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Abstract 

k-ary m-way networks are especially suitable for 
broadcasting because of the shared nature of m-way 
channels. A flit placed on an m-way channel can be 
accepted concurrently by adjacent routers and node 
interfaces during a given clock cycle. This paper discusses 
two modified Minimum Spanning Tree (MST) broadcast 
algorithms that are designed to work efficiently in k-ary m-
way networks. The algorithms are the MST-safe and MST-
replica. The two tree-based algorithms are deadlock free 
and can be safely mixed with dimension-order routing for 
unicast messages. The performance of k-ary m-way mesh 
and hypercube networks is evaluated using the MST-Safe 
and MST-Replica algorithms and compared with existing 
unicast-based broadcast algorithms, which are Recursive 
Doubling and MST-unicast. The results clearly favor the 
MST-safe and MST-replica over the unicast-based 
broadcast algorithms. 

Keywords: Region broadcasting, k-ary m-way networks, 
MST-safe, MST-replica, MST-unicast, Recursive Doubling. 

1 Introduction 

The communication operations among nodes of an 
interconnection network can be either point-to-point or 
collective, depending on whether exactly two or more than 
two processes participate in the communication. Collective 
operations, such as replication, are operations that involve 
the movement of global data [2], [10]. Multicast and 
broadcast are examples of collective communication. 

Perhaps the most essential collective communication 
routine is broadcast, in which one source sends a message 
to all the nodes in the network. The broadcast operation can 
be generalized to allow one source node to send a message 
to a rectangular region of nodes, rather than to all nodes. 
This is referred to as region broadcasting in this paper. 
Region broadcasting is a special case of multicasting, in 
which a source node sends a message to an arbitrary 
collection of destination nodes. Region broadcasting can be 
implemented as a collective communication primitive in a 
k-ary m-way network quite easily. A large number of 
parallel applications can benefit from this operation. 

Broadcasting can be unicast-based. A source node sends a 
message to a subset of the destinations. Each node holding 
a copy of the message forwards it to another subset of the 

destinations that have not yet received it, and so on until the 
message is delivered to all destination nodes. An example 
of a unicast-based broadcast algorithm is the Recursive 
Doubling algorithm [10], [11]. 

Broadcasting can be also tree-based. A source message gets 
replicated at intermediate routers to reach nodes along 
different routing paths. The same message is delivered to all 
the nodes on a given routing path. An example of a tree-
based broadcast algorithm is the Minimum Spanning Tree 
(MST) for meshes [2], [3]. 

This paper extends the work in [5] and [6] by adding a 
broadcast facility to a k-ary m-way router. Tree-based 
broadcast algorithms make use of the shared nature of m-
way channels because they allow a message to be sent in 
more than one direction in a given cycle. The MST is a 
tree-based broadcast algorithm but it is not deadlock free. 
Two modified MST broadcast algorithms, MST-safe and 
MST-replica, are discussed in this paper. These two 
algorithms are deadlock-free in mesh and hypercube 
topologies and can degenerate to dimension-order routing 
for unicast messages. 

2 k-ary m-way Interconnection Networks 

A k-ary m-way network is a multi-dimensional mesh or 
torus structure constructed using m-way routers and 
channels [5]. An m-way (called also multiway) channel is a 
physical channel shared by a maximum number, m, of 
routers or processors. It is the physical wiring of m links. 
An m-way router interfaces two m-way channels only, 
irrespective of the network topology or dimension. It has a 
constant degree 2. An m-way router defines the operation of 
an m-way channel. At any clock cycle, only one of the m 
routers (or processors) linked to an m-way channel can 
drive the channel. However, all m routers (and processors) 
can concurrently read the channel. The factor k is the 
number of m-way channels along each dimension. In 
practice different values of k can be assigned to different 
dimensions. 

An example of a 4-ary 5-way mesh network is shown in 
Figure 1. This is a 2-dimensional mesh with 16 nodes and 
24 routers. Each 5-way channel wires 4 routers to a node. A 
channel is identified by a number c. A processor node 
linked to channel c is identified as Pc. A router connected to 
channel c are identified as routers Rc,x when it is along the 
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positive X dimension, and as router Rc,y when it is along the 
positive Y dimension. Although one node is shown 
connected to each channel, it is possible to link multiple 
nodes without increasing the number of routers. 
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Figure 1: 4-ary 5-way Mesh 

2.1 Router Structure 

A router for k-ary m-way networks is depicted in Figure 2. 
A router has two channel interfaces, two channel 
arbitrators, and two groups of buffers with allocation/ 
mapping units, routing logic, and buffer arbitrators. The 
directionalities of the two groups of buffers are DIM+ and 
DIM–, where DIM is the dimensionality of the router. The 
directionality is used to identify a buffer set when selecting 
a driver for a channel or when accepting message flits. This 
identification should be unique across an m-way channel. 
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Figure 2: Internal Structure of a Router 

A physical channel consists of data, control, and arbitration 
lines. The Flit  lines carry one flit of a message. The Ack 
lines are used to acknowledge the transfer of a flit and to 
report the full status of the receiver buffer. The priority 
lines, Pri, are used for arbitration and carry the wired-OR 
sum of output priorities of requesting drivers. The Stat lines 
carry the availability and full status of receiver buffers. The 
Clk line is used to synchronize the operation of an m-way 
channel. For more details, see [5]. 

2.2 Message Format 

A message consists of a header flit followed by an arbitrary 
number (possibly zero) of body flits, followed by a tail flit. 
A Tag, identifying the kind of flit, is generated at the 
sending node and transmitted with each flit. Four tags are 
used: Header (H), Body (B), Tail (T), and Invalid (I). This 
is depicted in Figure 3. A valid tag is a request to transfer a 
flit across an m-way channel. In addition to the tag, the 
driver's buffer number, Buf, is transmitted with every flit. 
This number identifies the driver's buffer and can change on 
every router a message reaches. The tag and driver's buffer 
number are control information sent with every flit. 
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Figure 3: Message Format 

The header flit carries additional control information. It 
carries the routing Ways, which specifies all the directions 
of a header flit when it is transmitted across an m-way 
channel. The routing Ways is an m-bit field, where each bit 
is associated with one direction. The routing Ways is 
required to transfer header flits, but is not required to 
transfer body or tail flits. The Class field identifies the 
buffer class or the subset of buffers that can be allocated 
when a header flit is received. It is used to guide buffer 
allocation and to avoid deadlocks for some routing 
algorithms. The Region field specifies a rectangular region 
of processor nodes. It can be encoded absolutely as the 
addresses of the low and high corner nodes of a rectangular 
region. Alternatively, it can be encoded relative to a source 
node as increasing and decreasing offsets along all 
dimensions. Unicast messages specify regions with one 
destination node. The length field, Len, encodes the number 
of data bytes in the body and tail flits that follow the header 
flit. The length field can be used to allocate storage at the 
destination node as soon as a header flit is received. It can 
be also used to ensure the correctness of the tags and to 
establish a limit on the length of a message. 

2.3 Buffer State 

Each buffer in a buffer set has associated state information, 
as depicted in Figure 4. The allocation bit, A, indicates the 
allocation status. The full bit, F, indicates the full status. 
The driver number, Drv, indicates the driver set from which 
the flits of a message are received. The driver's buffer 
number, Buf, specifies a buffer in a buffers set. Drv and Buf 
locate the previous buffer along the routing path. The front 
pointer, Fptr, points to the front entry in a buffer. The rear 
pointer, Rptr, points to the rear entry. The receiver's full 
status, RF, indicates whether the receiver buffer of a 
message has a full status. 
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 A: Allocation bit 
F: Full bit 
Drv: Driver number 
Buf: Driver's Buffer number 
Fptr: Front Pointer 
Rptr: Rear Pointer 
RF: Receiver's Full status 

BUF0 

BUF1 

BUF2 

BUF3 

A   F   Drv   Buf   Fptr   Rptr RF 

 

Figure 4: Buffer associated state information 

2.4 Transferring a Flit 

At the beginning of a clock cycle, a driver puts a header flit 
on an m-way channel. The header flit includes the header 
tag, H, the driver's buffer number, Buf, and the routing 
Ways that specify the routing directions. All buffer 
allocation and mapping units across an m-way channel 
examine the header flit. However, some of them will accept 
the header flit, depending on the routing Ways. Once 
accepted, a free buffer is allocated for the header flit. 
Therefore, a header flit is transferred to multiple receivers 
in a single cycle. The receivers concurrently allocate 
buffers for the header flit. The allocated buffers may have 
different numbers. However, all of them identify the same 
driver, Drv, and the same driver's buffer number, Buf. 

In some cases, not all the receivers in the specified routing 
Ways may have free buffers. Some receivers may allocate a 
buffer. Others will not. An acknowledgement, Ack_out, 
indicates whether the allocation is successful or not. The 
wired-AND acknowledgement, Ack, of all Ack_out, is put 
on the shared channel. A header flit is not transferred until 
all the required buffers are allocated. Therefore, a driver 
may place a header flit on a channel more than once, until 
all the required buffers are allocated At that point, the 
header flit is transferred to all the receiver buffers. 

When a driver places a body or a tail flit on a channel (Tag 
= B or T), it does not include the routing Ways as part of the 
flit. All allocation and mapping units across a channel 
examine the flit that carries the driver's buffer number, Buf. 
They also receive the current driver number, Drv, from the 
channel arbitrator. All allocation and mapping units are 
searched in parallel by content for a match with Drv and 
Buf. If a match occurs and the allocation bit is set, the 
corresponding buffer allocation and mapping unit will 
accept the body or tail flit. Otherwise, it will reject it. 

3 Broadcast Algorithms 

The broadcast algorithms, described in this section, support 
broadcasting not only to the whole network, but also to a 
rectangular region of the network as defined in the message 
header. The source node is assumed to be part of the region. 
Otherwise, a message will have to be sent first to any node 
in the region, and then a second message will be broadcast 
to all the nodes in the region. 

3.1 The Minimum Spanning Tree (MST) Algorithm 

The MST is a tree-based broadcast algorithm in which a 
router in dimension i is allowed to send a message to all 
routers in dimensions ≥ i. Figure 5 shows the MST 
broadcast algorithm in a 4x4 region. Circles denote 
processor nodes, small squares denote channels, and arcs 
denote buffers. The black circle is the source node and the 
white ones are the destination nodes. Buffers exist in 
routers as well as in node interfaces. A source node injects a 
header flit to be received concurrently in buffers along four 
directions (X+, X–, Y+, Y–). The four routing directions 
are encoded as bits in Ways in the header flit. The Region 
field in the header flit initially encodes the 4x4 region 
depicted in Figure 5. The Region field is then modified at 
each receiver router to reflect the sub-region that a message 
should reach along its direction. For example, when an X+ 
buffer receives a header flit, it can route it to the next 
buffers along the X+, Y+, Y–, and node ejection buffer. 
However, it cannot route it along the X– direction. If a Y+ 
buffer receives a header flit, it can route it along the Y+ 
direction and to a node ejection buffer, but not along the 
X+, X–, or Y– directions. A body or a tail flit is transferred 
when all the specified routing directions are ready to 
receive it. 

 

 

Figure 5: MST Broadcasting in a 4x4 Region 

3.2 Deadlock Formation in MST 

Many deadlock situations occur when the MST algorithm is 
used. These deadlock situations can be obtained by 
recording the deadlock state of a network under simulation. 
Detailed descriptions of these deadlock situations are 
recorded in [4]. The causes of these deadlocks can be 
summarized as follows: 

a. Reserving buffer resources is not ordered. This 
happens when a header flit is to be transferred to buffers 
along multiple routing ways, say X+, Y+, Y–, and the 
local node, and that no buffer in the X+ routing way is 
available, but they are available in the other routing 
directions. If buffers are NOT allocated (or reserved) in 
an orderly fashion, say Y+ is allocated before X+, then 
this was found to be a cause for deadlock formation. 
Therefore, buffer allocation across an m-way channel 
must be ordered. 
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b. Advancing a header flit in some allocated buffers. 
This happens when a header flit requires the allocation 
of buffers along multiple routing ways, but some of 
these routing ways do not have available buffers. If a 
header flit is allowed to advance from a driver buffer to 
a receiver buffer along some routing ways while keeping 
a copy in the driver's buffer to be transferred to the other 
ways later, then this was found to be a cause of deadlock 
formation. Therefore, a header flit must not advance 
until the buffers in all the routing ways are allocated. 

c. Buffer size is less than the message length. In other 
words, the wormhole routing technique is also believed 
to be a cause of deadlocks for an MST broadcast 
algorithm. If one branch of an MST tree becomes 
blocked, then all other branches will become blocked as 
well. Therefore, the size of buffers must be big enough 
to store a whole message or packet [2], [3]. In other 
words virtual cut-through must be used rather than 
wormhole routing. This last statement, however, 
requires further investigation. 

3.3 The MST-Safe Algorithm 

The MST-Safe algorithm is a modified version of MST 
algorithm. Safety here means that the algorithm prevents 
deadlocks by satisfying the following 3 conditions: 

a. Buffer reservation is ordered. If buffers along all 
routing ways are available then they can be allocated 
concurrently. However, if not all buffers are available 
then they should be reserved in an orderly fashion: X+ 
then X– then Y+ then Y– … then an ejection buffer of a 
local node. More than one buffer can be reserved 
concurrently as long as the order of reservation is not 
violated. 

b. A header flit is advanced when the buffers along all 
routing ways are allocated. If the buffers along all 
routing ways are available then they can be allocated 
concurrently and the header flit can be advanced to all of 
them in one cycle. Otherwise, some of the buffers may 
be reserved according to condition a, but the header flit 
should not advance. 

c. Virtual cut-through rather than wormhole routing . 
This means that buffers are large enough to hold a 
message or a packet. 

3.4 The MST-Replica Algorithm 

This is another modified version of the MST algorithm. It 
satisfies conditions a and c of the MST-safe algorithm. 
However, it provides more flexibility for condition b. If a 
header flit is to be sent along multiple routing ways, which 
are not all available, then the header flit is allowed to 
proceed in some of the routing ways, and a replica message 
is produced to allow the message to proceed along the 
remaining routing ways. 

An example that illustrates the MST-replica algorithm is 
depicted in Figure 6. In this example, a header flit in buffer 
buf is to be sent to all the nodes in regions 1 and 2. The 
routing ways are X+, Y+, Y–, and the local node. If a buffer 
is available along the X+, Y–, and local node directions, but 
all buffers are allocated along the Y+ direction then the 
message header in buf is advanced only to the X+ direction 
to be broadcast to region 2, while a replica message is 
produced for region 1. Advancing the header along the X+ 
direction only, but not along the Y– direction, will preserve 
the ordering of buffer allocation. Since Y+ buffers are not 
available (dashed arrow in Figure 6), we cannot allocate 
buffers along the Y– direction or in the node ejection 
buffer. The replica message will be transmitted 
independently to region 1 when a Y+ buffer becomes 
available. Message replication requires hardware support 
and can be implemented internally to a router by allocating 
a new buffer, replicating the message flits, and splitting a 
region into two regions in the header flits of the original 
and replicated message. Alternatively, message replication 
can be implemented at a node interface, but again with 
special hardware support. Message replication increases the 
network traffic. 

The worst case of MST-replica is when a replica message is 
created for each routing direction. In this case, MST-replica 
degenerates to an MST-unicast algorithm. 

 

region2 

region1 

buf 

 

Figure 6: MST Replica in a 4x4 Region 

3.5 The MST-Unicast Algorithm 

Broadcasting can also be implemented using multiple 
unicast messages to all the destinations. This is called 
unicast-based broadcasting. The advantage of this approach 
is that it requires no special support from the hardware. The 
disadvantage is that it produces more traffic. 

The MST-Unicast algorithm is a unicast-based broadcast 
algorithm that works almost the same as MST. Instead of 
putting a message flit once on a channel and the message 
flit is transferred to all routing directions in a single cycle, 
copies of the same message are generated at a node and 
each copy is transferred at different cycles to different 
directions. A message is replicated at each intermediate 
node and forwarded to the nodes in the remaining sub-
regions. Dimension-order routing is used to route messages. 
Therefore the algorithm is deadlock free in a mesh 
structure. 
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3.6 Recursive Doubling (RD) Algorithm 

The RD algorithm makes each node holding a copy of a 
message responsible for a partition of a row or column. The 
node divides its partition in half and sends a copy of a 
message to the node in the other half that occupies the same 
relative position [10]. Figure 7 shows the RD algorithm in 
an 8x8 region. When a message is first generated, the 
source produces six different messages each to a different 
destination and with a different region. Each of these 
messages will be delivered to their destination using XY-
deterministic routing. After receiving a message that 
requires forwarding, a node copies it and injects the copy 
back into the network. When each of the new messages 
reaches its destination, new copies are produced and sent to 
other destinations until the whole region receives the 
message. 

As with other unicast-based broadcast algorithms, the 
number of generated and injected messages in the RD 
algorithm is equal to the number of nodes in a region. 
Another disadvantage is that the generated messages might 
pass by other nodes that have not received the message yet 
on their way to their destinations. However, the message is 
not delivered to these other nodes until later. The RD 
algorithm is deadlock free since it uses dimension-order 
routing to send messages. 

 

(d) step 4 (e) step 5 (f) step 6 

(a) step 1 (b) step 2 (c) step 3 

 

Figure 7: RD Broadcast in an 8x8 Mesh [10]. 

4 Network Simulation and Performance 

To measure the performance of broadcast algorithms 
implemented in k-ary m-way networks, a number of mesh 
and hypercube networks have been simulated varying few 
parameters in every run. The simulator is a C++ program 
that simulates k-ary m-way networks at the flit level. A flit 
transfer over an m-way channel is assumed to take place in 
one cycle. The simulator can be configured to support 
different parameters and can generate various statistics. 

The latency incurred by a message is measured from the 
time of generation at a source node until its tail is ejected at 
a destination node. Latency is measured from the 
generation time to include the time incurred by the message 
at the source queue. Traffic is measured as the percentage 

of utilization of channels. A channel is utilized during a 
clock cycle if it is used to transfer a flit successfully. The 
injection rate of a node is the percentage of channel cycles 
used to inject a flit successfully into the network. The 
ejection rate is the percentage of channel cycles used to 
eject a flit successfully from the network. The average 
traffic, injection, and ejection rates are taken over all 
channels and nodes in the network over a period of time. 

4.1 Effect of the Broadcast Algorithm 

The purpose of this experiment is to show the performance 
of the tree-based algorithms that take advantage of the 
shared nature of m-way channels versus broadcast 
algorithms that are unicast-based. The tree-based 
algorithms are MST-Safe and MST-Replica. The unicast-
based algorithms are MST-unicast and RD. Two medium-
sized networks are simulated, an 8x8x8 mesh and a 9D 
hypercube. The number of buffers in each buffer set along 
each routing direction is four. All messages carry 64 bytes 
of data and consist of 5 flits (1 header + 4 data). Each flit is 
assumed to carry 16 bytes of data [5]. 

The performance of a 3D mesh is shown in Figures 8 and 9. 
Figure 8 shows the average latency and ejection rate, which 
is a measure of throughput, and Figure 9 shows the network 
traffic. Figures 10 and 11 are for a 9D hypercube. The 
figures reveal that the tree-based broadcast algorithms, 
MST Safe or MST Replica, clearly outperform the unicast-
based ones, MST Unicast and RD. The latency of a tree-
based algorithm is much lower than the latency of a unicast-
based broadcast algorithm. 
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Figures 8 through 11 also reveal that although the network 
traffic for a tree-based broadcast algorithm is comparable to 
that of a unicast-based broadcast algorithm, the throughput 
of a tree-based algorithm is much better because it saturates 
at higher ejection rates. The MST unicast and the Recursive 
Doubling algorithms have almost identical performance. 
The MST safe algorithm is clearly the best and results in 
the lowest latencies and highest throughputs at saturation. 

4.2 Network Performance under a mix of Messages 

In this experiment, the performance of 3D mesh network 
with 16x8x8 channels and nodes is simulated under a 
different mix of broadcast and unicast messages. The mix is 
5% broadcast and 95% unicast in a first run, while it is 95% 
broadcast and 5% unicast in a second run. The broadcast 
algorithm used is MST Safe, and the unicast algorithm is 
dimension-order routing. The number of buffers is 4 along 
each routing direction. Each message consists of 5 extra 
wide flits that include 64 bytes of data. 
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Figures 12 and 13 show the difference between injection 
and ejection rates under a different mix of broadcast 
messages and unicast messages. When the percentage of 
broadcast messages increases then less messages will be 
injected but more messages will be ejected. The injection 
rate is, however, more sensitive to broadcasting than the 
ejection rate. 

5 Conclusion and Further Research 

Broadcast algorithms that take advantage of the shared 
nature of an m-way channel perform better than those who 
do not exploit that characteristic. This is why MST Safe and 
MST Replica perform better than MST unicast and RD. The 
average latency is much less in MST Safe than in the 
unicast-based algorithms because messages do not have to 
be re-injected into the network after being ejected. 
Although the network traffic is comparable, the average 
ejection rate is the highest in MST Safe because a channel 
transaction is used to transfer a flit to multiple directions, 
rather than to single directions. 

The traffic in a mesh network reached only 35% under 
saturation for the MST Safe algorithm. We are currently 
trying to improve the traffic to better utilize the shared 
channels. Improving the traffic will improve the injection 
and ejection rates. Further research in this direction is to 
improve the MST Safe algorithm to permit its use in a torus 
structure, and to relax the requirement of virtual cut-
through routing to wormhole routing (Condition c in 
Section 3.3). 
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