
Scalable Cache Memory Design for Large-Scale
SMT Architectures

Muhamed F. Mudawar

Computer Science Department
The American University in Cairo

mudawwar@aucegypt.edu

Abstract. The cache hierarchy design in existing SMT and superscalar
processors is optimized for latency, but not for bandwidth. The size of
the L1 data cache did not scale over the past decade. Instead, larger uni-
fied L2 and L3 caches were introduced. This cache hierarchy has a high
overhead due to the principle of containment. It also has a complex de-
sign to maintain cache coherence across all levels. Furthermore, this
cache hierarchy is not suitable for future large-scale SMT processors,
which will demand high bandwidth instruction and data caches with a
large number of ports.

This paper suggests the elimination of the cache hierarchy and replac-
ing it with one-level caches for instruction and data. Multiple instruc-
tion caches can be used in parallel to scale the instruction fetch band-
width and the overall cache capacity. A one-level data cache can be
split into a number of block-interleaved cache banks to serve multiple
memory requests in parallel. An interconnect is used to connect the data
cache ports to the different cache banks, thus increasing the data cache
access time. This paper shows that large-scale SMTs can tolerate long
data cache hit times. It also shows that small line buffers can enhance
the performance and reduce the required number of ports to the banked
data cache memory.

1 Introduction

Simultaneous multithreading (SMT) is a latency-tolerant processor architec-
ture that enables multiple threads to simultaneously share the processor re-
sources, effectively converting thread-level parallelism to instruction-level
parallelism [9, 14, 15]. SMT improves the utilization of shared resources,
such as register files, functional units, and caches, as it extracts ILP from mul-
tiple threads. SMT can also better tolerate pipeline and memory latencies,
coping with the deeper pipelines, branch mispredictions, and the longer cache
miss penalties. Some manufacturers have introduced their versions of SMT

processors. Examples include the 2-context Intel Pentium 4 [3, 7] and the pro-
posed 4-context Alpha 21464.

To implement higher-context and super-wide SMT processors, however, a
number of challenges have to be addressed. These challenges include dynamic
instruction scheduling, the shared register file, the shared cache hierarchy, and
the degree of sharing or partitioning of hardware resources. This article ad-
dresses the problem of the shared cache hierarchy.

Current SMT processors use small L1 instruction and data caches. For ex-
ample, the hyper-threaded Intel Pentium 4 uses a 16K L1 data cache. A thread
that regularly sweeps through the L1 data cache will evict data needed by the
other thread as shown in [13]. This negative interference will become more
serious as the number of threads increases. The size of L1 data cache did not
scale over the past decade. It was kept small to match the increasingly higher
clock frequencies and to optimize the hit access time. Larger unified L2 and
now L3 caches are introduced to increase the overall cache capacity and to
optimize the memory access time. Figure 1 shows the cache hierarchy of a
typical small scale 4-to-6 issue superscalar or SMT architecture. Two
load/store ports are used for the D-Cache.

Fig. 1. Cache hierarchy for a typical wide-issue superscalar or a small-scale SMT architecture

Another more serious problem is the demand for higher cache bandwidth.

Memory instructions account for about a third of all instructions executed on
average. For example, an 8-context 32-issue processor should allow 12
load/store instructions to execute each cycle. This means that the L1 data
cache should be designed to have 12 ports. The unified L2 and L3 caches
should also support multiple ports to handle the multiple cache misses in par-
allel. In contrast, the current hyper-threaded Pentium 4 is a small scale SMT
processor that supports a dual-ported L1 cache, a single-ported instruction

Processor Core

D-Cache I-Cache

L2 Cache

L3 Cache

Main Memory

trace cache, and single-ported unified L2 and L3 caches. This cache hierarchy,
optimized for latency on a superscalar processor, does not fit into a large-scale
SMT processor. It has to be redesigned and optimized for bandwidth rather
than for latency. A simple scalable single-level banked cache design can op-
timize the bandwidth demand of large-scale SMT processors, while slightly
increasing the latency of primary data cache access. This design will be de-
scribed in Section 3. This design will be shown to be very effective for large-
scale SMT processors, as increasing the latency of primary data cache access
results in a minor degradation on the IPC.

The remainder of this paper is organized as follows. Section 2 discusses
some background and related work. Section 3 introduces a scalable SMT ar-
chitecture with a scalable cache design. Section 4 shows the simulation and
performance of the architecture introduced in Section 3.

2 Background and Previous Work

Multiple cache ports can be implemented in one of four ways: ideal multi-
porting, time division multiplexing, replication, and multiple independently
addressable banks [4, 11, 17]. Ideal multi-porting requires that each cache
block be simultaneously addressable by all the cache ports, allowing all the
cache ports to operate independently in a given cycle. Ideal multi-porting is
considered to be impractical, as the costs of ideal multi-porting will be enor-
mous in terms of area, power consumption, and access time, as the number of
ports increases. For example, the 24-ported register file (16-read and 8-write
ports) in the proposed 4-context 8-issue Alpha 21464 SMT processor occupies
over five times the area of the 64 KB primary cache according to [12]. A
banked multi-ported register file is proposed in [12] to reduce the area, access
time, and energy consumption. For this reason, ideal multi-porting is never
applied to caches and will not be considered further.

Time division multiplexing is a technique that uses time to achieve virtual
ports. It is used in the DEC Alpha 21264 [5]. The L1 data cache is referenced
twice each cycle, once for each of the clock phases, effectively operating at
twice the processor clock speed. Although simple enough, this technique is
not scalable for a large number of ports, as it requires the cache to operate at
significantly higher clock frequencies than the processor core. Current proces-
sors are already operating at significantly high clock frequencies and primary
cache access time is already increasing from one to few clock cycles and will
continue to increase in the future. Therefore, time division multiplexing is not
a feasible solution.

A third possibility for multi-porting is through primary cache replication.
Multiple copies will allow multiple loads to go in parallel. However, stores
have to be broadcast and replicated to maintain identical copies. An example
is the duplicate primary data cache used in the Alpha 21164 [2]. This solution

improves the bandwidth of the load instructions. However, it will not improve
the bandwidth of stores. Another overhead is the die area required for cache
replication.

The fourth known technique to multi-porting is multi-banking. A cache is
divided into multiple banks that can be accessed in parallel. Each cache bank
is single-ported and can handle a single memory instruction per cycle. A fast
interconnect, such as a crossbar, provides parallel access to the cache banks
[8]. High bandwidth cache access can result, as long as parallel memory ad-
dresses map to different banks.

A simple and effective mapping scheme is to map contiguous memory
blocks onto consecutive cache banks. This mapping scheme distributes uni-
formly the cache blocks. However, cache accesses to the same cache bank
cannot proceed in parallel.

One problem of multi-banking is the probability of bank conflicts that arises
from consecutive memory references that target the same cache line or the
same cache bank. The same-line conflicts are shown to be high due to the in-
herent spatial locality in memory references, averaging 35% across integer
benchmarks and 22% for floating-point benchmarks, according to [11]. These
conflicts cannot be eliminated by simply increasing the number of cache
banks. However, they can be exploited, using access combining, to improve
multi-bank cache access. Access combining [1, 16] is a technique that at-
tempts to combine memory accesses to the same cache line into a single re-
quest. Combining requires additional logic in the load/store queue to detect
memory addresses targeted to the same cache line that can be combined.
However, this additional logic is a small extension, because load/store queues
in current architectures already implement a matching logic to detect and re-
solve memory dependencies.

Line buffering is another technique to avoid same-line conflicts. A line
buffer holds cache data inside the processor load/store unit, allowing a same-
line load to be satisfied from the line buffer, instead of from the cache [17]. A
line buffer also reduces the utilization of the cache ports and the access la-
tency of a multi-cycle multi-ported cache.

A second problem associated with multi-banked caches is the overhead of
the interconnect. This unavoidable interconnect increases the cost and the de-
lay of a multi-banked cache. A crossbar can be used for a small number of
ports, but a multi-stage interconnect should be used for a larger number of
ports. Depending on the interconnect, non-uniform cache bank access [6] may
also result, where near cache banks are accessed faster than distant banks.

3 Scalable SMT Architecture

In this section, we propose a scalable SMT architecture that can scale to a
large number of contexts. An 8-context SMT architecture is depicted in Figure
2. The most prominent feature of this architecture is the elimination of the
cache hierarchy. We only preserve primary instruction and data caches and
scale them according to requirement. The cache hierarchy is only an added
overhead and a waste of space due to the principle of containment, as all the
cache blocks in the L1 instruction and data caches are contained in L2 and L3.
The cache hierarchy is also an added complexity. This complexity is required
to maintain cache coherence across the different levels. Every store to the pri-
mary data cache has to be written through to reach the L2 and L3 caches.
Every cache block invalidate in the L3 cache caused, for instance, by a differ-
ent processor in a multiprocessor, has to be propagated upwards to reach the
unified L2 and L1 data cache. Therefore, eliminating the cache hierarchy is
desirable. Observe that what is being proposed here is against the current in-
dustry trend of increasing the cache hierarchy from 2 to 3 levels. The idea is
to turn the second (or third) level cache into a primary data cache, effectively
increasing the primary data cache capacity and bandwidth, as long as the
processor is capable of tolerating the increased data cache hit time without
much affecting the IPC.

3.1 Scalable Front End

To allow the front end to scale, multiple independent instruction caches must
be used. Each instruction cache can be shared by a small number of threads
(typically 2 to 4). The result is a simplified instruction cache design. Rather
than using a single multi-ported instruction cache to fetch multiple instruction
blocks from different threads per cycle, multiple single-ported instruction
caches are used instead. One advantage is a simplified instruction cache de-
sign, which reduces the access time. A second advantage is the increased in-
struction cache capacity, which can scale with the number of threads, and
which can eliminate negative thread interference and some of the capacity
misses. For example, if four 128KB instruction caches are used in an 8-
context processor then the overall instruction cache capacity is 512KB, elimi-
nating the need for a second level cache. Each i-cache can be designed to have
a large number of ways and to use way prediction to reduce cache energy and
access time. A third advantage is the increased instruction cache bandwidth,
which is also scalable with the number of threads. For example, four instruc-
tion cache blocks can be fetched per cycle in Figure 3, instead of a single one.
This is essential to enable the IPC to scale. A fourth advantage is the absence
of the interconnect in front of the instruction caches. An added interconnect

will add more cycles to instruction fetching, which will also increase the
branch misprediction penalty. The absence of the interconnect, however, im-
plies that instruction blocks might be replicated in different instruction caches,
especially when different threads execute the same instruction stream on dif-
ferent data streams. A simple snooping protocol can detect and forward repli-
cated cache blocks from one instruction cache to another to avoid long mem-
ory access.

3.2 Partitioned Hardware Resources

In addition to instruction caches, many hardware resources are partitioned and
replicated as shown in Figure 2. This includes the rename tables, the schedul-
ing queues, the register files, and the functional units. Limited sharing allows
few threads (typically two) to share some hardware resources, but hardware
partitioning is essential to reduce complexity and to enable scalability.

...

Interconnect

Dcache
Bank

Memory
Module

Fig. 2. An 8-Context SMT Processor

PC

Decode&
Rename

Icache

PC

F
P

Q

In
tQ

Registers
&Bypass

alu fpu fpu alu ls ls

PC

Decode&
Rename

Icache

PC
F

P
Q

In
tQ

Registers
&Bypass

alu fpu fpu alu ls ls

PC

Decode&
Rename

Icache

PC

F
P

Q

In
tQ

Registers
&Bypass

alu fpu fpu alu ls ls

PC

Decode&
Rename

Icache

PC

F
P

Q

In
tQ

Registers
&Bypass

alu fpu fpu alu ls ls

Dcache
Bank

Dcache
Bank ... Dcache

Bank
Dcache

Bank
Dcache

Bank

Memory
Module

3.3 Scalable and Shareable Data Cache

For data caches, we split them into multiple banks shareable by all threads.
The cache banks are block-interleaved to obtain a uniform distribution. The
use of multiple cache banks increases data cache capacity, which eliminates
the need for a second or third level cache. For example, a 2MB data cache can
be obtained by splitting it into sixteen 128KB banks. Each cache bank can be
designed to have a large number of ways and to use way prediction or selec-
tive direct mapping [10]. This will increase the capacity of the cache banks
and will reduce their access time and energy consumption. Each cache bank is
designed to be single ported, which simplifies its implementation. A third ad-
vantage is that no cache block replication can occur among the different
banks, since cache block interleaving will map a cache block to a unique
bank. This eliminates the need to maintain cache coherence among the differ-
ent banks. A fourth advantage is that the cache banks can use multiple busses
to multiple memory modules. In other words, the memory modules will also
be cache block interleaved. This will increase main memory bandwidth and
will decrease the bus conflicts due to the increased number of cache misses
generated by the increased number of cache banks.

An unavoidable price is the overhead of the interconnect, which increases in
complexity with the number of ports and the number of cache banks. This in-
terconnect can be a crossbar, a multi-stage network with uniform data cache
bank access, or a distributed non-uniform data cache access network. What-
ever it might be, the interconnect increases the access delay to the data cache
from one to several clock cycles. However, our simulation results indicate that
increasing the access delay to the data cache can be tolerated in a large scale
SMT processor. In other words, we can trade the increase in threads and the
cumulative ILP with the increase in data cache access time. Therefore, this
data cache organization is scalable in terms of capacity, bandwidth, and ac-
cess delay.

3.4 Pipeline Stages for a Load Instruction

The pipeline stages for a typical load instruction are shown in Figure 3. At
least 11 pipeline stages are required, starting with instruction fetch, going
through decode, rename, and queue, and ending with register write and re-
tirement. The data cache access delay should be at least three cycles, after
computing the effective memory address. One or more cycles are used to for-
ward the address from the input ports to the corresponding data cache banks
through the interconnection network. One or more cycles for cache bank ac-
cess, and one or more cycles to forward the data to the corresponding physical
destination register.

3.5 Data Translation Lookaside Buffers

The data translation lookaside buffers (DTLBs) are searched in parallel while
establishing paths through the interconnection network to the corresponding
data cache banks. Observe that the cache bank address is NOT part of the vir-
tual page number as shown in Figure 4, and hence virtual address translation
and interconnection path establishment can proceed in parallel. The DTLBs
are integrated as part of Load/Store units, such that each DTLB is associated
with one or at most few threads. This is much better than integrating the
DTLBs with the data cache banks, as each bank is shared by all the threads.

Fig. 4. Network path establishment can be done in parallel with

DTLB virtual address translation

Data cache banks are physically tagged, since tag checking is done is a
separate cycle. Therefore, the physical tag is not needed while indexing the
data cache and can be sent in the next cycle. The set index, on the other hand,
should be virtual, to allow it to reach the data cache without waiting for the
DTLB. However, virtual indexing can cause aliasing problems. Alternatively,
the data cache can be physically indexed but this will add an extra delay cy-
cle, because it will have to wait for the result of the DTLB.

DTLB

Physical Tag Block
offset

Cache
Bank

Set
Index

Virtual Page # Page Offset

Physical Page #
Network

Path

Fig. 3. Pipeline Stages for a Typical Load Instruction

Fetch Decode Rename Queue RegRead

Exec
DTLB

Dcache
Tag Chk

RegWrite
Crossbar Crossbar

Retire

3.6 Cache Line Buffering

A small but important optimization is to have few data cache blocks buffered
also in the load/store units. This level zero cache can mainly reduce the con-
flicts to the same cache block, caused by consecutive load instructions, due to
spatial locality of reference. It also improves the data cache access latency.
Only few cache lines need be buffered, and a small fully-associative buffer
can be established in every load-store unit and for each thread. A hit on a load
in a line buffer is served from the buffer, freeing the data cache access port to
another memory instruction. A hit on a store updates the line buffer as well as
the corresponding data cache bank. A miss on a load is served from a data
cache bank, which forwards a copy of the cache block to the requesting line
buffer. The address of the allocated line buffer is also recorded in the data
cache bank to establish cache coherence. A miss on a store only writes the
corresponding data cache bank, but no block transfer takes place.

A cache coherence problem is introduced because of the replication of some
cache lines in the line buffers. A simple one-copy cache coherence protocol
can be defined as follows. Only one copy of a cache block can be forwarded
to a line buffer at a time. Therefore, if a request to forward some cache block,
already buffered in line buffer A, to some other line buffer B, then line buffer
A must be invalidated, as the data cache block is forwarded to line buffer B. If
a cache block in a data cache bank is invalidated then its corresponding line
buffer must also be invalidated.

4 Simulation and Performance

The simulation program was built on top of the Simplescalar simulator using
the PISA instruction set. We simulated an 8-context 32-issue SMT processor
with four 64KB instruction caches, each shared by 2 threads, and a 12-ported
16-banked data cache shared by all threads. A total of 36 functional units were
used: 24 integer ALUs (half of them shared by load-store instructions), 8
FPUs (used for FP add and convert instructions), and 4 units used for all inte-
ger and floating-point multiplications and divisions. The scheduling and load-
store queues were partitioned. Each thread had a 128-entry scheduling queue
and a 64-entry load-store queue. The front end can fetch four instruction
blocks (up to 64 instructions) per cycle from four different threads. The simu-
lation parameters are summarized in the following table:

I-Cache

4 independent i-caches are used
Each is 128KB, 8-way associative,
64-byte lines, 1 cycle access time

D-Cache

12 ports, 16 banks
Each is 128 KB, 8-way associative,
64-byte lines, total capacity: 2MB
Access time: 3, 5, 7, 9, and 11 cycles

Line Buffers None and 8 lines per thread

L2 Unified None

Memory 100 cycles latency

Issue width 32 instructions per cycle

ALUs 24 units, where 12 are used also to compute
effective address of load-store instructions

FPUs 8 fully pipelined, 4 cycle latency for FPadd

Mul, Div, … 4 units
4 cycle latency, pipelined, for int/fp multiply
20 cycles non-pipelined for integer divide
12 cycles non-pipelined for FP divide
24 cycles non-pipelined for FP sqrt

Scheduling Q 128 entries per thread

Load-Store 64 entries per thread

4.1 SPEC 2000 Benchmarks

We chose a subset of eight programs to run as independent threads. These
benchmarks were compiled with optimization for the PISA instruction set.
The first three belong to the SPECfp2000 benchmarks. The last five belong to
SPECint2000. The eight benchmarks were run in parallel until one of them
reached the 100 million instruction limit. The total number of instructions
executed across all benchmarks exceeded 700 million instructions for a typi-
cal simulation run.

 188.ammp: Computational Chemistry.
 183.equake: Seismic Wave Propagation Simulation.
 177.mesa: 3D Graphics Library.
 176.gcc: GNU C compiler generating optimized code.
 197.parser: Word Processing.
 255.vortex: Object-Oriented Database.
 175.vpr: FPGA Circuit Placement and Routing.
 181.mcf: Combinatorial Optimization.

4.2 Simulation Results of a Single-Level Banked Data Cache

The performance of an 8-context 32-issue SMT under different data cache la-
tencies is shown in Figure 5. The first column shows the performance under
an ideal main memory with a 1-cycle latency. The second column shows the
performance of a 2MB ideal data cache with 1-cycle latency, which is impos-
sible to realize, especially as the feature size goes below 100 nm and the wire
delay becomes a dominant factor. It was shown here just for comparison. The
main memory latency was assumed to be 100 cycles. The remaining columns
assume a data cache latency of 3, 5, 7, and 9 cycles, which include the latency
of the interconnect. No line buffers exist. The overall IPC goes down from
23.07 (ideal memory case) to 20.46 (ideal cache 1-cycle latency and 100-
cycle main memory), to 20.19 (3 cycles), 19.71 (5 cycles), 19.10 (7 cycles),
and 18.39 (9 cycles).

Effect of Data Cache Latency on IPC

0

2

4

6

8

10

12

14

16

18

20

22

24

Ideal Mem Ideal Cache Latency 3 Latency 5 Latency 7 Latency 9

In
st

ru
ct

io
ns

 P
er

 C
yc

le
 (

IP
C

)

188.ammp 183.equake 177.mesa 176.gcc

197.parser 255.vortex 175.vpr 181.mcf

Fig. 5. Performance of an 8-context 32-issue SMT under different cache latencies

4.3 Adding an 8-Line Buffer to Each Thread

A second experiment was conducted to assess the performance of an 8-
context 32-issue SMT under the presence of line buffer. A small buffer or
level zero cache, consisting of 8 cache lines or blocks was added to each
thread. The line buffer was assumed to have a latency of 1 cycle. The data
cache latency was assumed to be 7, 9, and 11 cycles. The results are shown in
Figure 6. The overall IPC under the presence of an 8-line buffer is 20.04 for a
7-cycle latency data cache, 19.86 for 9-cycle latency, and 19.63 for 11-cycle
latency.

Adding an 8-Line Buffer to Each Thread

0

2

4

6

8

10

12

14

16

18

20

Latency 5 Latency 7 Latency 9 Latency 7B Latency 9B Latency 11B

In
st

ru
ct

io
ns

 P
er

 C
yc

le
 (

IP
C

)

188.ammp 183.equake 177.mesa 176.gcc

197.parser 255.vortex 175.vpr 181.mcf

Fig. 6. Performance comparison under the presence of 8-line buffer for each thread

4.4 Discussion

Increasing the data cache latency from the ideal situation of 1 cycle to 3 cy-
cles reduced the IPC by 1.33%. Increasing it from 1 to 5 cycles reduced the
IPC by 3.64%, from 1 to 7 cycles reduced the IPC by 6.63%, and from 1 to 9
cycles reduced the IPC by 10.1%. This was the case in the absence of line
buffers. It showed that a large-scale SMT processor has the ability to tolerate
cache latency due to the presence of ample parallelism among the different
threads. While the IPC of few threads were negatively affected by the in-

creased latency, such as ammp and gcc, others were able to tolerate and some-
times took advantage of the wasted cycles, which slightly improved their IPC.

Adding a small line buffer showed better latency tolerance and improved
results. For example, a 7-cycle data cache latency had only 2.03% degradation
in IPC from the ideal cache performance under the presence of a line buffer.
Similarly, a 9-cycle latency data cache had 2.92% degradation in IPC per-
formance and an 11-cycle latency data cache had 4.04% degradation for the
simulated benchmarks.

5 Conclusion

This paper has demonstrated that large primary data caches, with a large num-
ber of ports and banks, are well suited for large-scale SMT processors, which
can tolerate longer hit times in the data cache. Increasing the number of data
cache banks increases the overall capacity, which in turn eliminates the need
for unified L2 and L3 caches. Increasing the number of ports increases the
bandwidth, but also increases the latency of data cache access and the cost of
the interconnect. Having small line buffers (called also level zero caches) with
few entries (typically 8 or 16 per thread) does improve the overall IPC and
can better tolerate the longer latency of the data cache. The small line buffers
have also an added benefit in reducing the number of data cache ports and
hence the complexity and latency of the interconnect.

References

1. T. Austin and G. Sohi, “High-Bandwidth Address Translation for Multiple-Issue
Processors”, Proceedings of the 23rd Annual International Symposium on Com-
puter Architecture, May 1996, pages 147-157.

2. J. Edmondson et al, “Internal Organization of the Alpha 21164 a 300-MHz 64-bit
Quad-issue CMOS RISC Microprocessor”, Digital Technical Journal, Special
10th Anniversary Issue, Vol. 7, No. 1, 1995, pages 119-135.

3. “Hyper-Threading Technology”, Intel Technical Journal, vol.6, no.1, February
2002.

4. T. Juan, J. Navarro, and O. Temam, “Data Caches for Superscalar Processors”,
Proceedings of the 11th International Conference on Supercomputing, July 1997,
pages 60-67.

5. R. Kessler, “The Alpha 21264 Microprocessor”, IEEE Micro, March-April 1999,
pages 24-36.

6. C. Kim, D. Burger, and S. Keckler, “An Adaptive, Non-Uniform Cache Structure
for Wire-Dominated On-Chip Caches”, Proceedings of the 10th International
Conference on Architectural Support for Programming Languages and Operat-
ing Systems, October 2002, pages 211-222.

7. D. Koufaty and D. Marr, “Hyperthreading Technology in the Netburst Microar-
chitecture”, IEEE Micro, March-April 2003, pages 56-65.

8. L. Li, N. Vijaykrishnan, M. Kandemir, M. J. Irwin and I. Kadayif, “CCC: Cross-
bar Connected Caches for Reducing Energy Consumption of On-Chip Multiproc-
essors”, Proceedings of the Euromicro Symposium on Digital System Design,
September 2003, pages 41-48.

9. J. Lo, S. Eggers, J. Emer, H. Levy, R. Stamm, and D. Tullsen, “Converting
Thread-Level Parallelism to Instruction-Level Parallelism via Simultaneous Mul-
tithreading”, ACM Transactions on Computer Systems, vol.15, no.3, August
1997, pages 322-354.

10. M. D. Powell, A. Agarwal, T.N. Vijaykumar, B. Falsafi, and K. Roy, “Reducing
Set-Associative Cache Energy via Way-Prediction and Selective Direct-
Mapping”, Proceedings of the 34th Annual International Symposium on Microar-
chitecture, December 2001, Austin, Texas, pages 54-65.

11. J. A. Rivers, G. S. Tyson, E. S. Davidson, and T. M. Austin “On High-Bandwidth
Data Cache Design for Multi-Issue Processors”, Proceedings of the 30th Annual
International Symposium on Microarchitecture, December 1997, pages 46-56.

12. J. Tseng and K. Asanovic, “Banked Multiported Register Files for High-
Frequency Superscalar Microprocessors”, Proceedings of the 30th Annual Inter-
national Symposium on Computer Architecture, June 2003, pages 62-71.

13. D. Tullsen and J. Brown, “Handling Long-Latency Loads in a Simultaneous Mul-
tithreading Processor”, Proceedings of the 34th Annual International Symposium
on Microarchitecture, December 2001, pages 318-327.

14. D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and R. Stamm, “Exploiting
Choice: Instruction Fetch and Issue on an Implementable Simultaneous Multi-
threading Processor”, Proceedings of the 23rd Annual International Symposium
on Computer Architecture, May 1996, pages 191-202.

15. D. Tullsen, S. Eggers, H. Levy, “Simultaneous Multithreading: Maximizing On-
Chip Parallelism”, Proceedings of the 22nd Annual International Symposium on
Computer Architecture, June 1995, pages 392-403.

16. K. Wilson, K. Olukotun, and M. Rosenblum, “Increasing Cache Port Efficiency
for Dynamic Superscalar Processors”, Proceedings of the 23rd Annual Interna-
tional Symposium on Computer Architecture, May 1996, pages 147-157.

17. K. Wilson and K. Olukotun, “Designing High Bandwidth On-Chip Caches”, Pro-
ceedings of the 24th Annual International Symposium on Computer Architecture,
June 1997, pages 121-132.

