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Abstract 

 
Neural networks have been widely used for short-term, and to a lesser degree medium and long term, 

demand forecasting. In the majority of cases for the latter two applications, multivariate modeling was 

adopted, where the demand time series is related to other weather, socio-economic and demographic time 

series. Disadvantages of this approach include the fact that influential exogenous factors are difficult to 

determine, and accurate data for them may not be readily available. This paper uses univariate modeling 

of the monthly demand time series based only on data for six years to forecast the demand for the seventh 

year. Both neural and abductive networks were used for modeling, and their performance was compared. 

A simple technique is described for removing the upward growth trend prior to modeling the demand 

time series to avoid problems associated with extrapolating beyond the data range used for training. Two 

modeling approaches were investigated and compared: iteratively using a single next-month forecaster, 

and employing 12 dedicated models to forecast the 12 individual months directly. Results indicate better 

performance by the first approach, with mean percentage error (MAPE) of the order of 3% for abductive 

networks. Performance is superior to naïve forecasts based on persistence and seasonality, and is better 

than results quoted in the literature for similar applications using multivariate abductive modeling, 

multiple regression, and univariate ARIMA analysis. Automatic selection of only the most relevant model 

inputs by the abductive learning algorithm provides better insight into the modeled process and allows 

constructing simpler neural network models with reduced data dimensionality and improved forecasting 

performance. 

Keywords:  Abductive networks, Neural networks, Modeling, Forecasting, Energy demand, Time series 

forecasting, Power system planning, Medium-term load forecasting, Univariate time series analysis. 
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1. Introduction 
 
Load forecasting plays an important role in the planning and economic and secure operation of modern 

power systems. Long-term forecasts (five to 20 years) are required for resource planning, utility 

expansion, and staff hiring. Medium-term forecasts (one month to five years) are used for purchasing fuel 

and revising electricity tariffs. Short-term load forecasting (STLF) (one hour to one week) is important 

for scheduling functions, such as generator unit commitment, hydro-thermal coordination, short-term 

maintenance, fuel allocation, power interchange, transaction evaluation, as well as network analysis 

functions, such as dispatcher power flow and optimal power flow. This paper is concerned with medium 

term energy demand forecasting. Demand for electricity changes with time, weather, socio-economic 

variables, and population demographics. Techniques for demand forecasting in the medium to long range 

include the use of multivariate causal (econometric) models (Liu, Ang, & Goh, 1991) and multiple 

regression models (Barakat & Eissa, 1989) to express the load as a function of exogenous inputs such as 

weather and social/economic variables. In addition to the complexity of the modeling process, regression 

models are basically linear devices that attempt to model distinctly nonlinear relationships (Hippert, 

Pedreira, & Souza, 2001). Even when a nonlinear relationship is attempted for the model, it is difficult to 

determine empirically the correct complex relationship that actually exists between demand and the other 

explanatory inputs. 

 

Univariate analysis of the time series alone was proposed for short-term load forecasting (Toyada, Chen, 

& Inouse, 1970), but forecasting accuracy has been limited due to ignoring important exogenous factors 

such as weather and day type. However, with medium and long-term forecasting, integration of daily 

loads into monthly or yearly data dilutes the effects of such factors, and forecasting may be based solely 

on previous values of the time series (Gonzalez-Romera, Jaramillo-Moran, & Carmona-Fernandez, 2007). 

As all the external factors have already impacted the generation of the observed time series, it can be 

argued that the time series embodies all necessary information to model the underlying generating 
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process. Univariate time series models have proved more accurate than multivariate abductive network 

models in forecasting the monthly energy consumption in the Eastern Province of Saudi Arabia (Abdel-

Aal, Al-Garni, & Al-Nassar, 1997). External factors often require economic and demographic data that 

may be unavailable or difficult to obtain. To use the model for forecasting into the future, forecasts for 

such factors may be required, and the forecasting accuracy would depend on the quality of such forecasts. 

Moreover, using only the demand time series can reduce the data dimensionality for the problem being 

modeled, which improves generalization and forecasting performance. Conventional univariate time 

series analysis approaches include the Box-Jenkins integrated autoregressive moving average (ARIMA) 

method (Abdel-Aal & Al-Garni, 1997), logistic modeling (Barakat & Alrashed, 1992), and Kalman 

filtering (Al-Hamadi & Soliman, 2006). However, such methods are time consuming, require extensive 

user intervention, and may be numerically unstable (AlFuhaid, El-Sayed, & Mahmoud, 1997).  

 

A recent trend for handling problems that are difficult to solve analytically has been to resort to artificial 

intelligence and machine learning techniques, which range from knowledge-based expert systems to data-

based approaches such as fuzzy logic, genetic algorithms, and neural networks. Data-based techniques are 

non-parametric, i.e. the user does not need to explicitly specify the model relationship. This enhances 

their use in knowledge discovery by freeing them from bias or influence by prior assumptions on the 

modeled relationship, which are required in many empirical and regression modeling approaches. 

Complex nonlinear input-output relationships can be modeled automatically through supervised learning 

using a database of solved examples. Once synthesized, the model can generalize to perform predictions 

of outputs corresponding to new cases, previously unseen during training. This offers a number of 

advantages over conventional approaches, including reduced development time and increased tolerance to 

noise, uncertainty, and missing data, reduced need for theoretical knowledge on the modeled 

phenomenon, freedom from assumptions on the probability distributions of input variables, and the fact 

that no programming is required. Intensive computations are needed only once during model synthesis, 
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while predictions by the models synthesized are fast and straightforward. Neural networks have been used 

extensively for STLF, e.g. (Shimakura, et al. 1993, Khotanzad, Afkhami-Rohani, & Maratukulam, 1998), 

and to a lesser extent for medium term (Gonzalez-Romera, Jaramillo-Moran, & Carmona-Fernandez, 

2007, Elkateb, Solaiman, & Al-Turki, 1998, Ghiassi, Zimbra, & Saidane, 2006, Islam, Al-Alawi, & 

Ellithy, 1995) and long long-term load forecasting (Kermanshahi & Iwamiya, 2002, Al-Saba & El-Amin, 

1999). In the majority of cases, multivariate modeling is employed using a number of time series of 

explanatory variables that influence the load. For long term forecasting, such factors include population, 

number of households, number of clients, number of air conditioning units sold/installed, and amount of 

CO2 pollution in the environment, as well as economic indicators, e.g. gross national product (GNP), 

gross domestic product (GDP), index of industrial production (IIP), real per capita income, and real 

personal income, electricity price, crude oil price. For medium term forecasting, explanatory factors 

included weather parameters, e.g. temperature, relative humidity, heating degree-days (HDD) and cooling 

degree-days (CDD). Univariate modeling of the load time series with neural networks based solely on the 

load data without using any weather data was used only in a few cases, e.g. (Gonzalez-Romera, Jaramillo-

Moran, & Carmona-Fernandez, 2007).  

 

In spite of the wide-spread use of neural networks, the technique suffers from a number of limitations, 

including difficulty in determining optimum network topology and training parameters (Alves Da Silva et 

al., 2001). There are many choices to be made in determining numerous critical design parameters with 

little guidance available and designers often resort to a trial and error approach which can be tedious and 

time consuming. Such design parameters include the number and size of the hidden layers, the type of 

neuron transfer functions for the various layers, the training rate and momentum coefficient, and training 

stopping criteria to avoid over-fitting and ensure adequate generalization with new data. Another 

limitation is the black box nature of neural network models, giving poor explanation facilities and 

providing little insight into the modeled relationship and the relative significance of various inputs 

 5



(Matsui, Iizaka, & Fukuyama, 2001). The acceptability of, and confidence in, automated load forecasting 

tools in an operational environment are related to their transparency and their ability to justify results to 

human experts (Lewis III, 2001). 

 

Self-organizing abductive or polynomial networks (Montgomery & Drake, 1991) based on the group 

method of data handling (GMDH) learning algorithm (Farlow, 1984) have been proposed as an 

alternative modeling approach that alleviates many of the above limitations of neural networks. The 

method offers the advantages of improved forecasting performance (Abdel-Aal, 2004), faster model 

development requiring little or no user intervention, faster convergence during model synthesis without 

the problems of getting stuck in local minima, automatic selection of relevant input variables, and 

automatic configuration of model structures (Alves Da Silva et al., 2001). With the resulting model 

represented as a hierarchy of polynomial expressions, analytical model relationships can be derived. Such 

relationships provide insight into the modeled phenomena, highlight contributions of various inputs, and 

allow comparison with previously used empirical or statistical models. The technique automatically 

avoids over-fitting by using a proven regularization criterion based on penalizing model complexity 

without requiring a dedicated validation data set during training, as is the case with many neural network 

paradigms. Various forms of GMDH-based networks were used in multivariate modeling for short term 

(Alves Da Silva et al. 2001, (Abdel-Aal, 2004, Dillon, Morsztyn, & Phula, 1975, Sforna, 1995) and 

medium-term (Abdel-Aal, Al-Garni, & Al-Nassar, 1997) load forecasting. No applications could be 

traced in the literature for GMDH-based univariate time series load forecasting, although the technique 

has been used for univariate processing of time series in other areas, including modeling discharge 

currents accompanying tree development in dielectrics (Fujimori, Kajiya, & Mitsuboshi, 1998) and 

forecasting bilinear time series (Bielinska & Nabaglo, 1994).  
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This paper compares the performance of abductive networks and neural networks on forecasting the 

monthly energy demand for one year through univariate modeling of the demand time series for the 

previous six years. The upward trend in the demand time series is removed prior to modeling so that 

trained networks do not have to extrapolate beyond the range of data experienced during training, which 

improves forecasting performance (Virili & Freisleben, 2000). Two approaches were adopted with each 

of the two learning paradigms: iterative use of a single model that forecasts the demand for next month, 

and direct application of twelve dedicated models, each forecasting the demand for a month in the 

evaluation year. We demonstrate improved performance of neural network models when trained on a 

reduced subset of input features selected automatically by the abductive network learning algorithm. 

Following a short description of the abductive and neural network learning algorithms in Section 2, the 

demand data set used and the technique adopted for handling the time series upward trend are described 

in Section 3, together with the approaches for two baseline naïve (flat) forecasts. Section 4 describes the 

development and use of next-month demand forecasters employing both neural and abductive networks. 

Section 5 covers dedicated multiple models that forecast the full evaluation year in one go. Concluding 

remarks are given in Section 6. 

 

2. Methods 

2.1    GMDH and AIM Abductive Networks 

AIM (abductory inductive mechanism) (AbTech Corporation, 1990) is a supervised inductive machine-

learning tool for automatically synthesizing abductive network models from a database of inputs and 

outputs representing a training set of solved examples. As a GMDH algorithm, the tool can automatically 

synthesize adequate models that embody the inherent structure of complex and highly nonlinear systems. 

The automation of model synthesis not only lessens the burden on the analyst but also safeguards the 

model generated from being influenced by human biases and misjudgments. The GMDH approach is a 
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formalized paradigm for iterated (multi-phase) polynomial regression capable of producing a high-degree 

polynomial model in effective predictors. The process is 'evolutionary' in nature, using initially simple 

(myopic) regression relationships to derive more accurate representations in the next iteration. To prevent 

exponential growth and limit model complexity, the algorithm selects only relationships having good 

predicting powers within each phase. Iteration is stopped when the new generation regression equations 

start to have poorer prediction performance than those of the previous generation, at which point the 

model starts to become overspecialized and therefore unlikely to perform well with new data. The 

algorithm has three main elements: representation, selection, and stopping. It applies abduction heuristics 

for making decisions concerning some or all of these three aspects.  

 

To illustrate these steps for the classical GMDH approach, consider an estimation database of ne 

observations (rows) and m+1 columns for m independent variables (x1, x2, ..., xm) and one dependent 

variable y. In the first iteration we assume that our predictors are the actual input variables. The initial 

rough prediction equations are derived by taking each pair of input variables (xi, xj ; i,j = 1,2,...,m) 

together with the output y and computing the quadratic regression polynomial (Farlow, 1984):  

 y = A + B xi + C xj + D xi2 + E xj2 + F xi xj                                                        (1) 

Each of the resulting m(m-1)/2 polynomials is evaluated using data for the pair of x variables used to 

generate it, thus producing new estimation variables (z1, z2, ..., zm(m-1)/2) which would be expected to 

describe y better than the original variables. The resulting z variables are screened according to some 

selection criterion and only those having good predicting power are kept. The original GMDH algorithm 

employs an additional and independent selection set of ns observations for this purpose and uses the 

regularity selection criterion based on the root mean squared error rk over that data set, where 

1)/2m1,2,...,m(   ;ky)z(yr
ss n

1

2
n

1

2
k

2
k −=−= ∑∑

== l
l

l
ll

                                                                        (2)                                
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Only those polynomials (and associated z variables) that have rk below a prescribed limit are kept and the 

minimum value, rmin, obtained for rk is also saved. The selected z variables represent a new database for 

repeating the estimation and selection steps in the next iteration to derive a set of higher-level variables. 

At each iteration, rmin is compared with its previous value and the process is continued as long as rmin 

decreases or until a given complexity is reached. An increasing rmin is an indication of the model 

becoming overly complex, thus over-fitting the estimation data and performing poorly in predicting the 

new selection data.  Keeping model complexity checked is an important aspect of GMDH-based 

algorithms, which keep an eye on the final objective of constructing the model, i.e. using it with new data 

previously unseen during training. The best model for this purpose is that providing the shortest 

description for the data available (Barron, 1984).  Computationally, the resulting GMDH model can be 

seen as a layered network of partial quadratic descriptor polynomials, each layer representing the results 

of an iteration. 

A number of GMDH methods have been proposed which operate on the whole training data set thus 

avoiding the use of a dedicated selection set. The adaptive learning network (ALN) approach, AIM being 

an example, uses the predicted squared error (PSE) criterion (Barron, 1984) for selection and stopping to 

avoid model overfitting, thus eliminating the problem of determining when to stop training in neural 

networks. The criterion minimizes the expected squared error that would be obtained when the network is 

used for predicting new data.  AIM expresses the PSE error as: 

2)2( pnKCPMFSEPSE σ+=                                                                                                           (3)                                

Where FSE is the fitting squared error on the training data, CPM is a complexity penalty multiplier 

selected by the user, K is the number of model coefficients, n is the number of samples in the training set, 

and σp
2 is a prior estimate for the variance of the error obtained with the unknown model. This estimate 

does not depend on the model being evaluated and is usually taken as half the variance of the dependent 
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variable y (Barron, 1984). As the model becomes more complex relative to the size of the training set, the 

second term increases linearly while the first term decreases. PSE goes through a minimum at the 

optimum model size that strikes a balance between accuracy and simplicity (exactness and generality). 

The user may optionally control this trade-off using the CPM parameter. Larger values than the default 

value of 1 lead to simpler models that are less accurate but may generalize well with previously unseen 

data, while lower values produce more complex networks that may overfit the training data and degrade 

actual prediction performance.  

AIM builds networks consisting of various types of polynomial functional elements. The network size, 

element types, connectivity, and coefficients for the optimum model are automatically determined using 

well-proven optimization criteria, thus reducing the need for user intervention compared to neural 

networks.  This simplifies model development and reduces the learning/development time and effort. The 

models take the form of layered feed-forward abductive networks of functional elements (nodes) 

(AbTech Corporation, 1990) see Fig. 1. Elements in the first layer operate on various combinations of the 

independent input variables (x's) and the element in the final layer produces the predicted output for the 

dependent variable y. In addition to the main layers of the network, an input layer of normalizers convert 

the input variables into an internal representation as Z scores with zero mean and unity variance, and an 

output unitizer unit restores the results to the original problem space. The used version of AIM supports 

the following main functional elements:  

(i) A white element which consists of a constant plus the linear weighted sum of all outputs of the 

previous layer, i.e.: 

"White" Output = w0 + w1x1 + w2x2 + .... + wnxn                                                                         (4) 

where x1, x2,..., xn  are the inputs to the element and w0, w1, ..., wn are the element weights.  
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(ii) Single, double, and triple elements which implement a third-degree polynomial expression with all 

possible cross-terms for one, two, and three inputs respectively; for example, 

  

"Double" Output = w0 + w1x1 + w2x2 + w3x1
2 + w4x2

2 + w5x1x2 + w6x1
3 + w7x2

3                        (5) 

 
2.2. Multi-Layer Perceptron (MPL), Back Propagation, Neural Networks 
 
The MLP neural network consists of simple processing elements (artificial neurons) arranged in layers: an 

input layer receiving the input variables, one or more hidden layers performing the required non linear 

input-output mappings, and an output layer producing the network outputs. Each neuron receives 

weighted inputs from all neurons in the preceding layer. Let Wij be the weight associated with the link 

from neuron i in one layer to neuron j in the next downstream layer. The neuron sums all weighted inputs 

and, with reference to a threshold value, uses a non-liner activation function to determine its output. The 

modeling problem is solved by training on a set of solved examples in the form of input-output records. 

Training attempts to minimize the error between known and calculated network outputs over all training 

examples through optimizing the network weights. The mean square error (MSE) criterion is given by: 

⎥
⎦

⎤
⎢
⎣

⎡
−= ∑∑

p k
kpkp OtE

2

2
1                                           (6) 

where tkp and Okp are the true and observed outputs, respectively, for neuron k in the output layer when 

input vector xp corresponding to the pth training record is applied to the network. Training with the back 

propagation algorithm involves iterative application of the training records, determining observed output 

errors for neurons in the output layer, back propagating these errors to all previous layers, and adjusting 

the weights so as to minimize the error criterion. The output from neuron j in a given layer (other than the 

input layer) is calculated as: 

)∑=
i

iijj OWf(O ,                                                             (7) 
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where i indicates a neuron in the preceding layer and f is the activation function for neuron j. The 

activation function is often a sigmoid function of the form: 

xe
xf −+
=

1
1)(                                                                             (8) 

With the gradient descent approach to error minimization, weights are changed in proportional to the 

error gradient, i.e.  

ij
ij W

EW
∂
∂

−=∆ η ,                                                              (9) 

 where η  is a constant that determines the learning rate. To improve convergence characteristics, weight 

changes are also related to changes introduced in the previous iteration. At the nth iteration, the change in 

 for the link from neuron i to neuron j is given by (Park et al, 1991):  ijW

)1()( −∆+=∆ nWOnW ijijij αεδ ,                                                                     (10) 

where ε  is the learning rate, α  is the momentum factor, and jδ  is the error signal for the destination 

neuron j. When neuron j is in the output layer, jδ  is given by: 

)1()( jjjjj OOOt −−=δ                                     (11) 

When neuron j is in a hidden layer, jδ  is given by: 

∑−=
k

jkkjjj WOO δδ )1( ,                                                                     (12) 

where k indicates neurons in the succeeding layer next to that containing neuron j.  

 

The learning rate and the momentum factor influence the speed and stability of network training. The 

process continues until the error criterion on the training set is reduced below a specified limit. To 

improve generalization on new out-of-sample data, early stopping criteria are often employed where a 
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separate test dataset is used to validate the resulting model and training is stopped when error on that 

dataset starts to increase indicating the start of overfitting. 

 
 

 

3.   Material 

3.1 The Data Set 
 

The original data set used consists of measured hourly load and temperature data for the Puget power 

utility, Seattle, USA, over the period 1 January 1985 to 12 October 1992. The data set was provided by 

Professor A. M. El-Sharkawi, University of Washington, Seattle, USA. A few missing load and 

temperature data, indicated as 0’s in the original data set, were filled-in by interpolating between 

neighboring values. Monthly energy demand data were calculated by integrating the hourly loads for each 

month. We used the data for the first six years (1985-1990) for model synthesis and that for the following 

year (1991) for model evaluation. Table 1 summarizes the load data for the seven-year period and 

indicates an average year-to-year annual growth rate of 3.25%. The 7-year monthly demand time series 

raw data in tera watt hours (TWH) is plotted in Fig. 2(a). The plot clearly shows a 12-month seasonality 

and a significant upward trend. With such a trend, data values for the last (evaluation) year in the time 

series is expected to exceed those for the preceding years used for training. The abductive and neural 

network modeling techniques employed are good interpolators, but perform poorly in extrapolating 

beyond the data range encountered during training. Gonzalez-Romera, Jaramillo-Moran, & Carmona-

Fernandez, 2007 have solved this problem through splitting the load time series into a trend time series 

and a fluctuation time series which were modeled and forecasted separately and the results combined to 

produce the final load forecast. To avoid the complexity of extracting the trend through smoothing and 

avid duplicating the modeling and forecasting effort, we adopt a simpler approach in this paper. Here, all 

monthly demand data were first normalized so that all years have an annual energy demand equal to that 
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of the last training year (1990). Let the annual energy demand for year i be Ei, the normalization factor fi 

for that year is defined as: 

ii EEf 1990=    ; i = 1985, 1986, …, 1991                                                                                  (13) 

For the evaluation year 1991, we use an estimated value for the annual energy demand, , because in 

practice no actual data would be available for the evaluation year. This estimated value was obtained by 

extrapolating a straight line fit for the annual energy demands over the preceding six years (1985-1990). 

Normalization factors for the seven years are listed in the last column of Table 1. Monthly demands were 

normalized by multiplying actual values for each year by the corresponding normalization factor. Fig. 

2(b) shows the trend-normalized time series that was used to train and evaluate all forecasting models 

throughout this paper. Forecasted values for the evaluation year 1991 were first de-normalized through 

dividing by 

1991Ê

1991f  before comparison with actual 1991 monthly demand data. 

3.2 Naïve Forecasts 

In order to justify the forecasting effort, results are often compared with simple (naïve) forecasts obtained 

easily from the available data. One naïve forecast (Naïve-I) often used in practice (Thiesing, & 

Vornberger, 1997) is based on persistence, and assumes the demand at each month to be equal to the 

actual demand recorded on the preceding month. Using the monthly demand data described above, 

persistence-based forecasts give a maximum and mean absolute percentage errors of 20% and 7.1%, 

respectively. In view of the strong seasonality of the time series, another possible naïve forecast (Naïve-

II) would assume the demand at each month in the 1991 forecasting year as equal to the demand in the 

same month of the previous year (1990) divided by the estimated normalization factor f1991, see Table 1. 

This forecasting method proved superior to persistence forecasting, with the maximum and mean absolute 

percentage errors being 16.67% and 4.68%, respectively. 

 

 14



 

4. Iterative Forecasting Using a Single Next-Month Model 

We have developed abductive and neural network models that forecast the monthly energy demand for 

one year ahead from the monthly energy demand time series for six years. In one approach to the 

problem, a single model is developed to forecast the demand one month ahead using a number of 

previous demand values as model inputs. The model is then iteratively used twelve times to forecast the 

demand for a full year ahead. The value forecasted at a given iteration is fed as a model input in the next 

iteration. The optimum size of the sliding time window containing the time series samples used as model 

inputs is an important parameter referred to as the embedding dimension of the time series (Frank, Davey, 

& Hunt, 2000). Unduly small time windows may not allow the model to capture enough information on 

the underlying system generating the series. Unnecessarily large time windows increase the 

dimensionality of the data and reduce the number of records available for training. Both factors contribute 

to overfitting by the synthesized model, leading to poor generalization during forecasting. A number of 

methods have been proposed for finding the correct embedding dimension for a given time series (Frank, 

Davey, & Hunt, 2000). For seasonal time series, it is important to include samples at time lags equal to 

the seasonality interval (Chatfield, 1998). The annual seasonality that is evident from the time series plots 

in Fig. 2 suggests that a window size of 12 samples should be adequate.  For a model that forecasts the 

demand on the next month D(m+1) from demand at the previous 12 months, a record in the 

training/evaluation datasets takes the following form:  

 Inputs        Output 

 D(m-11),… ,D(m-2), D(m-1), D(m)    D (m+1) 

This provides 60 training examples from the 72 monthly demand data for the six training years. 
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4.1 Abductive Networks Modeling 

Table 2 shows the structure and performance results for the abductive network models synthesized for the 

next-month demand D(m+1) at three levels of model complexity, including the default CPM value of 1, a 

more complex model at CPM = 0.5, and a simpler model at CPM = 2. The first two models are nonlinear 

functions in only three inputs selected automatically by the learning algorithm out of the twelve inputs 

available during training. The selected inputs roughly represent the beginning, the middle, and the end of 

the 12 months interval preceding the modeled month. Table 2 shows also the time lags corresponding to 

the selected inputs. Selection of time lags as long as 12 months by some models shows that the size 

chosen for the sliding time window to model the time series is not larger than necessary. The simplest 

model obtained with CPM = 2 is a linear model consisting of a ‘wire’ element connecting the normalizer 

element of the only input selected to the unitizer element of the output. Substituting symbolically for the 

equations of both elements and performing trend de-normalization gives the following simple relationship 

for the forecasted monthly demand: 

D(m+1) = 0.070130 + 0.975281 D(m-11)                                                                                   (14)                               

This ‘wire’ model allows prediction of the monthly demand in the forecasting year using only the demand 

at the same month in the previous year, and is therefore similar to the seasonality-based Naïve-II model 

described in section 3.2.  

Each of the three models was used iteratively for twelve times to forecast the monthly demand over the 

evaluation year 1991. In each iteration, the forecasted demand is made available as input to the model in 

the next iteration, which could lead to accumulation of the forecasting error. It is noted that the third 
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model at CPM = 2 uses a time lag of 12, and when forecasting only up to 12 months ahead, none of the 

forecasted values will be required by the model. Table 2 shows the maximum and mean values for the 

absolute percentage error. The model with CPM = 0.5 gives the best performance, with a MAPE error of 

3.19% for next year forecast, which is significantly superior to the two approaches for naïve forecasts. 

The ‘wire’ abductive model synthesized with CPM = 2 also outperforms the similarly structured Naïve-II 

model. Fig. 3(a) is a plot comparing actual and forecasted demands obtained with this model over the 

evaluation year. For the similar univariate approach applied to the Spanish electric consumption 

data,(Gonzalez-Romera, Jaramillo-Moran, & Carmona-Fernandez, 2007) report a MAPE error of 2% 

only for next month predictions using 23 years data for training and 5 years for evaluation and applying 

complex techniques for trend extraction and modeling. Monthly forecasts up to a year ahead was not 

reported in that study. In another application, data for 5 years on the electric energy consumption in the 

Eastern Province of Saudi Arabia was used to develop forecasting models for the monthly demand for the 

6th year. A multivariate regression model that used the additional time series of temperature, humidity, 

global solar radiation, and population gave a MAPE error of 9.2% (Al-Garni, Zubair, & Nizami, 1994). 

An abductive network multivariate model using a monthly index and the additional time series of 

temperature and humidity gave a MAPE value of 5.6% (Abdel-Aal, Al-Garni, & Al-Nassar, 1997), while 

a univariate Box-Jenkins ARIMA model for the same energy consumption data gave a MAPE value of 

3.8% (Abdel-Aal & Al-Garni, 1997).   

4.2 Neural Networks Modeling 

Multilayer perceptron neural networks trained using the back propagation learning algorithm were used to 

develop models for forecasting next-month energy demand using the PathFinder software for Windows. 

The models were trained and evaluated on the same data used for the abductive models, with 20% of the 

training data reserved for cross validation. All twelve inputs  were used for network training and default 

values for network design and training parameters were employed. The sigmoid transfer function was 
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used for neurons in both the hidden and the output layer. Three values (4, 5, and 6) for the number of 

neurons in the single hidden layer were tried in order to investigate the effects of model complexity on 

forecasting performance. Table 3 shows the maximum and mean absolute percentage forecasting errors 

over the evaluation year for the various models developed. Results indicate that the model with medium 

complexity (5 hidden neurons) gives best average forecasting accuracy, with a MAPE value of 3.77. This 

neural network model is inferior to the best abductive network model with CPM = 0.5 (Table 2) which 

uses only three out of the twelve inputs. The last neural network model in Table 3 is a model trained on 

only the three inputs (D(m-1), D(m-5), and D(m-10)) selected by that abductive network model as an 

optimum subset of inputs. With a MAPE of 3.09, this simple neural model (3-5-1) gives the best 

forecasting performance so far, and achieves 18% reduction in the MAPE value for the more complex 

neural model (12-5-1) that uses all twelve inputs. A smaller subset of inputs consisting of good predictors 

helps reduce the high data dimensionality problem which causes the model to overfit the training data and 

degrades model performance on out-of-sample data during actual forecasting. This effect becomes 

particularly important with the relatively small value for the ratio between the number of training records 

available and the number of model inputs. With 48 records used for actual training of the neural network 

(the remaining 12 records being reserved for cross-validation), the 3-5-1 model raises this ratio from 4 to 

16, which reduces overfitting and improves forecasting performance. 

 

5. Direct Forecasting Using Twelve Dedicated Models 

In this forecasting approach, twelve dedicated models are developed to forecast the monthly demand over 

the full evaluation year directly in one go, with each model forecasting the demand for one month of the 

year. The models forecast the demand on month i, D(m+i), i = 1, 2, 3, …, 12, in terms of historical 

demand data available at month m. The forecasting lead times for the twelve models are 1, 2, 3, …, 12 

months, respectively. A record in the training dataset takes the form:  

                         Inputs        Outputs 
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D(m-11), … , D(m-2), D(m-1), D(m)  D (m+1), D (m+2), D (m+3), … , D (m+12)  

This provides 49 training examples from the 72 monthly demand data for the six training years for each 

of the 12 dedicated models. Compared to the iterative approach described in Section 4, this approach has 

the disadvantages of fewer training records and longer forecasting lead times, both of which degrade 

forecasting accuracy. In a practical setting, it would also be more difficult to develop and maintain twelve 

models as compared to a single model in the iterative approach. However, the approach has the advantage 

that forecasted values are not re-cycled for calculating new forecasts, and therefore forecasting errors do 

not accumulate. 

5.1 Abductive Networks Modeling 

Table 4 lists the inputs selected and the corresponding time lags for the twelve abductive network models 

synthesized for the ith month demand D(m+i); i = 1, 2, …, 12 at the default model complexity (CPM = 1). 

All models use a single element, which takes the form of a wire, double, or triple element for 1, 2, and 3 

inputs respectively. The time lag of 12 months is used by eight of the 12 modules, indicating that the load 

at a given month is strongly influenced by the load at the same month of the preceding year, which is 

expected with the strong annual seasonality exhibited. Four models use the 6-month time lag or odd 

multiples of it. Fig. 4(a) is a plot comparing actual monthly demand with forecasted demand obtained 

using these twelve abductive network models over the evaluation year. The MAPE value of 4.84% is 

considerably inferior to that of 3.52% shown in Table 2 for the iterative approach using a single next-

month abductive model at the same CPM value. This is attributed to the fewer training examples (49 

versus 60) and longer forecast lead times (1 to 12 months versus 1 month, respectively). 

5.2 Neural Networks Modeling 

Twelve separate neural network models were synthesized for the ith month demand D(m+i)); i = 1, 2, …, 

12 using all twelve inputs and with 6 neurons in the hidden layer. Fig. 4(b) is a plot comparing actual 
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monthly demand with forecasted demand obtained with the twelve neural network models over the 

evaluation year. The MAPE value of 4.14 is slightly inferior to that of 4.07 shown in Table 3 for the 

iterative approach using a single next-month model with the same number of hidden neurons. 

 
6.    Conclusions 
 

We have demonstrated the use of abductive and neural networks for modeling and forecasting the 

univariate time series of monthly energy demand. Trained on data for six years, models were used to 

forecast data for the seventh year. Compared to multivariate methods, univariate modeling has the 

advantage that it does not require additional time series data for other external factors that are often 

unknown and their data may be difficult to obtain. Moreover, in practical implementations, forecasts for 

all external time series may be required, which compounds the forecasting effort and increases 

uncertainty. Forecasting accuracies are superior to those quoted in the literature for similar applications 

using multiple regression analysis, multivariate modeling, and univariate ARIMA analysis. A simple 

approach has been used for normalizing for the upward trend in the time series prior to modeling in order 

to avoid poor extrapolation performance associated with many machine learning techniques. Two 

approaches were investigated for obtaining 12-month forecasts: iteratively using a single next-month 

model, or using twelve dedicated models each forecasting the demand for one month. The former 

approach has proved more accurate, with both abductive and neural networks giving adequate forecasting 

accuracies (MAPE values of 3.2% and 3.8%, respectively). Abductive network models select effective 

inputs and can be simpler than neural network models, which improves interpretability, gives better 

insight into the modeled system, and allows the derivation of analytical model relationships. We have 

demonstrated that optimum subsets of model inputs selected automatically through abductive modeling 

can be used to reduce data dimensionality and therefore improve the forecasting performance of neural 

network models. Dimensionality reduction is particularly important for reducing model overfitting and 

improving generalization in applications with a small number of training examples, which is the case in 
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many medium and long-term demand forecasting applications. Forecasting performance exceeds that of 

several similar applications reported in the literature. 
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Table 1. Summary of the 7-year energy demand data showing year-to-year growth and the normalization 

factors used for handling trend. 

 

Year, i 

Total 
Energy 

Demand, Ei 
(MWH) 

Annual 
Growth 
(year-to-

year) 

Normalization 
Factors, fi

1985 16,310,645 1 1.187 

1986 16,017,335 0.982 1.209 

1987 16,510,405 1.031 1.172 

1988 17,563,434 1.061 1.102 

1989 18,434,815 1.052 1.050 

1990 19,357,130 1.050       1 

Actual 19,523,246 1.009       0.991 
1991 

Estimated 19,719,570 1.019 0.982 

Average Annual Growth    
1986-1991 (Actual) 1.0325  
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Table 2. Structure and performance results for the abductive network models synthesized for forecasting 

next-month demand at three levels of model complexity. Performance of the two naïve forecasts is 

included for comparison. 

 

Model Synthesized Absolute Forecasting Error 
Over the Evaluation Year, % 

CPM 

Structure  Time Lags 
Selected Maximum Mean 

1 1,6,9 13.80 3.52 

0.5 2,6,11 7.93 3.19 

2 
 

12 11.44 4.25 

Naïve-I 1 20 7.10 
Naïve 

Forecasts 
Naïve-II 12 16.67 4.68 
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Table 3. Structure and performance results for neural network models synthesized for forecasting next-

month demand. The 3-input neural model uses an optimum subset of inputs selected automatically for the 

abductive model with CPM = 0.5 in Table 2. Performance of the two naïve forecasts is included for 

comparison. 

 

Absolute Forecasting Error Over 
the Evaluation Year, % Inputs Used Model Structure 

Maximum Mean 

12-4-1 11.38 4.06 

12-5-1 13.02 3.77 All 12 Inputs 

12-6-1 12.55 4.07 

3 inputs only: 
D(m-1),        
D(m-5),        
D(m-10) 

3-5-1 11.52 3.09 

Naïve-I 20 7.10 

Naïve Forecasts 

Naïve-II 16.67 4.68 
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Table 4. Summary of inputs selected and corresponding time lags for the twelve dedicated abductive 

network models that directly forecast the demand over the full evaluation year. 

 

Modeled 
Output Selected Inputs  Corresponding 

Time Lags  

D(m+1) D(m-11) 12 

D(m+2) D(m-10) 12 

D(m+3) D(m-1), D(m-3) 4, 6 

D(m+4) D(m-1), D(m-8), D(m-9) 5, 12, 13 

D(m+5) D(m-1) 6 

D(m+6) D(m) 6 

D(m+7)  D(m-5), D(m-8) 12, 15 

D(m+8) D(m-1), D(m-4)  9, 12 

D(m+9) D(m-3) 12 

D(m+10) D(m-2) 12 

D(m+11) D(m-4), D(m-7)  15, 18 

D(m+12) D(m), D(m-2)   12, 14 
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Fig. 1. A typical AIM abductive network model showing various types of functional elements. 
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Fig. 2. The 7-year monthly energy demand time series: (a) Raw data showing upward trend, (b) Data 

normalized for trend removal. 
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Fig. 3. Plots of actual and forecasted demand over the evaluation year with iterated application of a single 

next-month forecaster. (a): Using optimum abductive network model with CPM = 0.5, (b): Using a 3-5-1 

neural network model employing only the three model inputs automatically selected by the abductive 

model of (a).  
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 Fig. 4. Plots of actual and forecasted demand over the evaluation year with dedicated twelve forecasting 

models, one for each month. (a): Using abductive network models with CPM = 1, (b): Using  neural 

network models of the structure 12-6-1.  
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