of significant model inputs, automatic 

stopping criterion that does not require a separate validation data set, and more transparent 

analytical model relationships. Although neural network committees have been reported for 

many applications, there appears to be no mention of GMDH-based abductive (or polynomial) 

 8



network committees in the literature. Due to the self-organizing and self-stopping nature of such 

networks, the absence of initial random weights, and the little room for user intervention during 

training, there is less room to introduce diversity in the models that can be synthesized using the 

same training data. This paper considers both neural and abductive network committees for 

improving the accuracy of daily peak load forecasts. 

 

3    Data and Methodology 

3.1. The Data Set 

 The data set used for this study consists of measured hourly load and temperature data for 

the Puget power utility, Seattle, USA, over the period 1 January 1985 to 12 October 1992. It is 

made available in the public domain by Professor A. M. El-Sharkawi, University of Washington, 

Seattle, USA [36]. A few missing load and temperature data, indicated as 0’s in the original data 

set, were filled-in by interpolating between neighboring values. Table 1 summarizes the load 

data for the six-year period and indicates an average annual growth rate of 3.5%. The mean 

hourly load decreased slightly in 1986, but has then kept steadily increasing.  We used the data 

for 3 years (1987-1989) for model synthesis and that of the following year (1990) for model 

evaluation. For the evaluation year, we use an estimated hourly mean because in practice no 

actual data would be available for the evaluation year. This mean was obtained from a straight 

line fit for the mean hourly loads of only the previous four years (1986-1989) having a steady 

increase in the load. The second column from right in the table shows values of the trend inputs 

for each of the three years (1987 to 1989) used to develop the model trained on collective data 

for all three years, see Section 3.2. Let the mean hourly load for year i be Mi, the trend input ri 

for that year relative to the first training year is given by: 
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1987MMr ii =    ; i = 1987, 1988, 1989, 1990                                                                        (6) 

The last column in the table lists three scaling factors, one for each of the training years (1987 to 

1989), to be used for implementing the network committee solution, see Section 3.3. The scaling 

factor for year i is given by: 

ii MMs 1990=    ; i = 1987, 1988, 1989                                                                                 (7) 

 
3.2. Monolithic Models Using the Collective Data 
 

 To compare committee forecasts with those obtained using a single model utilizing all the 

3-year data, neural and abductive network models were developed for forecasting the peak load 

(PL) on the next day (d+1) in terms of data available at the end of day (d) regarding the peak 

load, measured extreme temperatures, and day type for the seven days preceding the forecasting 

day, i.e. days d-6, d-5, …, d-1, and d, as well as forecasted extreme temperatures and day type 

information for the forecasting day (d+1). The models were trained using the full data for the 

three years (1987-1989) preceding the evaluation year 1990. To account for annual load growth, 

a model input indicating load growth trend is used. For the various years, the input takes the ri 

values (i = 1987, 1988, 1989, 1990), defined in Eqn. (6) and listed in Table 1. In addition to the 

trend input, the models use 47 load, temperature, and day type variables. For each of the seven 

preceding days, six variables are used, including the peak load, measured daily maximum 

(Tmax) and minimum (Tmin) air temperatures, and day type information coded as three mutually 

exclusive binary inputs representing a working day (Monday to Friday) (WRK), a Saturday 

(SAT), and a Sunday or official holiday (SUN/HOL). Data on the forecasting day (d+1) uses 

only five variables: forecasted minimum and maximum air temperatures (ETmax and ETmin, 
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respectively), in addition to the three day type variables. Due to the absence of next-day forecasts 

for the maximum and minimum air temperatures in the data set, actual temperature values were 

used instead, which would be the case with ideal temperature forecasts. Table 2 lists the input 

and output variables used for training the model. The first seven days of each year were used as 

preceding days, and therefore the first forecasting day was 8 January of each year. This gave 

1075 training records (358 in each of 1987 and 1989, and 359 in 1988 being a leap year). It was 

possible to leave out only the first seven days in 1987, but we opted for the scheme described 

above as it gave the same number of training records used by three individual models trained 

separately on each of the three years (1987 to 1989). Equal number of training records in the two 

cases allows fair comparison between the committee-based solution employing three yearly 

models and the monolithic solution using a single 3-year model. The monolithic models are 

evaluated on 358 records of the evaluation year 1990. 

 
3.3. Network Committee Modeling 
 

For the committee forecasting approach, three separate models for forecasting next-day 

peak load are developed, each trained on data for one of the years 1987, 1988, and 1989 and the 

resulting committee is evaluated on data for 1990. Input variables used for training individual 

models are identical to those listed in Table 2, with the exclusion of the trend input which would 

not be required with the training data for each model spanning only one year. Therefore 

committee member models have only 47 inputs. Using the same approach described above for 

selecting the training data for the monolithic model, individual member models trained on data 

for the years 1987, 1988, and 1989 use 358, 359, and 358 training records, respectively. The total 

number of data records used to train the whole committee is identical to that used by the 

monolithic model. The committee is evaluated on 358 records of the evaluation year 1990. Since 
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individual models are developed using ‘raw’ load data for their respective years, trend 

adjustments are required during evaluation in order to account for the annual load growth 

between the respective years used to train the individual models and the evaluation year. Fig. 2 

illustrates the scheme adopted when the three models are used in a committee for forecasting the 

load for the evaluation year 1990. While temperature and day type data in the evaluation records 

are applied directly (in parallel) to the models, load data must first be normalized to that of the 

year used to train the model before inputting to the individual models. This is achieved through 

dividing the evaluation input values for the load by the corresponding scaling factor si defined in 

Eqn. (7) and listed in Table 1. Predicted load outputs from individual models should then be 

denormalized to the evaluation year through multiplying by the same scaling factor. 

Denormalized output values can then be combined to form the committee predicted load, which 

is compared to actual known load values for 1990 for evaluation. 

 
3.4. Multi-Layer Perceptron (MPL), Back Propagation, Neural Networks 
 

The MLP neural network consists of simple processing elements (artificial neurons) 

arranged in layers: an input layer receiving the input variables, one or more hidden layers 

performing the required non linear input-output mappings, and an output layer producing the 

network outputs. Each neuron receives weighted inputs from all neurons in the preceding layer. 

Let Wij be the weight associated with the link from neuron i in one layer to neuron j in the next 

downstream layer. The neuron sums all weighted inputs and, with reference to a threshold value, 

uses a non-liner activation function to determines its output. The modeling problem is solved by 

training on a set of solved examples in the form of input-output records. Training attempts to 

minimize the error between known and calculated network outputs over all training examples 

through optimizing the network weights. The mean square error (MSE) criterion is given by: 
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where tkp and Okp are the true and observed outputs, respectively, for neuron k in the output layer 

when input vector xp corresponding to the pth training record is applied to the network. Training 

with the back propagation algorithm involves iterative application of the training records, 

determining observed output errors for neurons in the output layer, back propagating these errors 

to all previous layers, and adjusting the weights so as to minimize the error criterion. The output 

from neuron j in a given layer (other than the input layer) is calculated as: 

)∑=
i
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where i indicates a neuron in the preceding layer and f is the activation function for neuron j. The 

activation function is often a sigmoid function of the form: 

xe
xf −+
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With the gradient descent approach to error minimization, weights are changed in proportional to 

the error gradient, i.e.  

ij
ij W

EW
∂
∂

−=∆ η ,                           (11) 

 where η  is a constant that determines the learning rate. To improve convergence characteristics, 

weight changes are also related to changes introduced in the previous iteration. At the nth 

iteration, the change in  for the link from neuron i to neuron j is given by [37]:  ijW

)1()( −∆+=∆ nWOnW ijijij αεδ ,              (12) 

where ε  is the learning rate, α  is the momentum factor, and jδ  is the error signal for the 

destination neuron j. When neuron j is in the output layer, jδ  is given by: 
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When neuron j is in a hidden layer, jδ  is given by: 

∑−=
k

jkkjjj WOO δδ )1( ,                         (14) 

where k indicates neurons in the succeeding layer next to that containing neuron j.  

The learning rate and the momentum factor influence the speed and stability of network training. 

The process continues until the error criterion on the training set is reduced below a specified 

limit. To improve generalization on new out-of-sample data, early stopping criteria are often 

employed where a separate test dataset is used to validate the resulting model and training is 

stopped when error on that dataset starts to increase indicating the start of overfitting. 

 
3.5. GMDH and AIM Abductive Networks 
  
AIM (abductory inductive mechanism) [38] is a supervised inductive machine-learning tool for 

automatically synthesizing abductive network models from a database of inputs and outputs 

representing a training set of solved examples. As a GMDH algorithm, the tool can automatically 

synthesize adequate models that embody the inherent structure of complex and highly nonlinear 

systems. Automation of model synthesis not only lessens the burden on the analyst but also 

safeguards the model generated against influence by human biases and misjudgments. The 

GMDH approach is a formalized paradigm for iterated (multi-phase) polynomial regression 

capable of producing a high-degree polynomial model in effective predictors. The process is 

'evolutionary' in nature, using initially simple (myopic) regression relationships to derive more 

accurate representations in the next iteration. To prevent exponential growth and limit model 

complexity, the algorithm selects only relationships having good predicting powers within each 

phase. Iteration is stopped when the new generation regression equations start to have poorer 
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prediction performance than those of the previous generation, at which point the model starts to 

become overspecialized and therefore unlikely to perform well with new data. The algorithm has 

three main elements: representation, selection, and stopping. It applies abduction heuristics for 

making decisions concerning some or all of these three aspects.  

To illustrate these steps for the classical GMDH approach, consider an estimation data base of ne 

observations (rows) and m+1 columns for m independent variables (x1, x2, ..., xm) and one 

dependent variable y. In the first iteration we assume that our predictors are the actual input 

variables. The initial rough prediction equations are derived by taking each pair of input 

variables (xi, xj ; i,j = 1,2,...,m) together with the output y and computing the quadratic regression 

polynomial [8]:  

 y = A + B xi + C xj + D xi
2 + E xj

2 + F xi xj                                                                  (15) 

Each of the resulting m(m-1)/2 polynomials is evaluated using data for the pair of x variables 

used to generate it, thus producing new estimation variables (z1, z2, ..., zm(m-1)/2) which would be 

expected to describe y better than the original variables. The resulting z variables are screened 

according to some selection criterion and only those having good predicting power are kept. The 

original GMDH algorithm employs an additional and independent selection set of ns 

observations for this purpose and uses the regularity selection criterion based on the root mean 

squared error rk over that dataset, where: 

1)/2m1,2,...,m(k   ;y)z(yr
ss n

1

2
n

1

2
k

2
k −=−= ∑∑

== l
l

l
ll                                                                 (16) 

 
Only those polynomials (and associated z variables) that have rk below a prescribed limit are kept 

and the minimum value, rmin, obtained for rk is also saved. The selected z variables represent a 

new database for repeating the estimation and selection steps in the next iteration to derive a set 

of higher-level variables. At each iteration, rmin is compared with its previous value and the 
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process is continued as long as rmin decreases or until a given model complexity is reached. An 

increasing rmin is an indication of the model becoming overly complex, thus over-fitting the 

estimation data and performing poorly on the new selection data.  Keeping model complexity 

checked is an important aspect of GMDH-based algorithms, which keep an eye on the final 

objective of constructing the model, i.e. using it with new data previously unseen during training. 

The best model for this purpose is that providing the shortest description for the data available 

[39]. Computationally, the resulting GMDH model can be seen as a layered network of partial 

quadratic descriptor polynomials, each layer representing the results of an iteration. 

A number of GMDH methods have been proposed which operate on the whole training dataset 

thus eliminating the need for a dedicated selection set. The adaptive learning network (ALN) 

approach, AIM being an example, uses the predicted squared error (PSE) criterion [39] for 

selection and stopping to avoid model overfitting, thus solving the problem of determining when 

to stop training in neural networks. The criterion minimizes the expected squared error that 

would be obtained when the network is used for predicting new data. AIM expresses the PSE as: 

2)2( pNKCPMFSEPSE σ+=                                                                                              (17) 

where FSE is the fitting squared error on the training data, CPM is a complexity penalty 

multiplier selected by the user, K is the number of model coefficients, N is the number of 

samples in the training set, and  is a prior estimate for the variance of the error obtained with 

the unknown model. This estimate does not depend on the model being evaluated and is usually 

taken as half the variance of the dependent variable y [39]. As the model becomes more complex 

relative to the size of the training set, the second term increases linearly while the first term 

decreases. PSE goes through a minimum at the optimum model size that strikes a balance 

between accuracy and simplicity (exactness and generality). The user may optionally control this 

2
pσ
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trade-off using the CPM parameter. Larger values than the default value of 1 lead to simpler 

models that are less accurate but may generalize well with previously unseen data, while lower 

values produce more complex networks that may overfit the training data and degrade actual 

prediction performance.  

AIM builds networks consisting of various types of polynomial functional elements. The 

network size, element types, connectivity, and coefficients for the optimum model are 

automatically determined using well-proven optimization criteria, thus reducing the need for user 

intervention compared to neural networks.  This simplifies model development and considerably 

reduces the learning/development time and effort. The models take the form of layered feed-

forward abductive networks of functional elements (nodes) [38], see Fig. 3. Elements in the first 

layer operate on various combinations of the independent input variables (x's) and the element in 

the final layer produces the predicted output for the dependent variable y. In addition to the main 

layers of the network, an input layer of normalizers convert the input variables into an internal 

representation as Z scores with zero mean and unity variance, and an output unitizer unit restores 

the results to the original problem space. AIM supports the following main functional elements:  

(i) A white element which consists of a constant plus the linear weighted sum of all outputs of 

the previous layer, i.e. 

"White"  Output  = w0 + w1x1 + w2x2 + w3x3 + .... + wnx n                                                            (18) 

 where x1, x2,..., xn  are the inputs to the element and w0, w1, ..., wn are the element weights.  

(ii) Single, double, and triple elements which implement a third-degree polynomial expression 

with all possible cross-terms for one, two, and three inputs respectively; for example,  

"Double"  Output = w0 + w1x1 + w2x2 + w3x1
2 + w4x2

2 + w5x1x2 + w6x1
3 + w7x2

3                   (19) 

 
4    Results 
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4.1   3-year Monolithic Models 
 
Both neural and abductive Monolithic models were developed through training on the same 

collective 3-year data, to allow comparison with the committee approach in both cases. Neural 

network model were synthesized using the PathFinder neural network software for Windows. 

20% of the training data were reserved for cross validation. The 48-6-1 neural model had one 

hidden layer containing 6 neurons and used a sigmoid transfer function for both the hidden and 

output layers. Evaluated on the 1990 data, the model gives a mean absolute percentage error 

(MAPE) of 2.61%. Fig. 4 shows the corresponding AIM abductive network model, which gives a 

lower MAPE error of 2.52%. The 4-layer, 4-element abductive model uses only 8 inputs selected 

automatically from the 48 inputs available during training. Compared to the neural network 

model, this reduction in dimensionality simplifies the resulting model, reduces the amount of 

historical data required to implement it, and avoids the effects of noise and errors that may be 

associated with the 40 unused inputs. The model is much more transparent than the 

corresponding neural model, readily giving tomorrow’s peak load forecast as a function of: 

- Peak loads for today and on the same day as the forecasting day a week ago. 

- Both extreme temperatures forecasted for tomorrow. 

- The minimum temperature measured on the on the same day as the forecasting day a 

week ago. 

- Whether tomorrow is a working day or not. 

- Whether yesterday was a Saturday or not. 

- Annual load growth trend. 

The model is described by eight normalizer and one unitizer linear equations, in addition to 

equations for the three Triple and one Double polynomial functional elements. Fig. 5 shows  
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time series plots of the actual peak loads for the 358 evaluation days during 1990 and the 

corresponding loads forecasted using both the neural and abductive models. Table 3 shows 

details of performance comparisons for both models. The table lists the mean and standard 

deviation (SD) for both the absolute percentage error (APE), %, and the absolute error (AE), 

MW (in parenthesis), between the actual and forecasted loads, together with the maximum APE 

value. Shown also are percentages of the evaluation population having APE values ≤ 1%, ≤ 3%, 

and ≥ 6%. Fig. 5 and Table 3 indicate that the two models have comparable performance, with 

the abductive model giving slightly better performance inspite of the fact that it uses only one 

sixth of the inputs. We use the z statistic to test the statistical significance of the difference in 

performance levels exhibited by the two models. This statistic tests the validity of the null 

hypothesis that there is no difference between the means of the absolute error (AE) in the two 

cases, given the statistical variations exhibited, and is expressed as [40]: 
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=                                                                                                                       (20) 

where ,, ii σµ and ni are the mean and standard deviation of the absolute error (AE), and the 

sample size for the ith error distribution, respectively, and i ∈  1,2. Here  = = 358. At the 

95% confidence level (α = 0.05), the null hypothesis is accepted for -1.96 < z < 1.96. Applying 

Eqn. (20) for the AE statistics shown in Table 3, the null hypothesis is accepted, i.e. the 

difference in the forecasting performance of the neural and abductive models is not statistically 

significant.  

1n 2n

4.2 Neural Network Committees 
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Table 4 summarizes the results obtained when the three neural models trained on 1987, 

1988, and 1989 data, see Section 3.3, were used in the committee arrangement of Fig. 2. Here all 

three models have identical network structure, training parameters, and initial set of random 

weights. Each of the 47-6-1 models has 6 neurons in the hidden layer and uses the sigmoid 

transfer function for both the hidden and output layers. The Table shows the mean and standard 

deviation of both the APE and AE errors for the individual models, the committee combined 

output, and the monolithic model trained on collective data for the three years. Two methods 

were considered for combining the outputs of the committee members: Simple averaging, Eqn. 

(1), and weighted averaging, Eqn. (2). For the latter case weights were based on the error 

variance for the individual member models on their training data, Eqns. (4) and (5). The two 

output combining methods give similar performance, with the simple averaging method being 

slightly superior. Both committee approaches outperform all three individual models as well as 

the monolithic 3-year model. Error reduction by both the committee and the monolithic models 

from that of the 1988 individual model is statistically significant. However, performance 

improvement by either committee approaches compared to the monolithic model is not 

statistically significant. This may be attributed to the poor diversity among the individual model 

members of the committee. With these models using the same learning algorithm, network 

topology, and training parameters, diversity will be attributed only to the different load and 

temperature data for different years that were used to train them. It is expected that such data for 

successive years would also be strongly correlated, which reduces diversity among resulting 

individual models and degrades the committee advantage. Table 5 shows values for the three 

pair-wise Pearson correlation coefficient between data for each two of the three training years 

(1987 to 1989). Data is shown for the peak load and the two extreme temperatures. Shown also is 
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the root-mean-square (RMS) value of the three coefficients, which indicates overall average 

correlation among data for all three years. Results show that load and temperature data can be 

highly correlated. For both the peak load and the minimum temperature, correlation is somewhat 

stronger between adjacent years. Accuracy for the combined committee output is influenced by 

correlation among prediction errors in the outputs of individual members. Ideally, if such errors 

are poorly (or even negatively) correlated, then they would at least partially cancel out, thus 

improving the committee forecasting accuracy. The top row of Table 6 lists values for the pair-

wise Pearson correlation coefficient between the prediction errors for each two of the three 

individual models for years 1987, 1888, 1989, together with the corresponding RMS value.   

To increase diversity among member models beyond that attributed to different training 

data, the three models were trained using different settings for the network topology and training 

parameters, e.g. number of hidden neurons, initial random weights (controlled by the seed of the 

random number generator used to generate the weights), learning rate increments. Table 7 shows 

changes introduced into the three models and the resulting performance, which should be 

compared with that listed in Table 4. Only a slight reduction (from 2.50 to 2.45 for the MAPE 

value) is achieved in the committee performance through changes introduced to make the models 

more independent. The bottom row of Table 6 lists the pair-wise error correlation coefficients 

after the changes, showing no reduction in the overall error correlation. The small drop in error 

may be attributed to improved performance by individual models, e.g. the 1989 model, rather 

than increased independence amongst the models. It appears that changes introduced in the 

design and training of the individual neural models are not enough to offset effects of the strong 

correlation between data for the training years. It should also be noted that the large number of 

 21



parameters associated with designing and training a neural network makes it more difficulty to 

select parameter values to achieve a desired effect.   

 
4.3    Abductive Network Committees 
 

Table 8 summarizes the results obtained when the three abductive models trained on 1987, 

1988, and 1989 data, see Section 3.3, were used in the committee arrangement of Fig. 2. Here all 

three models have the same default value of 1 for the CPM parameter that controls model 

complexity. The two output combining methods give similar performance, with the simple 

averaging method being slightly superior as was the case with neural committees. Both 

approaches outperform all three individual models as well as the monolithic 3-year model. Error 

reduction by both the committee and the monolithic models from that of the 1987 individual 

model is statistically significant. As with neural models, performance improvement by either 

committee approaches compared to the monolithic model is not statistically significant.   The top 

row of Table 9 lists values for the pair-wise Pearson correlation coefficient between the 

prediction errors for each two of the three individual models for years 1987, 1888, 1989, together 

with the corresponding RMS value. To increase diversity among member models beyond that 

contributed to different training data, the three models were trained using different settings for 

the CPM parameter. Table 10 lists the CPM values for the three models together with the 

resulting performance, which should be compared with that given in Table 8. An appreciable 

reduction (from 2.36 to 2.19 for the MAPE value) is achieved in the committee performance 

through the use of different complexity for the individual member models to make them more 

independent. The bottom row of Table 9 lists the pair-wise error correlation coefficients after the 

changes, showing some reduction in the overall error correlation which is indicative of more 

independent models. Significance tests performed on the data in Table 10 show that performance 
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improvement by the abductive network committee with members having different CPM values is 

statistically significant compared to the monolithic model, with a reduction from 2.52 to 2.19 in 

the MAPE error. With CPM being the main training parameter set by the user, the search for 

more independent abductive models has been much easier compared to the case of neural 

networks. Table 11 shows a more detailed performance comparison between the monolithic 3-

year model and the best committee model, both using abductive networks. Gains by the 

committee approach include: one third of a percent point reduction in the MAPE error, 9 MW 

reduction in the mean absolute error, about 4 percent points reduction in the maximum absolute 

percentage error, and 6 percent points increase in the forecasting days having a percentage error 

within ± 3%. 

 

5    Conclusions 

 We have presented a formal approach for applying the network committee technique to 

improve the accuracy of forecasting the next-day peak load using multiple-year historical load 

and temperature data. The method takes into account the trend due to annual load growth. Back 

propagation neural networks and GMDH-based abductive networks were considered as modeling 

tools. In both cases, a committee whose three members were trained on 3 individual successive 

years improved forecasting performance compared to individual models as well as a monolithic 

model trained on the full 3-year data. However, improvements achieved over the monolithic 

model were statistically significant only using abductive networks with individual members 

having different levels of model complexity to enhance independence. The strong correlation 

among load and temperature data for successive years tends to discourage diversity among 

resulting models, thus reducing the committee advantage. To overcome this problem, 

independence among the member models was enhanced through the use of different network 

 23



structures and training parameters. Such attempts were not very successful with neural models, 

and the large number of parameters that can be adjusted made the task difficult. With abductive 

networks, simply using different values for the CPM parameter that controls model complexity 

has proved effective. Future work will consider other methods for enhancing diversity and 

improving performance of neural network committees through using different network 

architectures or learning paradigms. Expert committees will also be considered where committee 

members employ different machine learning techniques.  
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Table 1. Summary of the 6-year load data showing information on the year-to-year growth, 

normalization factors used for dealing with the load growth trend, and scaling factors used for 

implementing the network committee forecasters. 

 
 

Year, i 

Total 
Annual 
Load, 

(MWH) 

Mean 
Hourly 
Load, 

Mi 
(MW) 

Annual 
Load 

Growth 
(year-

to-
year) 

Trend  
Inputs, ri 

1987M
M

r i
i =

Scaling Factors, si 

i

Estimated  
i M

M
s )(1990=  

1985 16,310,645 1862 1   

1986 16,017,335 1828 0.982   

1987 16,510,405 1885 1.031 1.000 1.162 

1988 17,563,434 2000 1.061 1.061 1.095 

1989 18,434,815 2104 1.052 1.116 1.041 

Actual 19,357,130 2210  1.050      
1990  

Estimated 19,184,400 2190 1.041 1.162  

Average Load Growth 1986-1990 
(Actual) 1.035  
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Table 2. Layout of a training record for the monolithic model utilizing all 3-year data using 48 

inputs. Committee member models trained on individual years use the same layout with the trend 

input omitted. 

 

Inputs Output 

Annual 
Trend 
Input 

Data for each day, j, of seven preceding days:             
j = d-6, d-5, d-4, d-3, d-2, d-1, d 

Data for forecasting 
day (d+1) 

Peak load 
for day 
(d+1)  

ri PL(j), Tmax(j), Tmin(j), WRK(j), SAT(j), SUN/HOL(j) 

ETmax(d+1), 
ETmin(d+1), 
WRK(d+1), 
SAT(d+1), 

SUN/HOL(d+1) 

PL(d+1) 
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Table 3. Performance comparison over the evaluation year for the neural and abductive next-day 

peak load forecasting monolthic models developed using all 3-year data.  

 
 

 Error Statistics for: 
APE, %               

and (AE), MW 

Percentage of forecasting 
days having:  

Forecasting 
Method 

Mean SD 

Maximum 
APE, % 

Correlation 
Coefficient

, R, 
between 

Actual and 
Predicted 

APE: 
≤ 1% 

APE: 
≤ 3% 

APE:     
≥ 6% 

Neural 
model   
(48-6-1) 

2.61 
(69.6) 

2.08 
(55.9) 12.52 0.986 24 65 6 

Abductive 
model      
(8-1-1-1-1), 
Fig. 4 

2.52    
(70) 

2.10 
(61.4) 14.20 0.986 28 68 7 
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Table 4. Forecasting error statistics for the APE, %, and the (AE), MW, for the individual neural 

models (using identical network structures and training conditions), the committee models using 

two approaches for combining individual model outputs, and the monolithic model using all 3-

year data.  

 

Network Committee Individual Member Models:   
Identical Network Structures 

and Training Conditions Simple Averaging Weighted Averaging 

Monolithic Model 
on 3-Year Data 

Member 
Model Mean SD Mean SD Mean SD Mean SD 

1987 2.72 
(73.2)  

2.13 
(61.2) 

1988 2.91 
(80.0) 

2.31 
(73.1) 

1989 2.76 
(74.6) 

2.24 
(63.8) 

2.50 
(67.2) 

1.97 
(57.1) 

2.53 
(68.0) 

1.97 
(57.7) 

2.61 
(69.6) 

2.08 
(55.9) 
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Table 5. Pair-wise Pearson correlation coefficients between data for each two of the three 

training years (1987 to 1989) for the peak load and the two extreme temperatures. 

 

Data 
Parameter 

1987-
1988 

1987-
1989 

1988- 
1989 RMS  

Peak     
Load ٠٫٨٢ ٠٫٧٦٥ ٠٫٨٣٧6 ٠٫٨١٠ 

Maximum 
Temperature ٠٫٧٤ ٠٫٧٤٠ ٠٫٧٤٨ ٠٫٧٤٨6 

Minimum 
Temperature ٠٫٧١ ٠٫٧١٥ ٠٫٦٨٣ ٠٫٧٣٨3 
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Table 6. Pair-wise Pearson correlation coefficients between prediction errors over the evaluation 

year by the three neural member models using two approaches for training them.  

 

Individual Members 1987-
1988 

1987-
1989 

1988- 
1989 RMS  

Identical Network Structures 
and Training Conditions 
(Table 4) 

٠٫674 ٠٫٧34 ٠٫564 ٠٫661 

Different Network Structures 
and Training Conditions 
(Table 7) 

٠٫644 ٠٫٧61 ٠٫612 ٠٫675 
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Table 7. Forecasting error statistics for the APE, %, and the (AE), MW, for the individual neural 

models (using different network structures and training conditions), the committee model using 

simple averaging to combine individual model outputs, and the monolithic model using all 3-

year data.  

 

Individual Member Models                    
(Different Network and Training Conditions) 

Network Committee 
(Simple Averaging) 

Monolithic Model   
on 3-Year Data 

Member 
Model 

Changes from 
Table 4 Mean SD Mean SD Mean SD 

1987 

4 hidden neurons,   
Different initial 

weights,  Different 
learning rate 
increments 

2.72 
(73.3) 

2.06 
(59.3) 

1988 No Change         
(6 hidden neurons) 

2.91 
(80.0) 

2.31 
(73.1) 

1989 
8 hidden neurons, 

different initial 
weights 

2.66 
(71.8) 

2.10 
(59.2) 

2.45 
(65.6) 

1.94 
(56.1) 

2.61 
(69.6) 

2.08 
(55.9) 
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Table 8. Forecasting error statistics for the APE, %, and the (AE), MW, for the individual 

abductive models (using the same CPM value), the committee models using two approaches for 

combining individual model outputs, and the monolithic model using all 3-year data.  

 

Network Committee Individual Member Models: 
Identical Training Conditions 

(CPM = 1)  Simple Averaging Weighted Averaging 

Monolithic Model 
Using 3-Year Data 

Member 
Model Mean SD Mean SD Mean SD Mean SD 

1987 2.83 
(79.6)  

2.41 
(74.6) 

1988 2.48 
(70.3) 

2.28 
(76.7) 

1989 2.76 
(73.2) 

2.36 
(60.9) 

2.36 
(65.2) 

1.99 
(60.0) 

2.37 
(65.7) 

2.03 
(61.6) 

2.52 
(70) 

2.10 
(61.4) 
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Table 9. Pair-wise Pearson correlation coefficients between prediction errors over the evaluation 

year by the three abductive member models using two approaches for training them.  

 

Individual Members 1987-
1988 

1987-
1989 

1988- 
1989 RMS  

Same CPM value           
(Table 8) 0.798 0.527 0.611 0.655 

Different CPM values    
(Table 10) 0.588 0.577 0.566 0.577 
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Table 10. Forecasting error statistics for the APE, %, and the (AE), MW, for the individual 

abductive models (using different CPM values), the committee model using simple averaging to 

combine individual model outputs, and the monolithic model using all 3-year data.  

 

Individual Member Models                    
(Different Training Conditions) 

Network 
Committee 

(Simple 
Averaging) 

Monolithic Model   
Using 3-Year Data 

Member 
Model 

Changes from 
Table 8 Mean SD Mean SD Mean SD 

1987 No change 
(CPM = 1) 

2.83     
(79.6) 

2.41    
(74.6) 

1988 CPM = 0.5 2.49     
(70.9) 

2.22    
(80.4) 

1989 CPM = 0.2 2.26     
(62.2) 

1.95    
(58.5) 

2.19 
(61.0) 

1.87 
(58.0) 

2.52 
(70) 

2.10 
(61.4) 
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Table 11. Performance improvements over the evaluation year obtained with the best abductive 

committee model in comparison with the corresponding monolithic model using 3-year data.  

 
 

 Error Statistics for: 
APE, %               

and (AE), MW 

Percentage of forecasting 
days having:  Forecasting 

Method 

Mean SD 

Maximum 
APE, % 

Correlation 
Coefficient, R, 

Between 
Actual and 
Predicted APE: 

≤ 1% 
APE: 
≤ 3% 

APE:    
≥ 6% 

Abductive 
Monolithic 
Model Using     
3-Year Data 

2.52    
(70) 

2.10 
(61.4) 14.20 0.986 28 68 7 

Abductive 
Committee 
with Different 
CPM Values 
(Table 10)  

2.19 
(61.0) 

1.87 
(58.0) 10.02 0.988 31 74 6 
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             Fig. 1. A schematic diagram for a network committee. 
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  Fig. 3. AIM abductive network showing various types of functional elements. 
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Fig. 4. Structure of the monolithic abductive network model for the peak load trained on the 

collective data for all three years (1987-1989). The model automatically selects only eight 

of the available 48 inputs. 
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Fig. 5. Time series plots of actual peak loads for the 358 evaluation days in 1990 and forecasts 

from both neural and abductive network monolithic models trained on all data for the previous 

three years (1987-1989). 
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