
In Proceedings of the ISCA 13th International Conference on Parallel and Distributed Computing Systems

Region Broadcasting in k-ary m-way Networks

Muhammed Mudawwar and Rania Mameesh
Computer Science Department

The American University in Cairo

mudawwar@aucegypt.edu
rmameesh@cs.aucegypt.edu

Abstract

k-ary m-way networks are especially suitable for
broadcasting because of the shared nature of m-way
channels. A flit placed on an m-way channel can be
accepted concurrently by adjacent routers and node
interfaces during a given clock cycle. This paper discusses
two modified Minimum Spanning Tree (MST) broadcast
algorithms that are designed to work efficiently in k-ary m-
way networks. The algorithms are the MST-safe and MST-
replica. The two tree-based algorithms are deadlock free
and can be safely mixed with dimension-order routing for
unicast messages. The performance of k-ary m-way mesh
and hypercube networks is evaluated using the MST-Safe
and MST-Replica algorithms and compared with existing
unicast-based broadcast algorithms, which are Recursive
Doubling and MST-unicast. The results clearly favor the
MST-safe and MST-replica over the unicast-based
broadcast algorithms.

Keywords: Region broadcasting, k-ary m-way networks,
MST-safe, MST-replica, MST-unicast, Recursive Doubling.

1 Introduction

The communication operations among nodes of an
interconnection network can be either point-to-point or
collective, depending on whether exactly two or more than
two processes participate in the communication. Collective
operations, such as replication, are operations that involve
the movement of global data [2], [10]. Multicast and
broadcast are examples of collective communication.

Perhaps the most essential collective communication
routine is broadcast, in which one source sends a message
to all the nodes in the network. The broadcast operation can
be generalized to allow one source node to send a message
to a rectangular region of nodes, rather than to all nodes.
This is referred to as region broadcasting in this paper.
Region broadcasting is a special case of multicasting, in
which a source node sends a message to an arbitrary
collection of destination nodes. Region broadcasting can be
implemented as a collective communication primitive in a
k-ary m-way network quite easily. A large number of
parallel applications can benefit from this operation.

Broadcasting can be unicast-based. A source node sends a
message to a subset of the destinations. Each node holding
a copy of the message forwards it to another subset of the

destinations that have not yet received it, and so on until the
message is delivered to all destination nodes. An example
of a unicast-based broadcast algorithm is the Recursive
Doubling algorithm [10], [11].

Broadcasting can be also tree-based. A source message gets
replicated at intermediate routers to reach nodes along
different routing paths. The same message is delivered to all
the nodes on a given routing path. An example of a tree-
based broadcast algorithm is the Minimum Spanning Tree
(MST) for meshes [2], [3].

This paper extends the work in [5] and [6] by adding a
broadcast facility to a k-ary m-way router. Tree-based
broadcast algorithms make use of the shared nature of m-
way channels because they allow a message to be sent in
more than one direction in a given cycle. The MST is a
tree-based broadcast algorithm but it is not deadlock free.
Two modified MST broadcast algorithms, MST-safe and
MST-replica, are discussed in this paper. These two
algorithms are deadlock-free in mesh and hypercube
topologies and can degenerate to dimension-order routing
for unicast messages.

2 k-ary m-way Interconnection Networks

A k-ary m-way network is a multi-dimensional mesh or
torus structure constructed using m-way routers and
channels [5]. An m-way (called also multiway) channel is a
physical channel shared by a maximum number, m, of
routers or processors. It is the physical wiring of m links.
An m-way router interfaces two m-way channels only,
irrespective of the network topology or dimension. It has a
constant degree 2. An m-way router defines the operation of
an m-way channel. At any clock cycle, only one of the m
routers (or processors) linked to an m-way channel can
drive the channel. However, all m routers (and processors)
can concurrently read the channel. The factor k is the
number of m-way channels along each dimension. In
practice different values of k can be assigned to different
dimensions.

An example of a 4-ary 5-way mesh network is shown in
Figure 1. This is a 2-dimensional mesh with 16 nodes and
24 routers. Each 5-way channel wires 4 routers to a node. A
channel is identified by a number c. A processor node
linked to channel c is identified as Pc. A router connected to
channel c are identified as routers Rc,x when it is along the

In Proceedings of the ISCA 13th International Conference on Parallel and Distributed Computing Systems

positive X dimension, and as router Rc,y when it is along the
positive Y dimension. Although one node is shown
connected to each channel, it is possible to link multiple
nodes without increasing the number of routers.

c7

c11

c1

c5

c2

c6

c9 c10

c0 R0x

P0
R0y

R1x

P1
R1y P2

R2y

c4 R4x

P4
R4y

R5x

P5
R5y P6

R6y

c8 R8x

P8

R9x

P9 P10

R6x

c3R2x

R8y R9y

P3

P7

P11

P15

c15c13 c14c12

R7y

R3y

R14x

P12 P13 P14

R13xR12x

R10y R11y

R10x

Figure 1: 4-ary 5-way Mesh

2.1 Router Structure

A router for k-ary m-way networks is depicted in Figure 2.
A router has two channel interfaces, two channel
arbitrators, and two groups of buffers with allocation/
mapping units, routing logic, and buffer arbitrators. The
directionalities of the two groups of buffers are DIM+ and
DIM–, where DIM is the dimensionality of the router. The
directionality is used to identify a buffer set when selecting
a driver for a channel or when accepting message flits. This
identification should be unique across an m-way channel.

 DIM

Drv

Drv Req OE

Req OE

Ack

Clk

Flit

Stat

Pri

Ack

Clk Ack_out

Stat_out

Stat_in

Ack_in

Ack_in

Ack_out

Pri_sum

Pri_out

Flit

Stat

Pri

Flit_in

Pri_out

C
ha

n
n

el
 In

te
rf

ac
e

1

Flit_out

Pri_sum

C
ha

n
n

el
 In

te
rf

ac
e

0

DIM+ Buffer Set

Stat_out

Flit_in

Buffer Alloc
and Mapping
(DIM+ way)

Channel Arb
(DIM+ set)

R
ou

tin
g

B
uf

 A
rb

Flit_out

DIM– Buffer Set

R
ou

tin
g

B
uf

 A
rb

Buffer Alloc
and Mapping
(DIM– way)

Stat_in

Channel Arb
(DIM– set)

Figure 2: Internal Structure of a Router

A physical channel consists of data, control, and arbitration
lines. The Flit lines carry one flit of a message. The Ack
lines are used to acknowledge the transfer of a flit and to
report the full status of the receiver buffer. The priority
lines, Pri, are used for arbitration and carry the wired-OR
sum of output priorities of requesting drivers. The Stat lines
carry the availability and full status of receiver buffers. The
Clk line is used to synchronize the operation of an m-way
channel. For more details, see [5].

2.2 Message Format

A message consists of a header flit followed by an arbitrary
number (possibly zero) of body flits, followed by a tail flit.
A Tag, identifying the kind of flit, is generated at the
sending node and transmitted with each flit. Four tags are
used: Header (H), Body (B), Tail (T), and Invalid (I). This
is depicted in Figure 3. A valid tag is a request to transfer a
flit across an m-way channel. In addition to the tag, the
driver's buffer number, Buf, is transmitted with every flit.
This number identifies the driver's buffer and can change on
every router a message reaches. The tag and driver's buffer
number are control information sent with every flit.

Buf

Buf
Buf
Buf
Buf

B

T

H

B

Data
. . .
Data

 Ways Class Region Len …
Data

B

Figure 3: Message Format

The header flit carries additional control information. It
carries the routing Ways, which specifies all the directions
of a header flit when it is transmitted across an m-way
channel. The routing Ways is an m-bit field, where each bit
is associated with one direction. The routing Ways is
required to transfer header flits, but is not required to
transfer body or tail flits. The Class field identifies the
buffer class or the subset of buffers that can be allocated
when a header flit is received. It is used to guide buffer
allocation and to avoid deadlocks for some routing
algorithms. The Region field specifies a rectangular region
of processor nodes. It can be encoded absolutely as the
addresses of the low and high corner nodes of a rectangular
region. Alternatively, it can be encoded relative to a source
node as increasing and decreasing offsets along all
dimensions. Unicast messages specify regions with one
destination node. The length field, Len, encodes the number
of data bytes in the body and tail flits that follow the header
flit. The length field can be used to allocate storage at the
destination node as soon as a header flit is received. It can
be also used to ensure the correctness of the tags and to
establish a limit on the length of a message.

2.3 Buffer State

Each buffer in a buffer set has associated state information,
as depicted in Figure 4. The allocation bit, A, indicates the
allocation status. The full bit, F, indicates the full status.
The driver number, Drv, indicates the driver set from which
the flits of a message are received. The driver's buffer
number, Buf, specifies a buffer in a buffers set. Drv and Buf
locate the previous buffer along the routing path. The front
pointer, Fptr, points to the front entry in a buffer. The rear
pointer, Rptr, points to the rear entry. The receiver's full
status, RF, indicates whether the receiver buffer of a
message has a full status.

In Proceedings of the ISCA 13th International Conference on Parallel and Distributed Computing Systems

 A: Allocation bit
F: Full bit
Drv: Driver number
Buf: Driver's Buffer number
Fptr: Front Pointer
Rptr: Rear Pointer
RF: Receiver's Full status

BUF0

BUF1

BUF2

BUF3

A F Drv Buf Fptr Rptr RF

Figure 4: Buffer associated state information

2.4 Transferring a Flit

At the beginning of a clock cycle, a driver puts a header flit
on an m-way channel. The header flit includes the header
tag, H, the driver's buffer number, Buf, and the routing
Ways that specify the routing directions. All buffer
allocation and mapping units across an m-way channel
examine the header flit. However, some of them will accept
the header flit, depending on the routing Ways. Once
accepted, a free buffer is allocated for the header flit.
Therefore, a header flit is transferred to multiple receivers
in a single cycle. The receivers concurrently allocate
buffers for the header flit. The allocated buffers may have
different numbers. However, all of them identify the same
driver, Drv, and the same driver's buffer number, Buf.

In some cases, not all the receivers in the specified routing
Ways may have free buffers. Some receivers may allocate a
buffer. Others will not. An acknowledgement, Ack_out,
indicates whether the allocation is successful or not. The
wired-AND acknowledgement, Ack, of all Ack_out, is put
on the shared channel. A header flit is not transferred until
all the required buffers are allocated. Therefore, a driver
may place a header flit on a channel more than once, until
all the required buffers are allocated At that point, the
header flit is transferred to all the receiver buffers.

When a driver places a body or a tail flit on a channel (Tag
= B or T), it does not include the routing Ways as part of the
flit. All allocation and mapping units across a channel
examine the flit that carries the driver's buffer number, Buf.
They also receive the current driver number, Drv, from the
channel arbitrator. All allocation and mapping units are
searched in parallel by content for a match with Drv and
Buf. If a match occurs and the allocation bit is set, the
corresponding buffer allocation and mapping unit will
accept the body or tail flit. Otherwise, it will reject it.

3 Broadcast Algorithms

The broadcast algorithms, described in this section, support
broadcasting not only to the whole network, but also to a
rectangular region of the network as defined in the message
header. The source node is assumed to be part of the region.
Otherwise, a message will have to be sent first to any node
in the region, and then a second message will be broadcast
to all the nodes in the region.

3.1 The Minimum Spanning Tree (MST) Algorithm

The MST is a tree-based broadcast algorithm in which a
router in dimension i is allowed to send a message to all
routers in dimensions ≥ i. Figure 5 shows the MST
broadcast algorithm in a 4x4 region. Circles denote
processor nodes, small squares denote channels, and arcs
denote buffers. The black circle is the source node and the
white ones are the destination nodes. Buffers exist in
routers as well as in node interfaces. A source node injects a
header flit to be received concurrently in buffers along four
directions (X+, X–, Y+, Y–). The four routing directions
are encoded as bits in Ways in the header flit. The Region
field in the header flit initially encodes the 4x4 region
depicted in Figure 5. The Region field is then modified at
each receiver router to reflect the sub-region that a message
should reach along its direction. For example, when an X+
buffer receives a header flit, it can route it to the next
buffers along the X+, Y+, Y–, and node ejection buffer.
However, it cannot route it along the X– direction. If a Y+
buffer receives a header flit, it can route it along the Y+
direction and to a node ejection buffer, but not along the
X+, X–, or Y– directions. A body or a tail flit is transferred
when all the specified routing directions are ready to
receive it.

Figure 5: MST Broadcasting in a 4x4 Region

3.2 Deadlock Formation in MST

Many deadlock situations occur when the MST algorithm is
used. These deadlock situations can be obtained by
recording the deadlock state of a network under simulation.
Detailed descriptions of these deadlock situations are
recorded in [4]. The causes of these deadlocks can be
summarized as follows:

a. Reserving buffer resources is not ordered. This
happens when a header flit is to be transferred to buffers
along multiple routing ways, say X+, Y+, Y–, and the
local node, and that no buffer in the X+ routing way is
available, but they are available in the other routing
directions. If buffers are NOT allocated (or reserved) in
an orderly fashion, say Y+ is allocated before X+, then
this was found to be a cause for deadlock formation.
Therefore, buffer allocation across an m-way channel
must be ordered.

In Proceedings of the ISCA 13th International Conference on Parallel and Distributed Computing Systems

b. Advancing a header flit in some allocated buffers.
This happens when a header flit requires the allocation
of buffers along multiple routing ways, but some of
these routing ways do not have available buffers. If a
header flit is allowed to advance from a driver buffer to
a receiver buffer along some routing ways while keeping
a copy in the driver's buffer to be transferred to the other
ways later, then this was found to be a cause of deadlock
formation. Therefore, a header flit must not advance
until the buffers in all the routing ways are allocated.

c. Buffer size is less than the message length. In other
words, the wormhole routing technique is also believed
to be a cause of deadlocks for an MST broadcast
algorithm. If one branch of an MST tree becomes
blocked, then all other branches will become blocked as
well. Therefore, the size of buffers must be big enough
to store a whole message or packet [2], [3]. In other
words virtual cut-through must be used rather than
wormhole routing. This last statement, however,
requires further investigation.

3.3 The MST-Safe Algorithm

The MST-Safe algorithm is a modified version of MST
algorithm. Safety here means that the algorithm prevents
deadlocks by satisfying the following 3 conditions:

a. Buffer reservation is ordered. If buffers along all
routing ways are available then they can be allocated
concurrently. However, if not all buffers are available
then they should be reserved in an orderly fashion: X+
then X– then Y+ then Y– … then an ejection buffer of a
local node. More than one buffer can be reserved
concurrently as long as the order of reservation is not
violated.

b. A header flit is advanced when the buffers along all
routing ways are allocated. If the buffers along all
routing ways are available then they can be allocated
concurrently and the header flit can be advanced to all of
them in one cycle. Otherwise, some of the buffers may
be reserved according to condition a, but the header flit
should not advance.

c. Virtual cut-through rather than wormhole routing .
This means that buffers are large enough to hold a
message or a packet.

3.4 The MST-Replica Algorithm

This is another modified version of the MST algorithm. It
satisfies conditions a and c of the MST-safe algorithm.
However, it provides more flexibility for condition b. If a
header flit is to be sent along multiple routing ways, which
are not all available, then the header flit is allowed to
proceed in some of the routing ways, and a replica message
is produced to allow the message to proceed along the
remaining routing ways.

An example that illustrates the MST-replica algorithm is
depicted in Figure 6. In this example, a header flit in buffer
buf is to be sent to all the nodes in regions 1 and 2. The
routing ways are X+, Y+, Y–, and the local node. If a buffer
is available along the X+, Y–, and local node directions, but
all buffers are allocated along the Y+ direction then the
message header in buf is advanced only to the X+ direction
to be broadcast to region 2, while a replica message is
produced for region 1. Advancing the header along the X+
direction only, but not along the Y– direction, will preserve
the ordering of buffer allocation. Since Y+ buffers are not
available (dashed arrow in Figure 6), we cannot allocate
buffers along the Y– direction or in the node ejection
buffer. The replica message will be transmitted
independently to region 1 when a Y+ buffer becomes
available. Message replication requires hardware support
and can be implemented internally to a router by allocating
a new buffer, replicating the message flits, and splitting a
region into two regions in the header flits of the original
and replicated message. Alternatively, message replication
can be implemented at a node interface, but again with
special hardware support. Message replication increases the
network traffic.

The worst case of MST-replica is when a replica message is
created for each routing direction. In this case, MST-replica
degenerates to an MST-unicast algorithm.

region2

region1

buf

Figure 6: MST Replica in a 4x4 Region

3.5 The MST-Unicast Algorithm

Broadcasting can also be implemented using multiple
unicast messages to all the destinations. This is called
unicast-based broadcasting. The advantage of this approach
is that it requires no special support from the hardware. The
disadvantage is that it produces more traffic.

The MST-Unicast algorithm is a unicast-based broadcast
algorithm that works almost the same as MST. Instead of
putting a message flit once on a channel and the message
flit is transferred to all routing directions in a single cycle,
copies of the same message are generated at a node and
each copy is transferred at different cycles to different
directions. A message is replicated at each intermediate
node and forwarded to the nodes in the remaining sub-
regions. Dimension-order routing is used to route messages.
Therefore the algorithm is deadlock free in a mesh
structure.

In Proceedings of the ISCA 13th International Conference on Parallel and Distributed Computing Systems

3.6 Recursive Doubling (RD) Algorithm

The RD algorithm makes each node holding a copy of a
message responsible for a partition of a row or column. The
node divides its partition in half and sends a copy of a
message to the node in the other half that occupies the same
relative position [10]. Figure 7 shows the RD algorithm in
an 8x8 region. When a message is first generated, the
source produces six different messages each to a different
destination and with a different region. Each of these
messages will be delivered to their destination using XY-
deterministic routing. After receiving a message that
requires forwarding, a node copies it and injects the copy
back into the network. When each of the new messages
reaches its destination, new copies are produced and sent to
other destinations until the whole region receives the
message.

As with other unicast-based broadcast algorithms, the
number of generated and injected messages in the RD
algorithm is equal to the number of nodes in a region.
Another disadvantage is that the generated messages might
pass by other nodes that have not received the message yet
on their way to their destinations. However, the message is
not delivered to these other nodes until later. The RD
algorithm is deadlock free since it uses dimension-order
routing to send messages.

(d) step 4 (e) step 5 (f) step 6

(a) step 1 (b) step 2 (c) step 3

Figure 7: RD Broadcast in an 8x8 Mesh [10].

4 Network Simulation and Performance

To measure the performance of broadcast algorithms
implemented in k-ary m-way networks, a number of mesh
and hypercube networks have been simulated varying few
parameters in every run. The simulator is a C++ program
that simulates k-ary m-way networks at the flit level. A flit
transfer over an m-way channel is assumed to take place in
one cycle. The simulator can be configured to support
different parameters and can generate various statistics.

The latency incurred by a message is measured from the
time of generation at a source node until its tail is ejected at
a destination node. Latency is measured from the
generation time to include the time incurred by the message
at the source queue. Traffic is measured as the percentage

of utilization of channels. A channel is utilized during a
clock cycle if it is used to transfer a flit successfully. The
injection rate of a node is the percentage of channel cycles
used to inject a flit successfully into the network. The
ejection rate is the percentage of channel cycles used to
eject a flit successfully from the network. The average
traffic, injection, and ejection rates are taken over all
channels and nodes in the network over a period of time.

4.1 Effect of the Broadcast Algorithm

The purpose of this experiment is to show the performance
of the tree-based algorithms that take advantage of the
shared nature of m-way channels versus broadcast
algorithms that are unicast-based. The tree-based
algorithms are MST-Safe and MST-Replica. The unicast-
based algorithms are MST-unicast and RD. Two medium-
sized networks are simulated, an 8x8x8 mesh and a 9D
hypercube. The number of buffers in each buffer set along
each routing direction is four. All messages carry 64 bytes
of data and consist of 5 flits (1 header + 4 data). Each flit is
assumed to carry 16 bytes of data [5].

The performance of a 3D mesh is shown in Figures 8 and 9.
Figure 8 shows the average latency and ejection rate, which
is a measure of throughput, and Figure 9 shows the network
traffic. Figures 10 and 11 are for a 9D hypercube. The
figures reveal that the tree-based broadcast algorithms,
MST Safe or MST Replica, clearly outperform the unicast-
based ones, MST Unicast and RD. The latency of a tree-
based algorithm is much lower than the latency of a unicast-
based broadcast algorithm.

0

50

100

150

200

250

300

�� ��� ��� ��� ���

$YHUDJH (MHFWLRQ 5DWH 3HU 1RGH

$
Y
H
UD
J
H
/
D
WH
Q
F
\
�F
\
F
OH
V
�

067 6DIH 067 5HSOLFD
5' 067 8QLFDVW

Figure 8 : Latency and Ejection Rate in an 8x8x8 Mesh

In Proceedings of the ISCA 13th International Conference on Parallel and Distributed Computing Systems

�

��

���

���

���

���

���

�� ��� ��� ��� ��� ��� ���

7UDIILF �� RI FKDQQHO XWLOL]DWLRQ�

$
Y
H
UD
J
H
/
D
WH
Q
F
\
�F
\
F
OH
V
�

067 6DIH 067 5HSOLFD
5' 067 8QLFDVW

Figure 9: Latency and Traffic in an 8x8x8 Mesh

0

50

100

150

200

250

300

350

0% 10% 20% 30% 40% 50% 60% 70%
$YHUDJH (MHFWLRQ 5DWH 3HU 1RGH

$
Y
H
UD
J
H
/
D
WH
Q
F
\
�F
\
F
OH
V
�

MST Safe MST Replica
RD MST Unicast

Figure 10: Latency and Ejection Rate in a 9D Hypercube

�

��

���

���

���

���

���

�� ��� ��� ��� ��� ����

7UDIILF ��RI FKDQQHO XWLOL]DWLRQ�

$
Y
H
UD
J
H
/
D
WH
Q
F
\
�F
\
F
OH
V
�

067 6DIH 067 5HSOLFD
5' 067 8QLFDVW

Figure 11: Latency and Traffic in 9D Hypercube

Figures 8 through 11 also reveal that although the network
traffic for a tree-based broadcast algorithm is comparable to
that of a unicast-based broadcast algorithm, the throughput
of a tree-based algorithm is much better because it saturates
at higher ejection rates. The MST unicast and the Recursive
Doubling algorithms have almost identical performance.
The MST safe algorithm is clearly the best and results in
the lowest latencies and highest throughputs at saturation.

4.2 Network Performance under a mix of Messages

In this experiment, the performance of 3D mesh network
with 16x8x8 channels and nodes is simulated under a
different mix of broadcast and unicast messages. The mix is
5% broadcast and 95% unicast in a first run, while it is 95%
broadcast and 5% unicast in a second run. The broadcast
algorithm used is MST Safe, and the unicast algorithm is
dimension-order routing. The number of buffers is 4 along
each routing direction. Each message consists of 5 extra
wide flits that include 64 bytes of data.

0

50

100

150

200

250

0.0% 0.5% 1.0% 1.5% 2.0% 2.5% 3.0%

Average Injection Rate Per Node

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
es

)

5% Broadcast 95 % Broadcast

Figure 12: Injection Rate in a 16x8x8 Mesh with a
different mix of unicast and broadcast messages

0

50

100

150

200

250

10% 15% 20% 25% 30% 35%

Average Ejection Rate Per Node

A
er

ag
e

La
te

nc
y

(c
yc

le
s)

5% Broadcast 95% Broadcast

Figure 13: Ejection Rate in a 16x8x8 Mesh with a
different mix of unicast and broadcast messages

In Proceedings of the ISCA 13th International Conference on Parallel and Distributed Computing Systems

Figures 12 and 13 show the difference between injection
and ejection rates under a different mix of broadcast
messages and unicast messages. When the percentage of
broadcast messages increases then less messages will be
injected but more messages will be ejected. The injection
rate is, however, more sensitive to broadcasting than the
ejection rate.

5 Conclusion and Further Research

Broadcast algorithms that take advantage of the shared
nature of an m-way channel perform better than those who
do not exploit that characteristic. This is why MST Safe and
MST Replica perform better than MST unicast and RD. The
average latency is much less in MST Safe than in the
unicast-based algorithms because messages do not have to
be re-injected into the network after being ejected.
Although the network traffic is comparable, the average
ejection rate is the highest in MST Safe because a channel
transaction is used to transfer a flit to multiple directions,
rather than to single directions.

The traffic in a mesh network reached only 35% under
saturation for the MST Safe algorithm. We are currently
trying to improve the traffic to better utilize the shared
channels. Improving the traffic will improve the injection
and ejection rates. Further research in this direction is to
improve the MST Safe algorithm to permit its use in a torus
structure, and to relax the requirement of virtual cut-
through routing to wormhole routing (Condition c in
Section 3.3).

References

[1] W. J. Dally and H. Aoki, Deadlock-Free Adaptive
Routing in Multicomputer Networks using Virtual
Channels, IEEE Transactions on Parallel and Distributed
Systems, Vol. 4, No. 4, pp. 466-475, April 1993.

[2] J. Duato, S. Yalamanchili and L. Ni, Interconnection
Networks: An Engineering Approach, IEEE Computer
Society Press, 1997.

[3] X. Lin and L. M. Ni, Deadlock-Free Multicast
Wormhole Routing in Multicomputer Networks,
Proceedings of the 18th International Conference on
Computer Architecture, pp. 116-126, May 1991.

[4] R. Mameesh, Region Broadcasting in Multiway
Channel Networks, Master Thesis, Computer Science
Department, The American University in Cairo, January
2000.

[5] M. F. Mudawwar, A Switch-Free Router for k-ary m-
way Networks, in Proceedings of the International
Conference on Parallel and Distributed Processing
Techniques and Applications, June 2000.

[6] M. F. Mudawwar, Multiway Channels in
Interconnection Networks, in Proceedings of the ISCA 12th

International Conference on Parallel and Distributed
Computing Systems, pp. 506-513, August 1999.

[7] T. M. Pinkston and S. Warnakulasuriya, On Deadlocks
in Interconnection Networks, Proceedings of the 24th
International Symposium on Computer Architecture, pp.
38-50, June 1997.

[8] L. Schwiebert and D. N. Jayasimha, A Universal Proof
Technique for Deadlock-Free Routing in Interconnection
Networks, Proceedings of the Symposium on Parallel
Algorithms and Architectures, pp. 175-185, July 1995.

[9] J.-Y. Tien, C.-T. Ho, and W.-P. Yang, Broadcasting on
Incomplete Hypercubes, IEEE Transactions on Computers,
Vol. 42 No. 11, pp. 1393-1398, November 1993.

[10] Y.-J. Tsai and P. K. Mckinley, An Extended
Dominating Node Approach to Broadcast and Global
Combine in Multiport Wormhole-Routed Mesh Networks,
IEEE Transactions on Parallel and Distributed Systems,
Vol. 8, No. 1, pp. 41-57, January 1997.

[11] Y.-J. Tsai and P. K. Mckinley, A Broadcast Algorithm
for All-Port Wormhole-Routed Torus Networks, IEEE
Transactions on Parallel and Distributed Systems, Vol. 7,
No. 8, pp. 876-885, August 1996.

[12] J. Wu, Safety Levels-An Efficient Mechanism for
Achieving Reliable Broadcasting in Hypercubes, IEEE
Transactions on Computers, Vol. 44, No. 5, pp. 702-706,
May 1995.

