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Abstract - CMP processors are already replacing 
complex single core superscalar processor 
architectures. They offer better performance per watt 
and area. This is especially true in TLP rich server 
and web applications. Process / thread 
synchronization is important since CMP consists of 
multiple processor cores sharing cache resources 
including shared data structures. 

This work proposes a locked cache-based shared 
memory technique suitable for CMP synchronization. 
A proposed  cache coherence protocol, called Lock-
based Cache Coherence Protocol (LCCP) was 
designed and its performance was compared with 
well known synchronization primitives (LL, SC) using 
MESI cache coherence protocol. Experiments were 
performed on the modified MP_Simplesim simulator   
to  implement current proposal. Simulation results 
show that LCCP outperforms the MESI protocol on 
the benchmark programs 

Keywords: CMP, Chip Multiprocessing, Cache 
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1 Introduction 
Chip Multi-Processor (CMP) [1] are already 

becoming  the design choice for future servers, 
desktops and even notebook computers as seen by 
dual core processors from IBM [13], Intel [22] and 
AMD.  The reasons have been widely reported. 
Performance gains for Superscalars have reached 
diminishing returns [2], wire delays may be  limiting  
future performance gains [4]. Although large delays 
can be managed by pipelining techniques, timing 
uncertainty will be a problem for designers.  

Perhaps the most critical consideration is power 
consumption in future micro-architectures. This 
strongly favors simpler multi-core architectures 
running at reduced frequencies compared with high 
frequency complex superscalar architectures.  The 
International Technology Roadmap for 
Semiconductors (ITRS) [3] projects that multi-billion 
transistor chips will be designed by the end of this 
decade with feature size around 50 nm and clock 

frequencies around 10 GHz. All of the above clearly 
favors CMPs. 

Processor cores in CMP architecture can 
communicate together either through shared on-chip 
caches, through an on-chip bus in shared L2 cache 
architectures or through an interconnection network 
in case of private L1 and L2 caches. 

Current chip multiprocessors (CMP) such as the 
Stanford Hydra, IBM Power4 or Power5, Intel’s 
PentiumD or Pentium extreme use different 
architectures to interconnect the processing cores.  
Bus interconnect is suitable for small number of 
cores per CMP whereas mesh or crossbar 
interconnect fabric is needed for large number of 
cores.  

1.1 Cache Hierarchy Alternatives for 
CMP 

Cache hierarchy and cache coherence require 
important consideration in CMP design. There are 
several alternatives for building the cache 
architecture for a CMP. One alternative is shown in 
Figure 1a where each processor has its own private 
L1 caches with a shared L2 cache. This architecture 
offers good scalability as well as low access latency. 
The main drawback of this approach is cache 
coherence resulting from duplicate copies in different 
caches. Cache coherence protocols are needed to 
maintain consistency. A second architecture shown in 
Figure 1b provides private L1 and L2 caches.  This 
approach is suitable for a CMP with a large number 
of cores. The current CMP proposal assumes private 
L1 caches and shared L2 cache. 

1.2 Motivation 

Synchronization is needed in any 
multiprocessing environment to maintain correct 
order of events. This is true for Chip Multiprocessors 
(CMP). Currently synchronization is performed by 
means of the operating system with hardware support.  



Figure 1: Cache hierarchy alternatives for CMP

This is typically implemented with Spin-locks with 
high overhead. Spin-locks also suffer from increased 
communication between the multiple processors. 

A common hardware primitive to implement Locks 
in a synchronization event is the Load-Linked and 
Store-Conditional (LL/SC) synchronization primitive.  

The LL/SC synchronization primitive is implemented  
by loading the synchronization variable from a 
memory location or cache block  into a register, 
raising a lock flag and placing the address of the 
block in a lock address register.  

Incoming invalidations are checked against the lock 
address register and if successful the lock flag is reset. 
The store-conditional checks the lock flag. If set the 
write to the synchronization variable occurs, 
otherwise it fails. The processor releases the lock 
after a successful write operation to the lock variable. 
For LL/SC to be successful, both operations must be 
successful. 

This primitive is used to implement Locks, spin locks 
and barriers. Spin-locks suffer from   high overhead 
as well as from increased unnecessary 
communication between the multiple processors 

This work contributes to the efficiency of locked 
synchronization by elimination of the high 
unnecessary overhead associated with spin locks. 
This is accomplished by enhancing the LL/SC 
synchronization primitive with support within the 
cache coherence protocol. The motivation is to 
increase the successful rate of store-conditional 
command in the CMP design. A  Lock-based Cache 
Coherence Protocol (LCCP) is proposed to address 
above concerns. 

2 Cache coherence  
Shared memory multiprocessors have the 

advantage of sharing code and data structures among 
the processors comprising the parallel application. 
This sharing can result in several copies of a shared 

block in one or more caches at the same time. To 
maintain a coherent view of the memory, these copies 
must be consistent. This is the cache coherence 
problem. 

Cache coherence schemes include protocols that 
maintain coherence in hardware, and software 
policies that prevent the existence of copies of shared, 
writable data in more than one cache at the same time. 

Hardware coherent protocols include snoopy cache 
protocols, directory cache protocols and cache-
coherent network architectures [6]. 
Snoopy cache coherence protocols are further divided 
into write-invalidate protocols such as Goodman,  
Synapse and Berkeley protocols [6], MSI , MESI and 
MOESI protocols [7] and write-update  Firefly 
protocol [8]. 

Full-map directory, limited-directories and chained-
directories are examples of directory-based cache 
coherence protocols [9]. 

It should be noted that cache coherence protocols are 
optimized for data access and not optimized for 
locked synchronization needs. The excess traffic 
between cores and unnecessary cache invalidations 
motivated this work. Synchronization is supported 
within the cache coherence protocol to decrease the 
inter-processor traffic within the CMP. 

3 Chip Multiprocessors (CMP) 
 Perhaps the earliest CMP was the Stanford 

Hydra [1]. It  integrates four MIPS-based cores with 
their primary caches on a single chip together with a 
shared secondary cache. Processor cores 
communicate together by two buses. Hydra uses the 
LL/SC synchronization primitive. 

The Compaq Piranha CMP [11],  designed for 
parallel commercial workloads,  consists of 8 CPUs. 
The IBM POWER4 [12] consists of two processor 
cores per chip, each core having its own instruction 



and data L1 caches. The two processor cores share 
the on-chip L2 cache through a crossbar called core 
interface unit (CIU). The POWER5 [13] also from 
IBM is similar but  also supports 2-way SMT.  

Another MIPS based CMP is MIT’s Raw 
microprocessor [14]. It consists of 16 tiles where 
each tile contains an eight stage in-order single-issue 
MIPS-style processor, a static communication router, 
and two dynamic communication routers. The Raptor 
CMP [15] is SPARC based and has four cores per 
CMP. 

Other commercial dual-core CMPs include Intel’s 
PentiumD, Pentium extreme., Montecito,  Core duo 
CMP for notebook computers and AMD’s Athlon X2 
and Opteron chips. 

4 Lock-based Cache Coherence 
Protocol (LCCP) 
Lock-based Cache Coherence Protocol (LCCP) 

implements synchronization by adding a LOCK state 
to the MESI cache coherence protocol. LCCP uses 
cache invalidate method to maintain coherence 
among the individual L1 caches and uses memory 
write-back policy to reduce the traffic between the L2 
cache and the external memory. 

One problem with LL/SC is that store-conditional 
may send invalidations or updates if it fails. In that 
case two processors may keep invalidating or 
updating each other and failing. This situation is 
called Livelock situation.  

Livelock in an invalidation-based cache coherence 
system is caused when all processors attempt to write 
to the same memory location at the same time. When 
the cache block is loaded into the cache in the 
modified state for store, and before the processor is 
able to complete its store, the block may be 
invalidated by another processor attempting to load 
the same cache block for store. The first processor’s 
store attempt will miss and it will load the cache 
block again. This situation can repeat indefinitely. 

 A new LOCK state has been added to the MESI 
cache coherence protocol to resolve Livelock. On 
detecting a Load-Linked command, the processor 
reads the cache block in the LOCK state so that no 
other processor can read or modify it until the lock is 
released after a store-conditional. Requests from 

other processors to access the locked block will be 
stored in a wait table until the lock is released.  

 4.1 Finite State Machine diagram 
Figure 2 shows the finite state machine (FSM) 

diagram of LCCP 

The solid line in the diagram is considered as an 
action by the processor, while a dashed line is an 
action caused by the bus. 

The FSM has 5 states; Invalid, Shared, Exclusive, 
Modified and Locked. The first four states are the 
same states of the standard MESI protocol. 

 Locked (L): 
This is the new state where the processor loads a 
cache line that contains a critical section by load-
linked (LL) instruction. 

The processor issues four types of requests: reads 
(PrRd), writes (PrWr), loads-locked (PrRdL) and 
writes-conditional (PrWrC). The reads and writes 
could be to a memory block that exists in the cache or 
to one that does not. In the latter case, a block 
currently in the cache will have to be replaced by the 
newly requested block. The bus allows the following 
transactions: 

• Bus Read (BusRd): 

This transaction happens when a processor 
misses a read by PrRd and the processor expects 
data as a result. The cache controller puts the 
address on the bus and asks for a copy to read. 
Another cache or memory will provide that copy. 

• Bus Read Exclusive (BusRdX): 

This transaction is generated when a processor 
misses a PrWr to a cache block. The cache 
controller puts the address on the bus and asks 
for an exclusive copy to modify. All other caches   
are invalidated. 

• Bus Read Locked (BusRdL): 

This transaction is generated when a processor 
misses a PrRdL for a cache block. The cache 
controller puts the address on the bus and asks 
for a copy to lock until it writes to it. All other 
caches are invalidated. 



Figure 2: State machine diagram for the Lock-based cache coherence protocol. PrRdL stands for Processor-Read-Locked and PrWrC stands for 
Processor-Write-Conditional

4.2 Cache coherence details  
a) Read Miss (no other copy is found): 

In case of a read-miss in the Level 1 cache (L1$) of 
one of the processor cores and no other copy is found 
in the other L1 caches, the processor will check if the 
line is found in the L2$. If there is a copy in L2$, it 
will be provided to the requesting L1$. If not, the 
copy will be provided by memory. The copy in L1$ 
will in EXCLUSIVE state and L2$ in SHARED state. 

b) Read Miss (one or more copies are found): 

In case a cache miss occurs in one of the L1 caches 
and there is only one copy, this copy will be provided 
to the requesting cache and both lines will be in 
SHARED state. If there is more than one copy, one 
processor will provide the copy in SHARED state. 
L2$ will have its copy in the SHARED state. 

c) Write hit: 

In case there is a write hit in the L1$ and the status of 
the line is EXCLUSIVE, it will be changed to 
MODIFIED. A copy will be written through to the 
L2$ with the state MODIFIED. If the state of the line 
is MODIFIED, the L2 copy will be updated with the 
MODIFIED state. If the line is in the SHARED state, 
the other copies will be invalidated and the status of 
the line is changed to MODIFED. The line in the L2$ 
will be updated and the status will be changed to 
MODIFIED. 

d) Read-Modify-Write miss: 

In case of a read miss in a read-modify-write 
operation in both the L2$ and the L1$, the L1$ gets a 
copy from main memory in the LOCKED state. If the  

 

cache block is in the SHARED or MODIFIED states 
in the L2$, the L2$ will broadcast invalidation signal 
to all the processors. L2$ will provide the cache 
block to the requesting L1$ which will read it in the 
LOCKED state and the L2$ will invalidate its copy 
and go to INVALID state.  

The cache block will be modified and then a write hit 
occurs for the store-conditional.  After the write the 
cache block changes its state from LOCKED to 
MODIFIED and a copy will be written through to the 
L2$ in the MODIFIED state. 

If a read request for the locked block comes from 
another processor, it will find that the block is in the 
LOCKED state and will wait for the release of the 
block in a wait-table.   Figure 3 shows a schematic of 
the wait-table. Each entry in the wait-table consists of 
a valid bit, line tag and a processor ID 

Valid bit Line Tag Processor ID 
Valid bit Line Tag Processor ID 
Valid bit Line Tag Processor ID 
Valid bit Line Tag Processor ID 

 
Figure 3: Architecture of the lock-release wait-table 

Figure 4 shows the structure of the Processor ID field 
in an entry in the wait-table. 

1 0 1 ……………………………… 0 
Figure 4: Structure of the Processor ID field 

As shown in Figure 4, P1 and P3 are waiting to 
acquire the lock variable. The length of the Processor 
ID is equal to P bits where P is the number of 
processor cores on the CMP. The size of the wait-

BusRdL 
BusRdL 



table is equal to the size of the L1 cache of a single 
processor core. 

4.3 Architecture of the CMP with LCCP 
Figure 5 shows the architecture of the CMP 

implementing the LCCP. Each processor core has its 
own L1 caches (Instruction & Data) and all the cores 
share the on-chip unified L2 cache. The wait-table is 
also implemented on-chip. The processor cores, the 
shared L2 cache and the wait-table are all connected 
by an internal bus that can transfer a cache block in 
one clock cycle.  

When a processor successfully finishes an SC 
instruction, the processor checks with wait-table 
controller whether another processor is requesting 
that line tag. If yes, it provides the copy to the 
requesting processor and L2 cache. The state of the 
line remains in the LOCK state. If not the processor 
changes the state of the line from the LOCK state to 
the MODIFIED state. 

 
Figure 5: Architecture of the CMP implementing the Lock-based 

Cache Coherence Protocol 

5 Experimental methodology 
A functional multiprocessor simulator SS_CMP 

was developed based on the MP_Simplesim 
simulator [17]. The original MP_Simplesim was 
written by Naraig Manjikian at Queens University in 
Canada. MP_Simplesim is a multiprocessor simulator 
that is based on the Simplescalar simulator [18]. 

The instruction-set of MP_Simplesim was extended 
by adding the load-linked (LL) and store-conditional 
(SC) instructions. The architecture was modified to 
include shared L2 cache and the wait-table. 

Benchmarks from the SPLASH2 benchmark suite [19] 
[20] were used to test the above architecture in our 

simulations. The benchmarks included the Ocean 
non-contiguous-partitions, Ocean contiguous-
partitions and Barnes-Hut applications. 

The following performance parameters were 
monitored to measure the performance of LCCP: 
a) Total execution time of the benchmark. (sec) 

b) Execution rate of instructions in (Ins/sec). 

c) Number of invalidations that were responded to 
by other processors  

6 Simulation results 
6.1 Execution Time 

The execution time of the benchmarks was 
measured on 2 configurations:  

a) MP_Simplesim with shared L2 cache using 
MESI and spin-locks for synchronization. 

b) MP_Simplesim with shared L2 cache using 
LCCP as the cache coherence protocol 
including support for synchronization. 

The execution time represents the total 
simulation time of all the processor cores in a 
given simulation run and not the time taken by 
each individual processor to finish its simulation. 
The individual time of each processor core is not 
available from the simulator. 

 
Figure 6: Execution time of Ocean non-contiguous-partitions 

benchmark 

It was observed from Figures 6 and 7 that execution 
times for LCCP showed improvement of 26% and 21 
% for 16 processors running Ocean and Barnes-Hut 
benchmarks respectively. For 4 - 8 processors a 
smaller improvement in performance was observed. 



 
Figure 7: Execution time of Barnes-Hut benchmark 

For 16 processors, synchronization demand and 
overhead resulted in significant performance 
improvement. 

For 32 processors, both execution times of LCCP and 
MESI increased due to the increase in the instances 
of the program which led also to the increase in the 
copies of the lock variables that need to be 
synchronized and this appeared in the decrease in the 
percentage of execution time improvement of LCCP 
compared to MESI. 

It was observed  that execution times increased as the 
number of processors increased, contrary to 
expectation. This is due to Simulator limitations.   

6.2 Execution rate 

 
Figure 8: Execution rate Ocean non-contiguous-partitions 

benchmark 

 
Figure 9: Execution rate Barnes-Hut benchmark 

Figures 8 and Figure 9 show the execution rate of the 
benchmarks in instructions per second.  Execution 
rate for the benchmarks running LCCP was higher 
compared with that of MESI.. 

6.3 Acknowledged Invalidations 
The number of acknowledged invalidations is 

an important parameter as it reflects the effect of 
avoiding the Livelock condition when one processor 
wants to load a cache line in the lock state and 
another processor has another copy of the requested 
cache line. When the cache line is locked the 
requesting processor knows that the owner processor 
is in the critical section and will not invalidate its 
copy but will be spinning waiting for the line in the 
wait table. 

 

Figure 10: Number of acknowledged invalidations - Ocean non-
contiguous-partitions 

 
Figure 11: Number of acknowledged invalidations – Barnes-Hut 

As observed from Figures 10 and Figure 11, there is 
significant reduction in the number of acknowledged 
invalidations in favor of LCCP compared with MESI.  

7 Conclusions 
Process synchronization between threads 

running on different processor cores if not properly 
supported, results in large synchronization overhead 
as well as unnecessary cache block invalidations.  

This research contributes to the problem of 
synchronization between processor cores on CMP by 
introducing a new state to the MESI cache coherence 
protocol and on chip wait-table. The new cache 
coherence protocol is called lock based cache 
coherence protocol (LCCP). It was implemented and 
simulated using MP_Simplesim as the base simulator 



modified to support the LCCP protocol and shared 
L2 cache mode. Simulation experiments using the 
SPLASH2 suite were conducted. The results show 
that LCCP outperformed MESI   due to the 
elimination of the spin-lock overhead. LCCP also 
resulted in significant reduction in the number of 
acknowledged invalidations compared to MESI 
protocol. This is due to the wait-table architecture 
which saved unnecessary invalidations that could 
happen during spin-waiting.  

8 Future work 
As the number of cores per chip increase in the 

future, it would be interesting to investigate the 
scalability of this technique versus other lock free 
synchronization techniques. 
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