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Abstract

In this paper we compare the k-ary n-cube network with its
dual. The dual is obtained by interchanging the role of
nodes and channels. The resulting nodes in the dual
network are connected to two channels only and the
resulting channels are multi-way. One of the major
topological advantages that can be observed in the dual
network is the fixed node degree that is always equal to two
irrespective of the network topology or dimension. This
property enables the dual network to have wider channels.
This comparative study includes the network properties, the
cost, and the performance. The network performance is
evaluated through simulation. The simulation results show
that the dual network has a lower latency and is more
efficient (makes better utilization of channels) than the k-
ary n-cube direct network with same number of nodes and
similar packaging costs.

Keywords: Interconnection Networks, k-ary m-way
networks, multi-way channels, k-ary n-cube, network
properties.

1. Introduction

An interconnection network is a critical part of a parallel
computer since application performance is affected by the
network latency and throughput. Among the popular
networks that are well studied in the literature and used in
parallel architectures are the k-ary n-cube strictly
orthogonal wormhole-routed networks [4] [8]. The term k
refers to the number of nodes per dimension and the term n
represents the network dimension. Nodes along each
dimension can have a linear arrangement resulting in a
multi-dimensional mesh topology. Alternatively, they can
have a ring arrangement resulting in a torus topology. We
can also restrict the number of nodes to two per dimension.
This will result in a hypercube topology. Other interesting
direct interconnection networks have also been proposed in
the literature. These include the hierarchical networks in
[12] and the recursive cube of rings in [13].

1.1 Motivation

The dual of a k-ary n-cube network, called k-ary m-way,
was proposed in [9] as an alternative interconnection
structure that can compete with k-ary n-cube networks. In
this paper, we study the properties and compare the
performance of both networks. Routers in the dual network
have a degree of two (linked to two multi-way channels
only) irrespective of the network dimension or topology.

They have a simple design and can be implemented
efficiently as suggested in [10].

2. Background

2.1 The Dual of a k-ary n-cube Network

The dual of a k-ary n-cube network, called k-ary m-way
network, is obtained by interchanging the nodes and
channels in a network [9]. Nodes become channels and
channels become nodes. Figure 1 shows two examples of
direct orthogonal networks and their duals. Figure 1a is 3-
ary 2-cube torus with 9 nodes and 18 bi-directional
channels. Figure 1b is the dual of the 3-ary 2-cube torus
with 18 nodes and 9 channels. Each channel (shown as a
black dot) is a 4-way channel because it links 4 nodes
together.
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Figure 1c is a 3D cube with 8 nodes and 12 channels.
Figure 1d is the dual of the 3D cube with 12 nodes and 8
channels. Each channel is a 3-way channel because it links
3 nodes together. Nodes in the dual networks are linked to
two multi-way channels only, irrespective of the network
topology or dimension.

2.2 Multi-way Channels

A bi-directional channel in a direct network can be
implemented as two unidirectional channels (full-duplex
organization), or as a shared channel (half-duplex
organization), as shown in Figures 2a and 2b. A shared bi-
directional channel must be arbitrated to select the driving
node at each clock cycle (arb line in Figure 2b). In the dual



network, a multi-way channel, called also m-way channel,
is used to link several nodes together. It can be
implemented as a set of m parallel links as shown in Figure
2c, or as a shared bus as shown in Figure 2d.
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In Figure 2c, Four parallel links are used to implement a 4-
way channel. Each link connects one node to the remaining
three nodes. The links can operate in parallel and four flits
can be transmitted simultaneously during one cycle. A
shared m-way channel, one the other hand, uses a bus to
link the four nodes. The shared m-way channel can be
made wider, but must be arbitrated to select one of the m
nodes to drive the shared channel at each clock cycle.
Multi-way channels (both shared and parallel) facilitate
broadcasting and multicasting. A flit can be transmitted to
multiple destinations in one cycle.

In the remaining part of this paper, we will restrict our
discussion to shared m-way channels only because of their
wide data path, and because our network simulator is based
on them.

2.3 Related Work

A shared m-way channel is a bus and a k-ary m-way
network with shared channels can be classified as a bus-
based network. Many bus interconnection structures were
discussed in the literature. They are modeled as
hypergraphs [1]. A hypergraph, however, does not
identify the buffer resources of a network, and hence
cannot be used to study deadlocks.

Examples of bus interconnection networks are the
hypermesh [14], [6], hypergrid (hypertorus) [5], and
hyperbus [2]. In a hypermesh, each node is connected to all
the nodes in each dimension through a bus. The hypergrid
and hypertorus structures are defined as the Cartesian
product of hyperpaths and hyperrings [5]. The node degree
is not a constant, but is twice the network dimension. The
hyperbus is defined as the dual of a generalized hypercube
[2].

In [11], we defined a class of strictly orthogonal scalable
network topologies, based on the concept of shared multi-

way channels. In [9], we proposed two approaches of
constructing k-ary m-way networks and linking processing
nodes with their local memories and/or caches to a k-ary m-
way network. The first approach is to link nodes to multi-
way channels. Routers and nodes are two separate entities.
The second approach is to integrate routers within nodes.
The performance of a k-ary m-way network, with nodes
linked to channels was studied in that paper. In [10], we
presented the design of a switch-free router that can be used
to build k-ary m-way networks of various topologies and
dimensions.

3. Network Properties

In this section we compare the properties of a k-ary n-cube
network with those of its dual.

3.1 Notation

In a k-ary n-cube network:

n: number of dimensions
k: number of nodes per dimension
N: total number of nodes
C: total number of bi-directional channels
w: width of a bi-directional channel
W: total wiring of a k-ary n-cube network
b: bisection width of a k-ary n-cube network
B: bisection density of a k-ary n-cube network
D: diameter of a k-ary n-cube network

In the dual network:

n': number of dimensions
k': number of multi-way channels per dimension
N': total number of nodes
C': total number of multi-way channels
w': width of a multi-way channel
W': total wiring of the dual network
b': bisection width of the dual network
B': bisection density of the dual network
D': diameter of the dual network

3.2 Nodes

In a k-ary n-cube network, the number of nodes N = kn for
the torus and N = 2n for the hypercube. In the dual
network, the number of nodes N' = n' k' n' for the torus and
N' = n' 2n'–1 for the hypercube. To have the same number
of nodes N = N' in the k-ary n-cube network and its dual:

kn = n' k' n' for the torus, and Equation 1

2n = n' 2n'–1 for the hypercube Equation 2

Solving Equation 1 with n = n' gives:

n n
k

k =
'

Equation 3

Hence, there are more nodes per dimension in a torus than
that of its dual with equal dimensionality and number of
nodes.

Solving Equation 2 yields:
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Thus, the dimensionality of a hypercube is greater than of
its dual with an equal number of nodes. For example,
there are 1024 nodes in a 10-D hypercube, as well as in
the dual hypercube with 8 dimensions.

3.3 Node Degree

In a k-ary n-cube network, the node degree is directly
proportional to the dimensionality of the network. If we
count the number of bi-directional channels linked to a
node then the node degree is 2n for the torus, and n for the
hypercube.

In the dual network, we count the number of multi-way
channels linked to a node. This number is 2, irrespective
of the network dimensionality or topology. Thus, multi-
way channels can be much wider than bi-directional
channels.

3.4 Channels

In a k-ary n-cube network, the total number of bi-
directional channels is C = n kn for the torus and
C = n 2n–1 for the hypercube. In the dual network, the
number of multi-way channels is C' = k' n' for the torus
and C' = 2n' for the hypercube.

If the dimensionalities of a torus and its dual are equal, n
= n', and for an equal number of nodes:
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For a hypercube:
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Therefore, the number of bi-directional channels in the k-
ary n-cube network exceeds the number of multi-way
channels in the dual network by a factor proportional to
the square of the dimension.

3.5 Channel Width

The channel width is defined as the number of physical
wires per channel. Although a channel consists of data
and control lines, we will ignore the control lines and
assume that the data lines dominate the wiring. To have
an equal packaging cost for nodes, the number of wires
per node should be the same in the k-ary n-cube network
and its dual. In the k-ary n-cube network, the channel
width, w, is the number of data lines in a physical bi-
directional channel. In the dual network, the channel
width, w', is the number of data lines in a physical multi-
way channel. Our assumption here is that Multi-way
channels are shared, although they can be implemented
differently as indicated in Section 2.2.

To have an equal wiring per node:

w' = n × w for the torus Equation 7

w' = n × w / 2 for the hypercube Equation 8

Clearly, the width of a multi-way channel in the dual
network greatly exceeds the width of a bi-directional
channel, especially in high-dimensional networks.

3.6 Total Wiring

The total wiring is defined as the number of data wires in
a network. It is a measure of the total bandwidth (or
capacity) of a network. It is the product of the total
number of physical channels and the channel width.

For a torus network and its dual with an equal number of
nodes and same dimensionality:
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For a hypercube network and its dual with an equal
number of nodes:
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Therefore, the total wiring of a k-ary n-cube network
greatly exceeds the total wiring of its dual by a factor
proportional to the number of dimensions.

3.7 Bisection Width

The bisection width is defined as the number of channels
that must be crossed in order to cut the network into two
equal sub-networks. The bisection width of a k-ary n-cube
torus is b = 2kn–1. The factor 2 is due to the ring
arrangement in all dimensions. The bisection width of a
hypercube is b = 2n–1. In the dual network, the bisection
width is b' = 2k' n'–1 for a torus, and b' = 2n'–1 for a
hypercube.

For a torus and its dual network with an equal number of
nodes and same dimensionality:
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For a hypercube network and its dual with an equal
number of nodes:
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Therefore, the bisection width of a k-ary n-cube network
is larger than that of its dual with an equal number of
nodes.

3.8 Bisection Density

The bisection density of a network is defined as the number
of wires that must be crossed in order to cut the network
into two equal sub-networks. It is the product of the
bisection width and the channel width.

For a torus and its dual network with an equal number of
nodes, same dimensionality, and equal wiring per node:
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For a hypercube network and its dual with an equal
number of nodes, and equal wiring per node:
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Therefore, the bisection density of a k-ary n-cube network
is slightly less than that of its dual with an equal number
of nodes and equal wiring per node.

3.9 Network Diameter

The network diameter is defined as the maximum distance
between any two nodes in the network. It is calculated by
counting the number of hops between the two most
distant nodes in the network.

In a k-ary n-cube network, the diameter D = nk/2 for a
torus, and D = n for a hypercube. In the dual network the
diameter D' = n' k' / 2 for a torus, and D' = n' for a
hypercube.

If the dimensionalities of a torus and its dual are equal, n
= n', and for an equal number of nodes:
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For a hypercube:
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Hence, the diameter of a k-ary n-cube network is larger
than that of its dual with an equal number of nodes.

4. Network Simulation and Performance

A time-driven simulator has been implemented to compare
the performance of a k-ary n-cube and its dual network. In
the implementation, we assume that a bi-directional
channel is shared and arbitrated as shown in Figure 2b.
Similarly, we assume that a multi-way channel is shared
and arbitrated in the dual network as shown in Figure 2d.

4.1 The Simulator

The simulator is a C++ program that simulates k-ary n-cube
networks and their duals at the flit level. A flit transfer
between two adjacent nodes is assumed to take place in one
clock cycle. The network is simulated synchronously,
moving all flits that have been granted channels in one
clock cycle and then advancing time to the next cycle. The
simulator can be configured to support different network
sizes, topologies, dimensionalities, number of buffers
(virtual channels), buffer sizes, routing algorithms,
messages lengths, message generation rates, and traffic
patterns. The simulator can generate various statistics, such
as average message latency, maximum latency, latency
standard deviation, latency histogram, channel utilization
rate, node injection rate, and node ejection rate.

4.2 Routing Algorithms

The comparison is conducted under unicast-based
wormhole routing algorithms. Two deterministic and two
minimal adaptive routing algorithms have been employed
in the torus and in the mesh (hypercube) topologies. To
avoid deadlocks, we divided buffers (or virtual channels)
into classes. For dimension-order routing in a mesh or in a
hypercube, one buffer class is sufficient and any buffer can
be allocated without any restrictions. For dimension-order
routing in a torus, 2 buffer classes are required, irrespective
of the number of dimensions, to avoid deadlocks in the
rings along each dimension. This algorithm is presented in
[9] and makes efficient use of buffers. For minimal
adaptive routing in a mesh or a hypercube, 2 buffer classes
are also required, irrespective of the number of dimensions.
We can also make efficient use of buffers by allocating any
buffer when we route along the least dimension, and restrict
routing to one class of buffers (the adaptive class) when we
don't route along the least dimension. The selection of the
next buffer class does NOT depend on the current buffer
class, but rather on the next selected routing dimension
when more than one exists. Finally, for minimal adaptive
routing in a torus, four buffer classes are required,
irrespective of the number of dimensions. We note that all
the routing algorithms have been proven to be deadlock and
livelock free.

4.3 Setting up the Simulation Parameters

In our comparison study, six networks are utilized. The first
one is a 32 by 16, 2D torus with 512 nodes. The second one
is the dual of a 16 by 16 torus with 256 4-way channels and
512 nodes. The width of a multi-way channel in the dual
network is chosen to be 64 bits. To have an equal wiring
cost per node in both networks, the width of a bi-directional
channel in the 2D torus network is 32 bits, according to
Equation 7.

The third network is a 4D torus with 1024 nodes (8×8×4×4
nodes). The fourth one is the dual of a 4×4×4×4 torus with
256 8-way channels and 1024 nodes as well. The width of a
multi-way channel in the dual network is chosen again to
have 64 bits of data, but the width of a bi-directional
channel is 16 bits in the 4D torus to have an equal wiring
cost per node according to Equation 7.

The fifth network is a 10D hypercube with 1024 nodes. The
sixth network is the dual of an 8D hypercube with 1024
nodes as well. The width of a multi-way channel is chosen
again to have 64 bits of data, but the width of a bi-
directional channel in the 10D hypercube is almost 13 bits,
according to Equation 8.

All of the experiments are conducted under uniform traffic
distribution and using four buffers (virtual channels) per
routing direction. Short messages, each carrying 64 bytes of
data, are generated.



4.4 Simulation Results

The simulation results are shown in Figures 3 through 6.
The latency is measured from the time a message is
generated at a source node until the tail flit is ejected at a
destination node. It is measured in terms of simulated
cycles, rather than real time, to make it independent of the
clock or channel speed. Source queuing time is included in
the latency measurement. The ejection rate of a node is a
measure of normalized throughput and is the number of bits
that are ejected per node per clock cycle. Channel
utilization is a measure of network efficiency and is the
percentage of cycles a channel is used to transfer flits.
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Figure 3: Performance comparison of a 2D torus and dual network

Figure 3 is a performance comparison between a 2D torus
and a 2D torus dual, both with 512 nodes. Dimension order
routing (DOR) and adaptive routing are used in both
networks. The obtained graphs show that the dual network
performs better than the direct network. The dual network
has a lower average latency and saturates at a higher
ejection rate (better throughput). At saturation point, the
latency increases sharply in both networks, because
messages end up waiting a long period of time in the source
queues before being injected into the network. Figure 3 also
reveals that adaptive routing is only slightly better than
deterministic routing in both networks. The use of adaptive
routing is not as significant as changing the topology.

Figure 4 shows a performance comparison between a 4D
torus and a 4D torus dual, both with 1024 nodes.
Dimension order routing (DOR) and adaptive routing are
used in both networks. Figure 4 reveals that the average
latency of the dual network is less than that of the direct
network before saturation point. However, the direct 4D
torus network saturates at a higher ejection rate and has a
higher throughput. This is because the total bandwidth of
the 4D torus is 4 times the total bandwidth (total wiring) of
the dual network according to Equation 9. The ejection rate

is 41% higher in the 4D torus than in the dual network,
although the total bandwidth is 400% (4×) more.
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Figure 4: Performance comparison of a 4D torus and dual network

In addition to average latency, we compute the latency
standard deviation as a measure of variation in latency. We
also compute the channel utilization as a measure of
efficiency. This is shown in Figure 5. The latency standard
deviation increases slowly with channel utilization below
saturation, but increases sharply at saturation point. Figure
5 clearly indicates that the dual network is much more
efficient than the direct 4D torus. Channel utilization
exceeds 95% in the dual 4D torus, and barely reaches 50%
in the direct network.
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Figure 6 shows a performance comparison between a 10D
hypercube and an 8D dual network, both with 1024 nodes.
As in Figure 4, the average latency in the dual network is
much less than that of the direct network before saturation
point. However, the 10D hypercube network saturates at a
higher ejection rate and has a higher throughput. The
ejection rate is 29% higher in the 10D hypercube than in
the dual network, although the total bandwidth is 400%
(4×) more in the 10D hypercube, according to Equation 10.
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Figure 6: Performance of a 10D hypercube and dual network

5. Conclusion and Future Work

We have shown that k-ary m-way networks, which are the
dual of k-ary n-cube networks, have a lower latency and a
higher efficiency (channel utilization) than k-ary n-cube
networks of same number of nodes and similar cost.
Although the total network bandwidth and wiring is higher
in the k-ary n-cube network and grows linearly with the
dimensionality according to Equations 9 and 10, the
ejection rate (and throughput) of the 2D torus network was
shown to be worse than that of the dual network, and
becomes only slightly better for higher-dimensional
networks as shown in Figures 4 and 6.

The results that we have obtained encourage further study
of k-ary m-way networks and their applicability in the
design of future parallel computers. As for future work, we
will investigate broadcasting, multicasting, and routing in
the presence of faults in k-ary m-way networks, and
compare it with k-ary n-cube networks. We believe that k-
ary m-way networks are especially useful for broadcasting
and multicasting because of the nature of a multi-way
channel.
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