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Abstract 
Simultaneous Multithreading (SMT) is becoming one of the major trends in the design of future 
generations of microarchitectures. Its key strength comes from its ability to exploit both thread-
level and instruction-level parallelism; it uses hardware resources efficiently. Nevertheless, SMT 
has its limitations: contention between threads may cause conflicts; lack of scalability, additional 
pipeline stages, and inefficient handling of long latency operations. Alternatively, Chip 
Multiprocessors (CMP) are highly scalable and easy to program. On the other hand, they are 
expensive and suffer from cache coherence and memory consistency problems.  
This paper proposes a microarchitecture that exploits parallelism at instruction, thread, and 
processor levels. It merges both concepts of SMT and CMP. Like CMP, multiple cores are used 
on a single chip. Hardware resources are replicated in each core except for the secondary-level 
cache which is shared amongst all cores. The processor applies the SMT technique within each 
core to make full use of available hardware resources. Moreover, the communication overhead is 
reduced due to the inter-independence between cores. 
Results show that the proposed microarchitecture outperforms both SMT and CMP. In addition, 
resources are more evenly distributed amongst running threads. 
 
Keywords: Parallel Architecture, Simultaneous Multithreading, Chip Multiprocessors, Chip 
Multithreading 
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1. INTRODUCTION 
 

In the last few years, two approaches evolved and proved success in the market: namely, 
simultaneous multithreading (SMT) and Chip Multi-Processing (CMP). SMT was first introduced 
by [TUL’95]. The motivation of SMT is that the available number of functional units in modern 
superscalar processors is not fully utilized [HEN’03]. They are based on a superscalar 
architecture to which several physical execution contexts are added. Therefore, such processors 
can issue and execute a few instructions simultaneously. Unlike conventional multithreaded 
architectures [AGA’90] [ALV’90] [LAU’94] [SMI’81], which depend on fast context switching 
to share processor execution resources, all hardware contexts in an SMT processor are active  
simultaneously, competing each cycle for all available resources [TUL’96]. 

The diversity of hardware resources to be used by the issued instructions is the key of 
efficacy of SMT. SMT processors are considered cost-effective since resources are shared by all 
threads [KRI’98]. They are utilized more efficiently, which yields more instructions per cycle 
(IPC) and consequently better throughput [HEN’03]. In addition, hardware resources, such as the 
functional units, reservation stations, etc… are more efficiently used [REI’00]. Moreover, SMT 
can better tolerate pipeline and memory latencies, coping with deeper pipelines, branch 
mispredictions, and longer cache miss penalties [MUD’04]. On the other hand, SMT has its 
limitations: the high competition of threads on the resources may result in a conflict on the 
resources [TUL’01]. SMT is difficult to scale [BUR’02]. Large number of threads definitely 
needs more registers which entails either longer latency or increased number of stages in the 
pipeline. The latter solution is not suitable since it implies more complexity in recovering branch 
mispredictions and pipeline forwarding logic [RED’03]. A thread that regularly sweeps through 
the level-one data cache will evict data needed by the other thread [TUL’01].  
Alternatively, CMP are highly scalable and easy to program [MAN’04]. On the other hand, they 
have some limitations: they are expensive due to the duplication of resources, the competition of 
threads on the cache negatively impacts the processor throughput and cache fairness [KIM’04]. 
CMP share cache at either primary or secondary level; in addition, private caches may be 
provided to each processor individually. This architecture initiates cache coherence and memory 
consistency problems.  
Figure 1 compares the issue slot partitioning in the two previously mentioned architectures. 
Figure 1a demonstrates a CMP with four two-issue CPUs on a single chip. Therefore, each CPU 
can issue up to two instructions per cycle. In other words, each CPU has the same opportunity 
cost as in a two-issue superscalar model. Although the CMP is not able to hide latencies by 
issuing instructions of other threads in the same CPU, but the demonstrated CPU processor 
reaches a higher utilization than that of an equivalent eight-issue superscalar processor because of 
the smaller horizontal losses in the former. On the other hand, the SMT processor model in figure 
1b exploits instruction-level parallelism (ILP) by selecting instructions from any thread (four in 
this case) that it can potentially issue. Instructions are issued whenever its corresponding 
operands are ready and the needed functional unit is available for use. If one thread has high 
instruction-level parallelism, it may fill all horizontal slots depending on the issue strategy of the 
SMT processor. If multiple threads each has a low ILP, instructions of several threads can be 
issued and executed simultaneously [ŠILC99]. 
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(a) A four 2-issue CPUs CMP model 
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(b) Issue Slot Partitioning of 4 threads in an SMT Processor 

 
 

Figure 1. Issue Slot Partitioning in (a) CMP and (b) SMT 
 
The rest of the paper is organized in the following way: Section 2 discusses the proposed 

microarchitecture. Section 3 reveals the pipelines of the three architectures in concern. Section 4 
exposes the results of the new microarchitecture. The conclusion is presented in Section 5. 
Finally, we give some ideas for the enhancement of this work in the future in section 6. 
 
 
2. PROPOSED MICROARCHITECTURE 

 
Like CMPs, the proposed microarchitecture consists of multiple cores. Within each core, 

one or more threads are running simultaneously with the concept of SMT.   Figure 2 completes 
the comparison performed in figure 1 by demonstrating the issue slot partitioning of the proposed 
 microarchitecture.  The figure illustrates a 2-core processor using the concept of Chip Multi-
Threading (CMT). Within each core, the instructions are issued in the same way as figure 1 (b).  
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Therefore, core-level parallelism is added to the instruction-level and thread-level parallelisms 
that characterize the SMT processors. 
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Figure 2. Issue Slot Partitioning in Chip Multi-Threading (CMT) 
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nlike CMPs, the cores of the proposed processor are independent of each other. This 

eliminates the communication overhead and avoids the problems of cache coherence and memory 
consiste

 one thread runs within a single core. Threads running within the same 
core m

. PIPELINES 
In this section, we compare between the pipelines of the superscalar, SMT and CMT 

4 - 6 illustrate such comparison. The pipeline of the superscalar processor is 
identica

U

ncy that CMPs are subject to. In addition, this design divides the register file avoiding the 
deep pipeline that SMT suffers from. The memory hierarchy consists of separate primary 
instruction and data caches local to each core. In addition, an on-chip secondary level cache is 
shared between all cores. 

Threads are assigned to cores in a round-robin fashion. Therefore, one core may contain 
more than one thread, but

ay originate either from individual applications. Each core is provided with private 
resources that are not accessible by threads running in other cores.  
 
 
3

processors. Figures 
l to that of a single core in a CMP.  As shown in figure 4, the pipeline consists of seven 

stages. Therefore, it takes seven cycles for an instruction to complete execution as soon as it is 
fetched from the fetch queue. After being fetched, the instruction is decoded and register 
renaming takes place in the next stage. The instruction is queued until the operands are ready and 
the corresponding functional unit is made available. As soon as these two conditions are satisfied, 
the instruction is issued and executed. The instruction is then committed if it is correctly predicted 
and it is not included in the path of another predicted instruction. As shown in the figure, we have 
six cycles penalty for each mispredicted instruction.  
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Figure 3. General View of the Proposed Microarchitecture 
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These resources include instruction and data caches, instruction and data TLBs, physical 
register file, reservation stations, and functional units. The functional units include an integer 
ALU, floating-point ALU, a multiplier and a load/store unit. All cores share a multi-ported 
secondary level cache. Figure 3 illustrates the above description. 

The number of small cores should be a power of two up to a maximum of 8. Since all 
cores compete on the secondary cache, a higher number may negatively affect the results. In 
multithreading environment, competition between threads should be restricted in a certain way. 
Otherwise, the individual thread performance will degrade. It has been shown that the optimum 
number of threads in a SMT processor shouldn't be more than four. Therefore, the number of 
threads per core in the proposed processor is limited to four. Within each core, there is a single 
fetching unit, a number of program counters, next program counters, and predicted program 
counters equal to the number of running threads within the core. 

In each core, instructions are fetched from a single thread following the ICOUNT 
algorithm which proved to give better performance according to [TUL’96]. In this technique, 
priority is given to the thread within the core that has the least instructions in the pipeline. Once 
an instruction is fetched, it is decoded and kept in the reservation station waiting to be issued. An 
instruction is issued when all its operands are ready and the relevant functional unit is available. 
The fetch queue is designed to have a width of sixteen instructions. The fetch rate is four: this 
means that at most four instructions may be fetched from the instruction cache in a single cycle. 
After being issued, instructions are then executed. Finally, they are committed and results are 
written back in the register file. 

The previously described scheme has the advantage that it exploits all levels of 
parallelism: namely, instruction-level, thread-level and processor-level parallelism. Hardware 
resources are more efficiently used. Consequently, the processor is cost effective. On the other 
hand, the distribution of hardware resources amongst the processor elements and their inter-
independence decreases the conflict that may occur between different threads on the hardware 
resources. Therefore, it is expected to have higher performance than SMT processors that suffers 
from such limitation. The inter-independence of cores and the fact that each of them has its own 
hardware resources makes it highly scalable and easy-to-program. 

On the other hand, the proposed microarchitecture may not give satisfactory results in 
case threads are not evenly distributed among cores. In other words, two heavy threads may share 
the same processor element, whereas a lighter thread occupies a core all alone.  
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Figure 4. Superscalar Pipeline 
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Figure 5 demonstrates the SMT pipeline. Since the register file is large in SMT 

processors, an additional stage is assigned to the "read" phase. Also, a new phase is introduced 
into the pipeline which is the "write" stage. This makes the pipeline two stages deeper with the 
aim of giving the processor enough time to access the target register. However, hardware 
resources are utilized more efficiently than in the case of a CMP. The deep pipeline in  SMT 
processors has a crucial drawback especially in misprediction cases: the penalty is augmented by 
two cycles.  In addition, the pipeline forward logic becomes more complicated. 
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Figure 5. SMT Pipeline 
 

 
 
 

Figure 6. CMT Pipeline 
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On the other hand, the pipeline of the proposed microarchitecture is one stage less than 
that of the SMT processor. This is because the large register file of the SMT processor is divided 
amongst the cores.  Therefore, the register usage, the misqueue penalty and the misprediction 
penalty are reduced by one cycle each as compared to the SMT pipeline. This boosts the 
processor performance while making use of the advantages of the SMT in fully utilizing the 
processor hardware resources. 
 
4. RESULTS 

The ss_smt simulator was used to evaluate the performance of the proposed 
microarchitecture. This simulator was developed as part of SEMPRE Project [GON'00]. It is 
written in C, runs under Linux, and was originally built on SimpleScalar [SS’04]. Major 
modifications were made to the ss_smt in order to simulate the proposed microarchitecture. 

In the modified ss_smt, a slot designs a thread. A module or a core designates the 
replicated structure in the multi-core processor. A bank is a part of the memory address: the 
interleaving concept is applied. In other words, the memory system is divided into memory 
modules, each consisting of a number of banks. The advantages of this design can be summarized 
in higher bandwidth and to allow tolerance in case of the failure of a memory module.  

Four benchmarks of SPEC2000 were used in the experiments. These are mcf, gzip, vortex 
and ammp. The first three benchmarks belong to SPECint; whereas the last one belongs to 
SPECfp. mcf is used to calculate the combinatorial optimization; gzip is used for file 
compression; vortex is an object-oriented database and ammp is used in computational chemistry. 
All benchmarks are coded in C language. 

The main objectives of the following experiments may be classified into three categories. 
First, it is required to find out the architecture that gives the highest performance. Performance is 
measured in instructions per cycle (IPC). The second main objective is to specify the architecture 
that gives the least miss rates for different caches. Finally, the third objective is to find out the 
most efficient memory hierarchy. All experiments are undertaken with 1,600,000 instructions. 
The number of banks is equal to 4 whereas the block size is set to 64. Associativity is kept 
constant to 4. The least replacement used policy is applied for all experiments. Since the system 
is provided with a single port, then only one load/store instruction is allowed to be served per 
cycle. The cache size is calculated as the product of all the following parameters: number of sets, 
number of banks, block size and associativity. 

Two extreme cases are to be highlighted in our experiments. If the number of modules is 
equal to one and we have multiple threads, then all threads are assigned to the single available 
module. They run with the concept of SMT. On the other hand, if the number of threads is equal 
to the number of modules, then a single thread runs in each module, and we have a case of CMP. 
Otherwise, we have a case of chip multithreading.  

In the first experiment, the number of modules is varied, and we obtained the results 
shown in figure 7. Figure 7 shows the values of IPC for individual threads as well as the total 
IPC. The experiment is repeated three times for different number of modules (1, 2 and 4). This 
corresponds to SMT, CMT, and CMP. 

The figure reveals an important fact: the highest performance corresponds to a number of 
modules equal two (CMT). The least performance takes place with the CMP architecture. This is 
explained by the fact that the processor may remain idle for a few cycles in case of issuing a long 
latency operation. No other instruction in the same thread may take place because of the 
interdependency between instructions. At the same time, there is no other thread that can make 
use of the processor. With the same number of modules running within a single core, the results 
reveal a slightly better performance. Although the processor is kept busy for a longer time than 
the CMP, but the competition of the threads on the available hardware degrades the value of the 
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IPC. For example, the fetch queue becomes full and no other instruction of any thread is fetched. 
In case if there is an instruction waiting for an operand to be issued; it might wait for a longer 
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Figure 7. IPC for various architectures 
 
 
time. Therefore, the relatively low performance is due to the bottleneck in the fetch queue rather 
than keeping the processor idle. On the other hand, running two threads per module (CMT) gives 
the best results. This is because the processor is properly used, and the competition on the 
available resources is relatively moderate. The total IPC takes the values of approximately 0.7 for 
CMP, 0.99 for SMT, and 2.86 for CMT. 

In the next three experiments, we test the distribution of hardware resources exemplified 
in the first-level instruction cache, first-level data cache, and the second-level unified shared 
cache. 

Figure 8 shows the values of the miss ratios in the first level instruction cache. The 
following configuration was given: separate instruction and data caches in the first level, and a 
unified shared second level cache. 

The figure shows that the average miss ratio for the CMP architecture is almost zero. 
However, it is at its maximum (0.09) with the SMT architecture. The CMT gives a mean value 
(0.05). This proves the point of efficient hardware distribution. In case of CMP, the hardware is 
abundant. This raises the processor cost. On the other hand, there is a high competition on the 
cache in case of SMT: every thread evacuates the data in the cache that may be needed by another 
thread.  
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Primary I-Cache Miss Ratios for Various Architectures
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Figure 8. Primary Level Instruction Cache Miss Ratio for Various Architectures 
 

Figure 9 illustrates the primary level data cache miss ratios for various architectures. 
Figure 10 shows that of the secondary level shared cache.  
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Figure 9. Primary Data cache Miss Ratios for Various Architectures 
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Secondary Level Unified Cache Miss Ratios for Various Architectures
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Figure 10. Secondary level unified cache miss ratios for various architectures 

 
 

Referring to figure 9, it is found that the least average miss ratio is achieved with the 
CMP architecture (0.01); followed by the CMT architecture (0.18); then the SMT (0.2) is found 
to have the maximum average cache miss ratio for the primary level data cache. 

Similarly, figure 10 shows that the unified secondary level data cache average miss rate is 
at its minimum in case of CMP architecture (approximately zero) due to the abundant use of 
hardware resources. The maximum value is obtained in case of the SMT architecture (0.2). The 
mean value is achieved with the CMT architecture (0.15). This proves that the most proper use of 
hardware resources is achieved with the CMT architecture. 

Figure 11 shows the impact of the variation of the memory hierarchy on the processor 
performance. Four memory hierarchies were tested. These are: 

a. Separate primary instruction and data local caches, with a shared secondary level unified 
cache. 

b. Separate primary instruction and data local caches with no secondary level cache defined. 
c. Separate primary instruction and data local caches, with two shared separate secondary 

level instruction and data caches. 
d. No primary level caches are defined; and separate secondary level instruction and data 

caches are used. 
The graph shows that the total IPC is almost the same for the first three configurations 

(3.12). However, it drops when no primary caches are defined (2.53). This proves the importance 
of having local primary level caches for each core. However, it does not make a big difference 
between using separate and data caches, providing a unified secondary level cache, or even 
suppressing the second-level cache completely. 
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IPC for Various Memory Hierarchies
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Figure 11. IPC for various memory hierarchies 
 

 
5. CONCLUSION 

The experiments discussed in this paper prove that the CMT architecture outperforms 
both the SMT and CMP architectures. However, the least miss rates are obtained with the CMP 
architectures since they use abundant hardware resources. However, CMP is the most expensive 
architecture since resources are not used properly. The CMT avoids the major problems 
encountered in both SMT and CMT. Unlike SMT, it is easy to scale; it avoids the high 
competition of threads on the available resources; it avoids using a huge number of registers since 
they are distributed on multiple cores. On the other hand, the CMT avoids the problem of cache 
coherence and memory consistency that the CMP suffers from. The communication overhead 
between cores is eliminated since they are totally independent. Moreover, the use of local caches 
in the primary level for each core has a positive impact on the processor performance.  
 
 
6. FUTURE TRENDS 

Although this work highlights the efficiency of the CMT architecture using independent 
threads, but the implementation of dependent threads that share data might also be investigated. 
Better results might be expected if threads were assigned on the cores differently. Other cache 
replacement policies may also be explored to know its impact on the results. It is also expected to 
have better results if the system was designed with multiple cache ports. Different fetching 
policies within each core may be also explored in the future.  
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