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Abstract. The cache hierarchy design in existing SMT and superscalar 
processors is optimized for latency, but not for bandwidth. The size of 
the L1 data cache did not scale over the past decade. Instead, larger uni-
fied L2 and L3 caches were introduced. This cache hierarchy has a high 
overhead due to the principle of containment. It also has a complex de-
sign to maintain cache coherence across all levels. Furthermore, this 
cache hierarchy is not suitable for future large-scale SMT processors, 
which will demand high bandwidth instruction and data caches with a 
large number of ports. 

This paper suggests the elimination of the cache hierarchy and replac-
ing it with one-level caches for instruction and data. Multiple instruc-
tion caches can be used in parallel to scale the instruction fetch band-
width and the overall cache capacity. A one-level data cache can be 
split into a number of block-interleaved cache banks to serve multiple 
memory requests in parallel. An interconnect is used to connect the data 
cache ports to the different cache banks, thus increasing the data cache 
access time. This paper shows that large-scale SMTs can tolerate long 
data cache hit times. It also shows that small line buffers can enhance 
the performance and reduce the required number of ports to the banked 
data cache memory. 

1 Introduction 

Simultaneous multithreading (SMT) is a latency-tolerant processor architec-
ture that enables multiple threads to simultaneously share the processor re-
sources, effectively converting thread-level parallelism to instruction-level 
parallelism [9, 14, 15]. SMT improves the utilization of shared resources, 
such as register files, functional units, and caches, as it extracts ILP from mul-
tiple threads. SMT can also better tolerate pipeline and memory latencies, 
coping with the deeper pipelines, branch mispredictions, and the longer cache 
miss penalties. Some manufacturers have introduced their versions of SMT 



processors. Examples include the 2-context Intel Pentium 4 [3, 7] and the pro-
posed 4-context Alpha 21464. 

To implement higher-context and super-wide SMT processors, however, a 
number of challenges have to be addressed. These challenges include dynamic 
instruction scheduling, the shared register file, the shared cache hierarchy, and 
the degree of sharing or partitioning of hardware resources. This article ad-
dresses the problem of the shared cache hierarchy. 

Current SMT processors use small L1 instruction and data caches. For ex-
ample, the hyper-threaded Intel Pentium 4 uses a 16K L1 data cache. A thread 
that regularly sweeps through the L1 data cache will evict data needed by the 
other thread as shown in [13]. This negative interference will become more 
serious as the number of threads increases. The size of L1 data cache did not 
scale over the past decade. It was kept small to match the increasingly higher 
clock frequencies and to optimize the hit access time. Larger unified L2 and 
now L3 caches are introduced to increase the overall cache capacity and to 
optimize the memory access time. Figure 1 shows the cache hierarchy of a 
typical small scale 4-to-6 issue superscalar or SMT architecture. Two 
load/store ports are used for the D-Cache. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Cache hierarchy for a typical wide-issue superscalar or a small-scale SMT architecture 
 
Another more serious problem is the demand for higher cache bandwidth. 

Memory instructions account for about a third of all instructions executed on 
average. For example, an 8-context 32-issue processor should allow 12 
load/store instructions to execute each cycle. This means that the L1 data 
cache should be designed to have 12 ports. The unified L2 and L3 caches 
should also support multiple ports to handle the multiple cache misses in par-
allel. In contrast, the current hyper-threaded Pentium 4 is a small scale SMT 
processor that supports a dual-ported L1 cache, a single-ported instruction 
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trace cache, and single-ported unified L2 and L3 caches. This cache hierarchy, 
optimized for latency on a superscalar processor, does not fit into a large-scale 
SMT processor. It has to be redesigned and optimized for bandwidth rather 
than for latency. A simple scalable single-level banked cache design can op-
timize the bandwidth demand of large-scale SMT processors, while slightly 
increasing the latency of primary data cache access. This design will be de-
scribed in Section 3. This design will be shown to be very effective for large-
scale SMT processors, as increasing the latency of primary data cache access 
results in a minor degradation on the IPC. 

The remainder of this paper is organized as follows.  Section 2 discusses 
some background and related work. Section 3 introduces a scalable SMT ar-
chitecture with a scalable cache design. Section 4 shows the simulation and 
performance of the architecture introduced in Section 3. 

2 Background and Previous Work 

Multiple cache ports can be implemented in one of four ways: ideal multi-
porting, time division multiplexing, replication, and multiple independently 
addressable banks [4, 11, 17]. Ideal multi-porting requires that each cache 
block be simultaneously addressable by all the cache ports, allowing all the 
cache ports to operate independently in a given cycle. Ideal multi-porting is 
considered to be impractical, as the costs of ideal multi-porting will be enor-
mous in terms of area, power consumption, and access time, as the number of 
ports increases. For example, the 24-ported register file (16-read and 8-write 
ports) in the proposed 4-context 8-issue Alpha 21464 SMT processor occupies 
over five times the area of the 64 KB primary cache according to [12]. A 
banked multi-ported register file is proposed in [12] to reduce the area, access 
time, and energy consumption. For this reason, ideal multi-porting is never 
applied to caches and will not be considered further. 

Time division multiplexing is a technique that uses time to achieve virtual 
ports. It is used in the DEC Alpha 21264 [5]. The L1 data cache is referenced 
twice each cycle, once for each of the clock phases, effectively operating at 
twice the processor clock speed. Although simple enough, this technique is 
not scalable for a large number of ports, as it requires the cache to operate at 
significantly higher clock frequencies than the processor core. Current proces-
sors are already operating at significantly high clock frequencies and primary 
cache access time is already increasing from one to few clock cycles and will 
continue to increase in the future. Therefore, time division multiplexing is not 
a feasible solution. 

A third possibility for multi-porting is through primary cache replication. 
Multiple copies will allow multiple loads to go in parallel. However, stores 
have to be broadcast and replicated to maintain identical copies. An example 
is the duplicate primary data cache used in the Alpha 21164 [2]. This solution 



improves the bandwidth of the load instructions. However, it will not improve 
the bandwidth of stores. Another overhead is the die area required for cache 
replication. 

The fourth known technique to multi-porting is multi-banking. A cache is 
divided into multiple banks that can be accessed in parallel. Each cache bank 
is single-ported and can handle a single memory instruction per cycle. A fast 
interconnect, such as a crossbar, provides parallel access to the cache banks 
[8]. High bandwidth cache access can result, as long as parallel memory ad-
dresses map to different banks. 

A simple and effective mapping scheme is to map contiguous memory 
blocks onto consecutive cache banks. This mapping scheme distributes uni-
formly the cache blocks. However, cache accesses to the same cache bank 
cannot proceed in parallel.  

One problem of multi-banking is the probability of bank conflicts that arises 
from consecutive memory references that target the same cache line or the 
same cache bank. The same-line conflicts are shown to be high due to the in-
herent spatial locality in memory references, averaging 35% across integer 
benchmarks and 22% for floating-point benchmarks, according to [11]. These 
conflicts cannot be eliminated by simply increasing the number of cache 
banks. However, they can be exploited, using access combining, to improve 
multi-bank cache access. Access combining [1, 16] is a technique that at-
tempts to combine memory accesses to the same cache line into a single re-
quest. Combining requires additional logic in the load/store queue to detect 
memory addresses targeted to the same cache line that can be combined. 
However, this additional logic is a small extension, because load/store queues 
in current architectures already implement a matching logic to detect and re-
solve memory dependencies. 

Line buffering is another technique to avoid same-line conflicts. A line 
buffer holds cache data inside the processor load/store unit, allowing a same-
line load to be satisfied from the line buffer, instead of from the cache [17]. A 
line buffer also reduces the utilization of the cache ports and the access la-
tency of a multi-cycle multi-ported cache. 

A second problem associated with multi-banked caches is the overhead of 
the interconnect. This unavoidable interconnect increases the cost and the de-
lay of a multi-banked cache. A crossbar can be used for a small number of 
ports, but a multi-stage interconnect should be used for a larger number of 
ports. Depending on the interconnect, non-uniform cache bank access [6] may 
also result, where near cache banks are accessed faster than distant banks. 



3 Scalable SMT Architecture 

In this section, we propose a scalable SMT architecture that can scale to a 
large number of contexts. An 8-context SMT architecture is depicted in Figure 
2. The most prominent feature of this architecture is the elimination of the 
cache hierarchy. We only preserve primary instruction and data caches and 
scale them according to requirement. The cache hierarchy is only an added 
overhead and a waste of space due to the principle of containment, as all the 
cache blocks in the L1 instruction and data caches are contained in L2 and L3. 
The cache hierarchy is also an added complexity. This complexity is required 
to maintain cache coherence across the different levels. Every store to the pri-
mary data cache has to be written through to reach the L2 and L3 caches. 
Every cache block invalidate in the L3 cache caused, for instance, by a differ-
ent processor in a multiprocessor, has to be propagated upwards to reach the 
unified L2 and L1 data cache. Therefore, eliminating the cache hierarchy is 
desirable. Observe that what is being proposed here is against the current in-
dustry trend of increasing the cache hierarchy from 2 to 3 levels. The idea is 
to turn the second (or third) level cache into a primary data cache, effectively 
increasing the primary data cache capacity and bandwidth, as long as the 
processor is capable of tolerating the increased data cache hit time without 
much affecting the IPC. 

3.1 Scalable Front End 

To allow the front end to scale, multiple independent instruction caches must 
be used. Each instruction cache can be shared by a small number of threads 
(typically 2 to 4). The result is a simplified instruction cache design. Rather 
than using a single multi-ported instruction cache to fetch multiple instruction 
blocks from different threads per cycle, multiple single-ported instruction 
caches are used instead. One advantage is a simplified instruction cache de-
sign, which reduces the access time. A second advantage is the increased in-
struction cache capacity, which can scale with the number of threads, and 
which can eliminate negative thread interference and some of the capacity 
misses. For example, if four 128KB instruction caches are used in an 8-
context processor then the overall instruction cache capacity is 512KB, elimi-
nating the need for a second level cache. Each i-cache can be designed to have 
a large number of ways and to use way prediction to reduce cache energy and 
access time. A third advantage is the increased instruction cache bandwidth, 
which is also scalable with the number of threads. For example, four instruc-
tion cache blocks can be fetched per cycle in Figure 3, instead of a single one. 
This is essential to enable the IPC to scale. A fourth advantage is the absence 
of the interconnect in front of the instruction caches. An added interconnect 



will add more cycles to instruction fetching, which will also increase the 
branch misprediction penalty. The absence of the interconnect, however, im-
plies that instruction blocks might be replicated in different instruction caches, 
especially when different threads execute the same instruction stream on dif-
ferent data streams. A simple snooping protocol can detect and forward repli-
cated cache blocks from one instruction cache to another to avoid long mem-
ory access.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.2 Partitioned Hardware Resources 

In addition to instruction caches, many hardware resources are partitioned and 
replicated as shown in Figure 2. This includes the rename tables, the schedul-
ing queues, the register files, and the functional units. Limited sharing allows 
few threads (typically two) to share some hardware resources, but hardware 
partitioning is essential to reduce complexity and to enable scalability. 
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Fig. 2. An 8-Context SMT Processor 
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3.3 Scalable and Shareable Data Cache 

For data caches, we split them into multiple banks shareable by all threads. 
The cache banks are block-interleaved to obtain a uniform distribution. The 
use of multiple cache banks increases data cache capacity, which eliminates 
the need for a second or third level cache. For example, a 2MB data cache can 
be obtained by splitting it into sixteen 128KB banks. Each cache bank can be 
designed to have a large number of ways and to use way prediction or selec-
tive direct mapping [10]. This will increase the capacity of the cache banks 
and will reduce their access time and energy consumption. Each cache bank is 
designed to be single ported, which simplifies its implementation. A third ad-
vantage is that no cache block replication can occur among the different 
banks, since cache block interleaving will map a cache block to a unique 
bank. This eliminates the need to maintain cache coherence among the differ-
ent banks. A fourth advantage is that the cache banks can use multiple busses 
to multiple memory modules. In other words, the memory modules will also 
be cache block interleaved. This will increase main memory bandwidth and 
will decrease the bus conflicts due to the increased number of cache misses 
generated by the increased number of cache banks. 

An unavoidable price is the overhead of the interconnect, which increases in 
complexity with the number of ports and the number of cache banks. This in-
terconnect can be a crossbar, a multi-stage network with uniform data cache 
bank access, or a distributed non-uniform data cache access network. What-
ever it might be, the interconnect increases the access delay to the data cache 
from one to several clock cycles. However, our simulation results indicate that 
increasing the access delay to the data cache can be tolerated in a large scale 
SMT processor. In other words, we can trade the increase in threads and the 
cumulative ILP with the increase in data cache access time. Therefore, this 
data cache organization is scalable in terms of capacity, bandwidth, and ac-
cess delay. 

3.4 Pipeline Stages for a Load Instruction 

The pipeline stages for a typical load instruction are shown in Figure 3. At 
least 11 pipeline stages are required, starting with instruction fetch, going 
through decode, rename, and queue, and ending with register write and re-
tirement. The data cache access delay should be at least three cycles, after 
computing the effective memory address. One or more cycles are used to for-
ward the address from the input ports to the corresponding data cache banks 
through the interconnection network. One or more cycles for cache bank ac-
cess, and one or more cycles to forward the data to the corresponding physical 
destination register. 
 



 
 
 
 
 
 
 
 
 

3.5 Data Translation Lookaside Buffers 

The data translation lookaside buffers (DTLBs) are searched in parallel while 
establishing paths through the interconnection network to the corresponding 
data cache banks. Observe that the cache bank address is NOT part of the vir-
tual page number as shown in Figure 4, and hence virtual address translation 
and interconnection path establishment can proceed in parallel. The DTLBs 
are integrated as part of Load/Store units, such that each DTLB is associated 
with one or at most few threads. This is much better than integrating the 
DTLBs with the data cache banks, as each bank is shared by all the threads. 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Network path establishment can be done in parallel with 
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Data cache banks are physically tagged, since tag checking is done is a 
separate cycle. Therefore, the physical tag is not needed while indexing the 
data cache and can be sent in the next cycle. The set index, on the other hand, 
should be virtual, to allow it to reach the data cache without waiting for the 
DTLB. However, virtual indexing can cause aliasing problems. Alternatively, 
the data cache can be physically indexed but this will add an extra delay cy-
cle, because it will have to wait for the result of the DTLB. 
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3.6 Cache Line Buffering 

A small but important optimization is to have few data cache blocks buffered 
also in the load/store units. This level zero cache can mainly reduce the con-
flicts to the same cache block, caused by consecutive load instructions, due to 
spatial locality of reference. It also improves the data cache access latency. 
Only few cache lines need be buffered, and a small fully-associative buffer 
can be established in every load-store unit and for each thread. A hit on a load 
in a line buffer is served from the buffer, freeing the data cache access port to 
another memory instruction. A hit on a store updates the line buffer as well as 
the corresponding data cache bank. A miss on a load is served from a data 
cache bank, which forwards a copy of the cache block to the requesting line 
buffer. The address of the allocated line buffer is also recorded in the data 
cache bank to establish cache coherence. A miss on a store only writes the 
corresponding data cache bank, but no block transfer takes place. 

A cache coherence problem is introduced because of the replication of some 
cache lines in the line buffers. A simple one-copy cache coherence protocol 
can be defined as follows. Only one copy of a cache block can be forwarded 
to a line buffer at a time. Therefore, if a request to forward some cache block, 
already buffered in line buffer A, to some other line buffer B, then line buffer 
A must be invalidated, as the data cache block is forwarded to line buffer B. If 
a cache block in a data cache bank is invalidated then its corresponding line 
buffer must also be invalidated. 

4 Simulation and Performance 

The simulation program was built on top of the Simplescalar simulator using 
the PISA instruction set. We simulated an 8-context 32-issue SMT processor 
with four 64KB instruction caches, each shared by 2 threads, and a 12-ported 
16-banked data cache shared by all threads. A total of 36 functional units were 
used: 24 integer ALUs (half of them shared by load-store instructions), 8 
FPUs (used for FP add and convert instructions), and 4 units used for all inte-
ger and floating-point multiplications and divisions. The scheduling and load-
store queues were partitioned. Each thread had a 128-entry scheduling queue 
and a 64-entry load-store queue. The front end can fetch four instruction 
blocks (up to 64 instructions) per cycle from four different threads. The simu-
lation parameters are summarized in the following table: 
 

 
I-Cache 

4 independent i-caches are used 
Each is 128KB, 8-way associative, 
64-byte lines, 1 cycle access time 



 
D-Cache 

12 ports, 16 banks 
Each is 128 KB, 8-way associative, 
64-byte lines, total capacity: 2MB 
Access time: 3, 5, 7, 9, and 11 cycles 

Line Buffers None and 8 lines per thread 

L2 Unified None 

Memory 100 cycles latency 

Issue width 32 instructions per cycle 

ALUs 24 units, where 12 are used also to compute 
effective address of load-store instructions 

FPUs 8 fully pipelined, 4 cycle latency for FPadd 

Mul, Div, … 4 units 
4 cycle latency, pipelined, for int/fp multiply 
20 cycles non-pipelined for integer divide 
12 cycles non-pipelined for FP divide 
24 cycles non-pipelined for FP sqrt 

Scheduling Q 128 entries per thread 

Load-Store 64 entries per thread 
 

4.1 SPEC 2000 Benchmarks 

We chose a subset of eight programs to run as independent threads. These 
benchmarks were compiled with optimization for the PISA instruction set. 
The first three belong to the SPECfp2000 benchmarks. The last five belong to 
SPECint2000. The eight benchmarks were run in parallel until one of them 
reached the 100 million instruction limit. The total number of instructions 
executed across all benchmarks exceeded 700 million instructions for a typi-
cal simulation run. 

 188.ammp: Computational Chemistry. 
 183.equake: Seismic Wave Propagation Simulation. 
 177.mesa: 3D Graphics Library. 
 176.gcc: GNU C compiler generating optimized code. 
 197.parser: Word Processing. 
 255.vortex: Object-Oriented Database. 
 175.vpr: FPGA Circuit Placement and Routing. 
 181.mcf: Combinatorial Optimization. 



4.2 Simulation Results of a Single-Level Banked Data Cache 

The performance of an 8-context 32-issue SMT under different data cache la-
tencies is shown in Figure 5. The first column shows the performance under 
an ideal main memory with a 1-cycle latency. The second column shows the 
performance of a 2MB ideal data cache with 1-cycle latency, which is impos-
sible to realize, especially as the feature size goes below 100 nm and the wire 
delay becomes a dominant factor. It was shown here just for comparison. The 
main memory latency was assumed to be 100 cycles. The remaining columns 
assume a data cache latency of 3, 5, 7, and 9 cycles, which include the latency 
of the interconnect. No line buffers exist. The overall IPC goes down from 
23.07 (ideal memory case) to 20.46 (ideal cache 1-cycle latency and 100-
cycle main memory), to 20.19 (3 cycles), 19.71 (5 cycles), 19.10 (7 cycles), 
and 18.39 (9 cycles). 
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Fig. 5. Performance of an 8-context 32-issue SMT under different cache latencies 

 



4.3 Adding an 8-Line Buffer to Each Thread 

A second experiment was conducted to assess the performance of an 8-
context 32-issue SMT under the presence of line buffer. A small buffer or 
level zero cache, consisting of 8 cache lines or blocks was added to each 
thread. The line buffer was assumed to have a latency of 1 cycle. The data 
cache latency was assumed to be 7, 9, and 11 cycles. The results are shown in 
Figure 6. The overall IPC under the presence of an 8-line buffer is 20.04 for a 
7-cycle latency data cache, 19.86 for 9-cycle latency, and 19.63 for 11-cycle 
latency. 
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Fig. 6. Performance comparison under the presence of 8-line buffer for each thread 
 

4.4 Discussion 

Increasing the data cache latency from the ideal situation of 1 cycle to 3 cy-
cles reduced the IPC by 1.33%. Increasing it from 1 to 5 cycles reduced the 
IPC by 3.64%, from 1 to 7 cycles reduced the IPC by 6.63%, and from 1 to 9 
cycles reduced the IPC by 10.1%. This was the case in the absence of line 
buffers. It showed that a large-scale SMT processor has the ability to tolerate 
cache latency due to the presence of ample parallelism among the different 
threads. While the IPC of few threads were negatively affected by the in-



creased latency, such as ammp and gcc, others were able to tolerate and some-
times took advantage of the wasted cycles, which slightly improved their IPC. 

Adding a small line buffer showed better latency tolerance and improved 
results. For example, a 7-cycle data cache latency had only 2.03% degradation 
in IPC from the ideal cache performance under the presence of a line buffer. 
Similarly, a 9-cycle latency data cache had 2.92% degradation in IPC per-
formance and an 11-cycle latency data cache had 4.04% degradation for the 
simulated benchmarks. 

5 Conclusion 

This paper has demonstrated that large primary data caches, with a large num-
ber of ports and banks, are well suited for large-scale SMT processors, which 
can tolerate longer hit times in the data cache. Increasing the number of data 
cache banks increases the overall capacity, which in turn eliminates the need 
for unified L2 and L3 caches. Increasing the number of ports increases the 
bandwidth, but also increases the latency of data cache access and the cost of 
the interconnect. Having small line buffers (called also level zero caches) with 
few entries (typically 8 or 16 per thread) does improve the overall IPC and 
can better tolerate the longer latency of the data cache. The small line buffers 
have also an added benefit in reducing the number of data cache ports and 
hence the complexity and latency of the interconnect. 
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