Proceedings of the ISCA " International Conference on Parallel and Distributed Computing Systems, September 1998

XTPVM : An Extended Threaded Parallel Virtual Machine

Tarek Abdel-Radi and Muhammed Mudawwar
{ tradi, mudawwar }@aucegypt.edu
The American University in Cairo
113 Kasr Al Aini, Cairo, Egypt

ABSTRACT machines, although at present their use is restricted to coarse grained

Providing the parallel programming community with a singlé©mputation.
abstract view to a heterogeneous network of workstations is a very It is thus required to allow parallel program writers to make use
intrinsic task. Parallel programmers want a facility to combine a sef the abundantly available idle workstation power on a LAN
of workstations and use this pool to create and execute threawlgansparently by giving the ability to define and run threads
Alleviating the programmers from time consuming mechanisms sutiansparently and remotely. This can be achieved by using a virtual
as managing communication among the threads over a netwamachine as a layer of abstraction that allows the application
scheduling threads and balancing the load through thread migratigiegrammer to view different heterogeneous computers in a single
are all crucial. We developed XTPVM (eXtended TPVM) to be @erspective. A virtual machine takes advantage of the underlying
transparent thread scheduling and migrating virtual machine basedaoperating system and network resources and presents a usable
TPVM (Threaded Parallel Virtual Machine) that provides parallgbrogramming interface to applications. A thread-based parallel virtual
programmers with the ability of using a network of workstations fomachine should be able to schedule and migrate threads
parallel processing. It considers heterogeneity and differences tiansparently, and adapt to changing workstation loads. Just as
processing power between workstations, and also the dynamics of ttesmal threads can share memory, threads in the parallel virtual
system as a whole. In such a computing environment, where the os&chine should also be able to share memory.

of resources vary as other applications consume and release The goal of XTPVM is to develop a thread-based parallel virtual
resources, transparent scheduling of parallel threads onto the l§agkhine that provide a library of functions to develop parallel
loaded hosts was achieved. As workstation loads vary due to their Wsggrams, that will schedule threads transparently on a network of
by other users, XTPVM adapts by migrating ready threads befofgyrkstations, and that will maintain a load balance through thread
being committed from loaded workstations to less loaded ones usipgyration. Thus the application programmer will have no control
DGP (Distributed Global Plan). Experiments have been performed dQer which workstations will be used for the execution of a particular
demonstrate the effect of some parameters of XTPVM on totdread. However, he can specify the pool of workstations over which
execution speed and to show the usefulness of migration. threads will run. The programmer will only see an interface to a

Keywords: XTPVM, TPVM, PVM, Virtual Machine, Thread library of functions that can be used to execute relatively independent
Scheduling, Thread Migration, Distributed Dynamic Loadthreads that can possibly share remote memory in a distributed way.
Balancing. XTPVM will balance the load on a network using the user
specified load band that is tolerable to make use of the idle

1. Introduction workstations and remove the burden off heavily loaded workstations.

) . . Only ready but non-committed threads can migrate. A thread is

Considerable advances have been made in recent years in R mitted to a workstation once a context has been created for it.
parallel and distributed computing. However, despite COMMQGyn_committed threads do not have a context. Thus, their migration
interests, the work in the two areas has remained quite distinct. Thegimpjified and the cost of migration is greatly reduced because
main concern of the parallel community is with speed and processfgre is no need to transfer their contexts across a network. The share
scalability, resulting in specialized architectures and minimal reliangg a5ch workstation in the number pén-committed threads thus
on system software, while the distributed community is concern%(iiowS and shrinks, as a program runs. A good load metric for
with wide area connectivity and resource sharing, resulting in OP&flgration is the number of non-committed threads queuezhcit

system platforms and largely functional system software [1]. Thgqrstation which must be balanced within a user selected load band.
recent trend is using workstation clusters for parallel computation hi) ved i . .
indicating that these distinctions are potentially disappearing. The This paper is organized into 7 sections. Section 2 presents a

emergence of high-powered workstations connected via fé%tr'ef backgrc;]gnd of PVM and TPVM. Section 3 disgusseg the
communication networks has increasingly been considered as tract machine developed, namely XTPVM. Section 4 investigates

alternative to dedicated high performance parallel computers. Thél glschedulmg an? migration alterrlatlves, and those selected for the
workstation networks are not only cheaper, but also provideI plementation of XTPVM. Section 5 presents a performance

general-purpose computing environment that is typically shared szluatlop of XTPVI\J. Secthn 6 presents rglated wor|§ in this field,
both parallel and non-parallel application developers and use section 7 rounds off with the conclusion and discusses some

Distributed Parallel Programming has been of major concern over tWéure enhancements.
past few years, and is based on heterogeneous networked platforms,

frequently comprising powerful workstations and software systems

that together emulate the general purpose virtual parallel computers

[2]. Networks of workstations can be used as large scale parallel

105

Proceedings of the ISCA " International Conference on Parallel and Distributed Computing Systems, September 1998

. provides for thread -creation, exiting, vyielding, obtaining and
2. Background: PVM and TPVM releasing mutual exclusion, and determining a unique identifier

PVM enables a collection of different computer systems to H@mee_r associ_ated with the running thread. Thgre are fairly basic
viewed as a single parallel virtual machine for hosting processes [3perations, which can be supported by most typical thread systems
It provides an infrastructure where networks of workstations can B4t little implementation effort.
viewed by application developers as a large distributed-memory TPVM relies on a centralized thread server task which provides
multiprocessor machine, making it convenient to create parall@lipport for the thread export database, scheduling, and data-driven
applications by virtualizing the workstation network and bythread creations that is neither scalable nor failure resilient.
providing the necessary primitives for process communication (via
message passing) and for process control [4]. The PVM task is a 3. XTPVM
process that isn't thread safe. TPVM, on the other hand, is a thread:
based virtual machine, implemented as a layer over the native rele s]e The Need for XTPVM
version of PVM[5]. TPVM'’s threads retain the original computing The goals of having a simple, complete and easy to use library
model in which an application is comprised of “components” or sulfer a virtual machine that is easy to set up has been met by both PVM
algorithms, each of which may be manifested as a collection ahd TPVM, but in different degrees. PVM has existed for quite some
instances that safely cooperate via message passing [6]. TP\iMe, and its interface has gone over several enhancements and
threads form the units of parallelism and are hosted within regularodifications, and thus has a more complete set of library functions.
PVM processes or “pods”. In other words, a collection of TPVMPVM on the other hand is more recent, and is not as clear as PVM,
threads that comprise an application are created and executed widid thus lacks in some points. For example, it does not support non-
the context of a smaller number of pods which provide ablocking receive between threads while PVMpgorts it between
environment shell and do not contribute to the computation as ggocesses, making TVPM not complete enough. Also, lack of
typical with other thread systems such as SunOS LWP. Hagécumentation on concepts such as remote memory, makes
processes or pods are initiated via normal native PVM mechanispiogramming with TPVM difficult at first until some rules are
e.g. pvm_spawn. These pods must export thread entry points thaicovered by experience. An example is the inability to declare
specify the types and numbers of threads that the process is williggnote memory anywhere in the program except by the main thread
and able to host. of only one pod which should then cgvm_go To program with

Figure 1 shows the TPVM system. It consists of thredPVM, the user should be familiar with both the PVM and TPVM
components : a library, a portable thread imtesf and a thread libraries and call appropriate functions when necessary. XTPVM can
server module, which performs scheduling and system da#dPpPly the user with only one set of library calls that provides
management [6,7]. consistency and simplifies programming [8].

Despite the success of PVM, there are areas such as resource

(7 allocation where PVM lacks support. In a computing environment
local thread| message global thread P . .
[export Iist(j[queue] [export database] where the av_allablllty of resources changes over time, the e_lllocatlon_

and reallocation of resources in response to these changes is essential
['ive thfea{d] [_Availapleg [_ global available] to utilize the resources effectively. Also, PVM has no provisions for
instance lisf | invocation invocation database thread safe processes, which are its basic unit of scheduling rather
TPVM librar v TPVM Thread Server than threads. Parallel programmers are more familiar with threads
and thus cannot port their parallel algorithms easily to PVM. TPVM,
user master \ I on the other hand, handles thread definition, creation, termination
threads thread and invocation and has also introduced the idea of dataflow
computation for threads over PVM. PVM and TPVM are neither
abstract nor transparent enough, requiring the parallel programmer to
_ PVM Task) concentrate on many non-application specific tasks. For example, to

schedule tasks, an application must use one of PVM's three modes of
scheduling processes when spawning. ThesePamTaskDefault
.) - PVM can chose any machine to start taskymTaskHos{PVM

_The user interacts W'.th the TPVM sys_tem via library Ca_‘”S th hould chose a particular host), aRgmTaskArch(PVM should
provide a number of req_um_ed support Services. Th? TPVM Ilprary those any workstation of a particular architecture). TPVM, on the
used for thread-based distributed computing. The library routines Per hand, has 2 modes for scheduling its threads at spawn time:

based on PVM primitives for services such as message paSSing’PQ/?nThreadLocal(to start the thread in the spawning pod) and
the portable thread interfaceodule for services such as thread&(

Figure 1: The TPVM system

X . vmThreadWildto start the thread on any of the pods running in a
creatlon_ and scheduling, and on a 'I_'PVM thread server task Dristation in the current virtual machine.
scheduling and export database services. Thus, the three modules o)]
interact together to provide the user with the TPVM system. One of the limitations of TPVM is the use of round robin
The Portable Thread Interf dule hand| Il thread-relat dschedullng, rather than load sensitive scheduling, to schedule threads.
. e ror ah € re?h nder acedule ant esa ree.l -rfeae Neither PVM nor TPVM supports process/thread migration. TPVM
Services such —as read —management, - communication %uires strong encapsulation of threads, and so shared variables are

synchronization. It abstracts basic thread services required ntgt permitted. XTPVM alleviates some of the problems of PVM and

implement the TPVM library routines. This abstraction allows th%PVM for the parallel programming community. The next section
implementation of the TPVM library to be decoupled from th%iscusses its features

available thread services on various OS and machine platforms. It

106

Proceedings of the ISCA " International Conference on Parallel and Distributed Computing Systems, September 1998

3.2 Features of XTPVM

The features of the proposed virtual machine are:

* A simple, complete and easy to use library that runs under the

application layer The user interface is a small set of library
functions whose declaration is provided in a header file to be
included for compilation with the user's program. A library
called libxtpvm.a should be linked with the user's code to
generate the executable.

* Ease of virtual machine setup over a heterogeneous netiork
simple text file callechostsini should be edited by the user to

User Application

XTPVM

TPVM
PVM
OS kernel and libraries

Figure2: Layered Diagram relating XTPVM to PVM and TPVM

specify a list of host names to use as the pool of workstations3ng The XTPVM Interface

the virtual machine setup as well as the location of the user’s

application on each workstation.
* A simple method of thread managemeXtTPVM is thread-

The XTPVM library is written in C and makes calls to TPVM

and PVM. Both TPVM and PVM are portable across many

based. The XTPVM library provides a complete set oplatforms, and this makes the XTPVM library also portable. XTPVM
operations for thread definition, creation, termination and intended to work on a heterogeneous group of workstations and

invocation.

this has been accounted for (e.g,. whenever a pod is created on a

* Transparent thread schedulingKTPVM thread scheduling machine, all function pointers are reevaluated).

gives priority to least loaded workstations to receive the newly the following is a list of all the library calls the programmer can
created threads, rather than the round robin scheduling L?§e. For a more complete description, refer to [8].

threads provided by TPVM.

* Transparent thread migratiorA major contribution of XTPVM
not available in PVM and TPVM is load balancing through
thread migration, which is in fact an implementation of the
decentralized global plan algorithm discussed later. Providing
location transparency allows the programmer to deal with
threads without having to know where on the network they afe

located. The user can easily and transparently create and

terminate these threads without any knowledge of their location.

This location transparency is achieved by assigning a uniqee

name for each thread function. All thread creation, termination,
invocation, sending and receiving @ne using this unique «

name and not the TPVM integer thread id, since a thread might

migrate dynamically, and any id returned to the user might be
invalid in later library calls.
* Allowing threads to cooperateXTPVM provides send and

receive primitives between threads as well as remote shared
memory for inter-thread communication. To use remote shared

memory, the programmer would first specify the shared
variables to be registered by XTPVM at initialization time, and

then threads can get and put values to them easily, using

xtpvm getandxtpvm put

3.3 Overall Architecture

XTPVM is built over PVM and TPVM as shown in Figure 2,°

thus making use of previous research efforts and experimental

experience to develop a more powerful tool for the parallel
programming community. In summary, XTPVM has a somewhat

abstract structure, and the user only needs to know a small seb of

XTPVM library calls. No prior knowledge of PVM or TPVM is
required. .

XTPVM has access to both PVYM and TPVM subsystems. The
user application will have access to XTPVM, TPVM and PVM evenm
though it is recommended that the XTPVM indéed fiould be used
solely and not bypassed via calls to TPVM or PVM routines. The
XTPVM interface is completen®ugh for its specified purpose.

107

xtpvm_init(threads, memnames, memlocs, memjydéwe user
should supply this function. In it, thread names, thread function
pointers, shared memory names, and shared memory addresses
should be set.

xtpvm_maif): The user's main function.

xtpvm_en@): This function terminates all the pods, frees all
allocated buffers, and then halts the PVM system for a clean
termination.

xtpvm_beginthregd@unctionnameinstancé: starts a user thread
with the XTPVM name given ifunctionnameandinstance
xtpvm_beginthreadfinctionname, startinstance, numper
starts a set of user threads with the XTPVM name given in
functionname starting with astartinstanceand ending with
startinstance+number

xtpvm_endthregdunctionname, instanye broadcasts a
message to all thread spawners to terminate a thread.
xtpvm_endthreaginctionname startinstance numbe}:
broadcasts a message to all thread spawners to terminate a group
of threads.

xtpvm_getexitconditiqt checks if a thread is marked for
ending condition or not.

xtpvm_setloadbarfdand: sets the value afeltato be used.
xtpvm_sen@hreadname, instance, messagétagon-blocking
send of a message with a tag to a thread.
xtpvm_receivghreadname, instance, messaggtadplocking
receive waiting for a message with a tag from a thread.
xtpvm_nreceighreadname instance messagetdg non-
blocking receive, returns false if no message exists, else true.
xtpvm_initsen(): initializes the send buffer. should be called
beforextpvm_seng.

xtpvm_remotep@ame number loc): copy to a named shared
memory buffer from a user specified variable.
xtpvm_remotegétame, number, IQc copy to a user specified
variable from a named shared memory buffer.
xtpvm_logstring): writes string to the log file. A single log file
is created for eaghod.

Proceedings of the ISCA " International Conference on Parallel and Distributed Computing Systems, September 1998

e xtpvm_exif): removes the calling thread from XTPVM. these two threads. All other threads that run in a pod are migratable

e xtpvm_getinstandg returns the instance number of a thread. ~USer threads and the programmer can reference them by name.

* xtpvm_upkXXgpointer, count, stride unpacks data of type The thread spawner is responsible mainly for user thread
XXX (can be byte, double, int, long, etc.) to addigsEiter creation and termination. Send and receive commands require
countitems are unpacked and spastitie appart. mapping from thread name to id for transparent access to threads, and

e xtpvm_pkXX¥pointer, count, stride packs data of typ&XX this is done by multicasting a message to all thread spawners

. requesting them a lookup of a thread name. The thread spawner that

3.5 XTPVM Internal Design has the thread currently running on its host replies. Thus, send and
The xtvpm init function associates user thread names witteceive require thread names as the destination and source

thread function pointers. It should be the fixgpvmfunction to be respectively and not thread ids. This is how location transparency is

called. The user can also declare names to remote shared menagfjieved. A mapping is also provided from thread ids to thread

regions, and sets appropriate pointers. Since every pod will first cilbtances so that threads can know their instance number. This is

this function, the problem of a function pointer having a differentseful for data parallelism, where each thread works on a separate

value on different architectures is alleviated by reloading its valgection of the data.

whenever a pod is created, thus heterogeneity is provided. The load monitorthread is responsible for calculating the load
After calling xtpvm init, XTPVM sets up the virtual machine by average at the local pod. It then sends this system load and the

starting the PVM system if it is not running, adding the hostBumber of queued threads to the neighboring load monitor (the one

specified in thehosts.inifile to the virtual machine, and spawningin the pod with the next serial number) in a chain fashion to construct

one pod per host. THeosts.inifile specifies the location of eaglod one commoroad array. The load array is used for initial scheduling

on its corresponding host so that different pod versions run on thaf well as for migration (see section 4). The DGP algorithm is used to

corresponding architectures. Every pod first exports all the threzgilect threads for migration. The load monitor on the most loaded

declared by the user (so that threads can migrate to any pod in ft&chine migrates the selected threads to the pod on the least loaded

virtual machine) and then exports and spawns two private XTPVmachine, while other load monitors do nothing.

threads, thehread_spawneand theload_monitorthreads as shown

in Figure 3. Ifxtpvm_initreturns TRUE, XTPM converts the master 4. Scheduling and Migration in XTPVM

process into a pod, creating for it these twq prlv_ate threadi.,l Scheduling in XTPVM

otherwise, a pod is spawned on the local machine with these two

threads. The advantage of converting the master into a pod is that gayeral static scheduling schemes have been proposed. Some of

inter-process communication is eliminated on the local machine, thiiS.ce include Source Processor Scheduling (SPS), Sorted Spiral
increasing performance. Another advantage is thaktem main gepeqyling (SSS), and Global Plan Scheduling (GPS) [9]. Al these

function is managed as a normal migratable thread. can be categorized as static off-line scheduling since a schedule for
Master Process Pod the entire system is determined at design time, before the execution
/ \ / \ of the system. The advantages of this approach are its low run-time
« pvm_addhosts « export thread spawner, . L
« pvm_spawn pod load monitor ove_rh_ead_, its deterministic t_)ehav_lor, its provision fo_r system-wide
optimizations, and the ease in which task dependencies and resource
+ tpvm_send mytid, serial#, hosth——y, o/ recy sync_key conflicts can be resolved, eliminating the need for costly resource
- tpvm_export all threads locking and synchronization operations. The disadvantages of any
+ tpvm_spawn thread spawne static off-line scheduling include its inflexibility to adapt to a
* Ipvm_spawn load montor changing environment, and the difficulty of finding an optimal
« tpvm_recv from allpods ¢———] * tbvm_send spawnerid, ging S ' y ot finding P
monitorid schedule (which is an NP-hard problem). Heuristics are often used to
« tpvm_send find a feasible schedule, which might result in low system utilization.
hostn, monitortids, spawnerti . . .
K P }K MLO?td Thread In XTPVM, we are concerned with the dynamic scheduling of
onttor Spawner threads over a set of workstations whose local loads might fluctuate
tpvm_recy / as the threads run. Thus, we require a distributed scheduling scheme
that takes into account local workstation loads and tries to balance

Figure 3: Creating a pod and setting the load monitor and thread spawnethese loads via migration of threads. The load metric used for initial

The pod and the master processes are in fact the safg@eduling of threads is the reported system load average since this
executable, but after callingpvm init as the first function, both call adds a prediction factor as to where a thread might finish quicker. For
xtpvm start which will execute differently for a master process than gnigration, the load metric used is the number of ready threads
pod process. A process knows if it is a pod or a master just by makfiigeued at each workstation by a particular application owner. Thus,
the PVM callpvm parent,since only pods have a parent that spawns XTPVM scheduling = initial scheduling + migration
them and assigns them a serial number. The master process has No\\hanever the user wishes to spawn a thread, a call to

paren_t. This ensures that only the master process performs the Vir%ﬁl/m beginthreadis made, specifying the thread name and thread
machine setup. instance. The thread name is the name associated with a particular
The thread spawnerand theload monitor threads are non- function specified irxtpvm init by the user. A name, rather than a
migratable. They are exported and spawned by the main threadTefyM thread id, is used for location transparency since threads
every pod. Master processes that have changed into pods also ewigiht migrate after being spawned. Since several instances of a
thread function might be spawned, each instance is qualified by its

108

Proceedings of the ISCA " International Conference on Parallel and Distributed Computing Systems, September 1998

instance number, which is also required for communication and accounts for local decisions made by other schedulers,
termination of threads. » accounts for the effect of its local decisions on the system, and

Once this call is made, XTPM retrieves tlaad Arrayfrom the ensures load balancing

Load Monitor thread in the caller's pod, and the least loaded DGP thus prevents host overloading which occurs when several

workstation is selected as the destination to spawn this new thredgSts target the least loaded host, which in turn becomes heavily
Once a destination host has been selected, a message is sent t#P@€d. Its use of the paramedsita (A) avoids job thrashing which
Thread Managerin the pod on that workstation requesting it to'S when jobs infinitely move around the network and hosts spend
create a new thread in its encapsulating pod. Tread Manager their time in redistributing jobs and little on executing local jobs. The
can choose either to directly spawn this new thread thus creatin@@P algorithm is based on a strategy called Global Plans (GP) that
context and committing it, or to place it on a queue until sonfdMS at maintaining all computational loads of a distributed system
currently running threads terminate. The maximum number ¥fithin a bandA. We have analyzed DGP as a static scheme for
committed threads per host is determined as the number of proces$6R€duling on multiprocessors, and experiments have shown good
available on the workstation multiplied by a thre@ommit Factor. Performance both in speedup and efficiency [9], and thus it looks
Thus, theCommit Factoris the number of threads committed peromising to use for XTPVM's migration algorithm.

processor. Since flooding a processor with many threads The Global Goal is defined as follows:

simultaneously slows down the systenG;ammit Factoris chosen to A network of hosts is balanced if the load on all hosts are within
be the suitable number of threads a single processor can haralleand calledd, (whereA is constant, an_d has the same unit as the
efficiently. Once committed, a thread cannot migrate. If a threddad of the hosts). Furthermoré,(t) is defined as the minimum band
performs a blocking wait, XTPVM would be counting it asthat contains all loads at a time t. In other words, a system is
committed, when in fact it is not running, and another thread couﬁfi*'a”ce(_j at time t "ﬂ_zAr(t)_ _[?’2]

be scheduled to run instead. To avoid this, just before blocking on a To illustrate this definition, assume that two snapshots of a
receive another thread on the queue is allowed to commit. Trultiprocessor with five processors were taken at time t1 and t2. Also

means that at times more th&ommit Factorthreads may be 2ssume that the load metric is the number of jobs queuing for
running to avoid deadlocks execution. Using the above definition Figures 4 represents the system

at these two times and shows the individual loads of each host.
Another approach for the initial scheduling mthreads is to AssumingA = 3, Figure 4A exhibits an unbalanced stageause

fairly distribute them over the available workstations and lef\(t1)=7 and thereforé(t1)> A. Figure 4B shows a balanced system

migration move them around to achieve quickest execution. As tR@ce all loads belong to the bafidinceA > A(t2)

results presented later show, the initial scheduling scheme does not (A) Before (B) After

affect execution time since migration is performed frequently. g o
4.2 Distributed Global Plan (DGP) Algorithm 2 I 5
ﬂ) — —

In XTPVM, we are concerned with the dynamic scheduling of = ;] A, A ()
threads over a set of workstations whose local loads might fluctuate S - -
as the threads run. Thus, we require a distributed scheduling schem ~ []
that takes into account local workstation loads and tries to balance 0T T 1 1 0
these loads via migration of threads. One method is to use a Genetic 0 1 2 3 4 5 Hosts 012345
Algorithm. We have implemented one that has chromosomes Figure 4: Loads of 5 hosts before and after balancing

selected, reproduced and mutated in order to converge to the best . .

possible distribution of a fixed size block of totally independent tasks The Global Plan Strategy aims to safisfy the global goal by
. . . nsuring that all loads are withidelta and are thus balanced,

that are determined prior to scheduling. When loads change on ﬁ}gventing instability and host overloading. This is done via

workstations, the GA will adapt to ammt for such a change with a

new distribution strategy of these blocks [10]. Even though a GA Is ﬁn gg‘# el_tgzds vector X

adaptable and performed well in the experiments conducted, yet it is Olﬂ)tput loads vector Y (withing the intenz)

not useful for XTVPM, which requires scheduling of threads that A taple of global allocations T = { (p,q.,r) .. } p units from host

might start and end at different times. q to host r

An alternative way of developing a scheduling policy forn general GP can be described by the following pseudo-code
XTPVM is to investigate multiprocessor scheduling algorithms; y=x
These suffer from the global state problem, since it is impossible 20 compute the processor with lest load (1)
know the current state of the entire system exactly, due to the latel3cy compute the processor with the highest load (h)
of acquiring the information. When this problem is looked at from 4. while (load of processor h - load of processerdglta do
distributed perspective, then the latency in acquiring information < Search T for a matching triple (p,h,l) for any p
about the current state is much greater. Some systems such as the® if Search successful then increment triple by 1 => (p+1,h,l)
MARS architecture escape this problem via static scheduling. Kara else insert new entry (1,h,])
has introduced a new algorithm called DGP (Distributed Global Plan) : lDecrement load of processor h

S . ncrement load of processor |

that addresses the problem of coherence and coordination and makes, Compute the new |
good local scheduling decisions without jeopardizing global goals. . compute the new h
DGP is distributed since control is decentralized and no host has a

. . . For example, if a network consists of 5 hosts, and wé gs2
true image of the overall state of the system. A scheduler is replicated o _
) or the initial load vector X = (2,7,3,6,3), then T would develop as
on each host, and each scheduler:

follows:

109

Proceedings of the ISCA " International Conference on Parallel and Distributed Computing Systems, September 1998

Step # Y Aatt Status T 5.1 The Effect ofCommit Factor
0 (2,7,3,6,3) 5 unbalanced {}
1 (3,6,3,6,3) 3 unbalanceg {(1,2,1)} The first experiment aims at finding the optimal number of
2 (4,5,3,6,3) 3 unbalanced {2,2,1)} committed threads per processor. Recall that a committed thread is
3 (4,5,4,5,3) 2 balanced {(2,2,1) .(1,4,3)} the one for which a context has been created. Once committed, a

Table 1: The development of the table of global allocations in GP.thread cannot migrate. THeéommit Factorin this experiment was

So to move from the unbalanced state (2,7,3,6,4) where hof?fgecj from 1 to 10 while other parameters were kept constant. The

has load 2, host2 has load 7 and so on, to the balanced Sgébcé;ncipltorlwasf ;et to nrj]n oncedet\r/]e_rr);]sechd;uﬁj@ tDEI?y:tl)bgp
(4,5,4,5,3), T tells us to take 2 tasks from host2 and give it to hosB., elta valueot £ was choseran erhreshhold_to_start_

and 1 task from host4 to host3. As one can see, the final state hd& set 1o a relatively large value, 100, so that migration can take
maximum host load of 5 and a minimum host Io;;d of 3. and dinceP'ace anytime when enabled, and its effects can be obvious. A value
was selected to be 2, then such a state would have the hosts balari} eapo vyas F:hosen .smce a queue V\,"" always have less than 100
The GP strategy is executed periodically depending on hd reads in this experiment. The experiment was first performed with
important system balance is to the user. Since XTPVM will use thti“glgratlon disabled on 2 hosts, and with migration enabled on 2 hosts

strategy, the library callspvm setloadbandandxtpvm setloaddelay and then 5 hosts (Sparc 5 workstations running Solaris 2.x). All hosts

are required for programmers to set the load band and the de@;tjha relattlveI()jI IO.W l?ﬁd average, rtarllzglng frE())mhl to ;]'5 as rﬁported
between load broadcast periods respectively. € Systém during the experiment. Figure > Shows the resufts.

The application of the GP policy to a distributed algorithm " v yp———Er——
leads to several considerations. The algorithm based on the GP policy —A— MgaimEntied osts
is called Distributed GP or DGP because of the distributed nature of Vg amEeEhE
the environment in which GP is applied. Each host only has control
over its own resources and local load information is periodically 27 — "
broadcast. The GP algorithm is executed at each machine to Ereate
and each machineexecutes all entries that include it as a source (*,
i, ¥ or as a destination (*, *) depending whether it is sender
initiated or receiver initiated.

;———X

x/x

|

1%

Time in secon

4.3 Dynamic Load Balancing and Migration in XTPVM ot

Recall that load monitors cooperate in a chain fashion, passing
their loads around back to the first load monitor which then P e S T
broadcasts this load. In fact, not only are the load averages circulated 1 2 3 4 5 6 7 8 9 kY
this way, but with them the load managers circulate the length of Commit Factor
their ready queue in terms of the number of threads queued in it. This
in effect generates the input loads vector, X, discussed in DGP that
must be balanced to be within The curves of Figure 5 have a common pattern, regardless of

XTPVM uses a third parameter in its specialization of DGMhether migration is enabled and the number of hosts used. As the
other tham and theCommit Factordiscussed previously. This is the Number of committed threads per host increases, the overall
Threshold_to_start DGParameter. To prevent excessive migration€xecution time improved up to a certain point (3 in our example), due
we can control migration to initiate it only when queues are emptg the ability of each host to run more than one thread. The optimal
enough. Whenever the minimum queue load is less th&mmit factor value can vary from one application to another
Threshold_to_start DGPthen migration is invoked, otherwise depending on what threads are doing. For example, if a committed
nothing happens and execution of committed threads continuest¥gad waits on I/O, another committed thread can run making better
normal. use of CPU time and decreasing overall execution time. Increasing

the number of committed threads beyond a certain value made
5. Performance Evaluation XTPVM perform worse, since more time is wasted in creating new
contexts for threads and switching between them. Furthermore,

This section examines the effect of changing XTVPMncreasing the number of committed threads will decrease the number

parameters on the overall execution time of an application. To assefshreads that can be migrated and will imbalance the loads of
the performance, we declared 100 thread instances of the samgkstations.

function but with different instance numbers. The thread function
loops one million times to consume CPU cycles. Upon termination
message is sent from a thread instance to its parent thread indic
its completion before callingtpvm exit to remove itself from the list

Figure 5: Effect of commit factor on execution time

Besides the effect dfommit Factor Figure 5 demonstrates the
aﬂvantage of using migration in XTPVM and the speedup achieved
n using many hosts. The advantage of migration is apparent,

especially when initial scheduling is not proper or when the hosts

of running threads. The parent thread waits for 100 such messaggse jifferent loads or speeds. Although the upper and middle curves
and calculates the time difference between starting these threads S'PEigure 5 were obtained by running the experiment on two hosts
receiving allL00 messages. This is the total time of execution of tf}ﬁe middle curve, with migration enabled, has much better’

threads, which changes as different values are chosen for XTP\M o mance. This is because the initial scheduling algorithm did not

parameters. distribute the threads properly resulting in a load imbalance.
However, with migration enabled, tHevad Monitor maintained a

110

Proceedings of the ISCA " International Conference on Parallel and Distributed Computing Systems, September 1998

load balance, achieving high CPU utilization since all hosts are 100 —
almost always busy.

The sequential (non-XTPVM) version of the application ran in
22.81 seconds. The XTPVM version ran in 14.88 seconds on two
hosts and 5.02 seconds on five hosts with one thread committed per
host at a time, thus achieving a speedup of 1.53 and 4.54
respectively. When 3 threads are committed per host, the execution
times were 9.81 seconds on two hosts and 4.23 seconds on five hosts.
The speedups were 2.32 and 5.39 respectively. The super-linear
speedups wereelsause the threads were doing I/O writing data to a 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
file. Committing more than one thread per processor made better use &
of CPU time. While a thread is waiting for 1/0, another thread ran %

reducing the overall execution time. # *
Migration St

€
©
o

I

T

80 L \ :3

0T \ ——aQ

Number of Threads Queu

5.2 Changing the Initial Scheduling policy

Figure 6B: Balancing the thread queues with initially balanced queues.
We now examine the_ effect of |n|_t|al scheduling policy ons.3 The Effect ofThreshhold to start DGP
overall execution time. Figure 6 depicts the number of non- - - —

committed threads in the ready queues of two hosts at each migration An experiment similar to that in section 5.1 was performed but
step. The initial scheduling policy of Figure 6A assigned all thaith a differentThreshhold_to_start DGRalue. Instead of setting it
newly created threads to one host. At first, Q2 was empty due to e 100, a value of 10 was chosen this time. It was noticed that
initial scheduling scheme, but after the first migration, the queugsigration took place usually once only rather than 4 or 5 times as
were balanced out with 48 threads each. One host was faster thanhie a value of 100, and this had a wetible effect on the total
other, and was able to run more of its queued threads. Wheodtle execution time only when the hosts had noticeably different loads.
Monitor ran for the second time, it balanced the loads to 42 and #ore frequent migration of threads to the fast host meant that the fast
(difference less thah=2). The end effect is that threads are migratetlost was executing most of the threads while less frequent migration
from slower to faster hosts. Even though the initial execution poligjidn’t migrate too many threads to the fast host. For example, out of

was improper, migration had compensated for it.

100 threads, the fast host executed an average of 66 threads when

20 ¢ Threshhold_to_start DGPLO0 compared to an average of 64 when
—Q Threshhold_to_start_ DGRLO0.
100 —-Q
\ —+—QQ

80 + *_“\
60 -
40 + ——t

20 +

Number of Threads in Qu

0 t t t t t t {

6. Related Work

Introducing a new abstract machinecassitates a comparison
with the existing ones to see the similarities and differences, the
advantages and disadvantages. We already discussed the differences
between XTPVM, PVM and TPVM. We will now compare XTPVM
with other abstract machines surveyed.

6.1 Orca/Panda and HAWK

oo Y S, T S Y &%) . .)
% % 7 % % These deal with objects as the major item of abstraction and not
= = = 7 = threads, and thus use the Object-Oriented programming paradigm,
vicration St which is at a higher level of abstraction. In both VMs, objects are
igration

shared and replicated transparently, and in HAWK they are also

Figure 6A: Balancing the thread queues with initially imbalanced queues.partitioned transparently. Unlike XTPVM, these VMs do not have

provisions for threads and the process model of programming.

When the initial scheduling policy fairly divides the threads.rpy on the other hand, does not replicate or partition shared
among the hosts, the changes in queue sizes were very similar torgb‘?ons as in Orca/Panda and HAWK [11,12].
first situation as shown in Figure 6B. The overall execution times In '

both cases were very close (14.9 and 14.5 seconds). Thus, iniia2 TAM and LAM

scheduling does not play a significant role when the number of

threads is large and migration is enabled. It should be emphasi{,ﬁqh
that migration has a very small overhead in XTPVM, since only o
message is required to specify thehreads to be migrated, just by
sendingn thread names and instances. The message is also smal
size since no thread context is transferred. This is to be contras,
with alternative methods of migration in which the entire threa

context (code, data, and state) is migrated.

These expose communication, synchronization, and scheduling
reads to allow compilers to optimize for important special cases,

NFhereas no compiler optimization is provided in XTPVM. They also

eal with threads but do not transparently migrate them [13,14]. They
df on a single multiprocessor with only one running activation

aane at any moment in time possibly with several threads, while
TPVM can work on multiprocessors and effectively exploit them,
allowing multiple threads in different address spacesdg) to
concurrently run on the same machine. Thus, in TAM and LAM,
synchronization is only among threads of same activation frame
rather than threads of different activations, whereas in XTPVM

111

Proceedings of the ISCA " International Conference on Parallel and Distributed Computing Systems, September 1998

threads in different pods, possibly on different hosts, c&®] A. Ferrari, and V. Sunderam, "Multiparadigm Distributed
synchronize. Computing with TPVM", Technical Report CSTR-951201,
6.3 LPVM Department of Mathematics and Computer Science, Emory
’ University, December1995, Submitted to theJournal of

LPVM is a Lightweight process version of PVM but with a Parallel and Distributed Computing Special Issue on
different user interface. It has threads that are thread safe as its basic Multithreading for Multiprocessors

unit, but it is specifically targeted at symmetric multiprocessors thg§] A, Ferrari, and V. Sunderam, "TPVM: Distributed Concurrent
support threads and global shared memory and does not provide Computing with Lightweight Processes®roceedings of IEEE
smart scheduling and migration of these threads over a network of High Performance Distributed Computing Washington, D.C.,
workstation§l5]. pp. 211-218, August 1995.

6.4 MPVM and MIST [71 A. Ferrari, and V. Sunderam, "TPVM: A Threads-Based
Interface and Subsystem for PVM", Technical Report CSTR-

Just like XTPVM, MPVM is also based on PVM, bL_Jt migrates 940802. Department of Math and Computer Science, Emory
processes rather than threads over a pool of workstations, and the University, Atlanta, August 1994

system MIST has been build to support task migration, application o .
checkpointing, and multi-user application execution, having afl 1- Abdel-Radi, "XTPVM: A_Tr?nsparent Thread Scheduling
MPVM kernel [16,17]. MIST has a Multi-user Migratable PVM and Migrating Abstract machine", Master thesis, April 98, AUC.
kernel, which is an enhanced version of PVM that support®] M. Mahmoud, A. Abdelbar and T. Abdel-Radi, "A Framework
transparent task migration, application checkpointing and multi-user for Analyzing Multiprocessor Scheduling”, SubmittedPDCS-
application execution, but not thread migration. It makes use of the 98, Chicago, lllonois.

enhanced version of the resource manager interface provided [W] A. Sameh, T. Abdel-Radi, and I. Khalil. "Scheduling jobs using

PVM [16]. a Genetic Algorithm in a Distributed Environment'" 6
International Conference on Atrtificial Intelligence Applications
7. Conclusion and Future Enhancements '98 (ICAIA'98).

XTPVM, a transparent thread scheduling and migrating virtuai1] H.E. Bal, M.F. Kaashoek, and A.S. Tanenbaum, "Orca: A
machine, has been implemented as a layer on top of TPVM and PVM Language For Parallel Programming of Distributed Systems”,
to simplify the task of parallel programmers producing applications |EEE Transactions on Software Engineeriri(3):190-205,
for a virtual parallel computer constructed by the cooperation of March 1992.
several hosts on a LAN. The DGP algorithm was used to initiate the2] R. Bhoedjang, T. Ruhl, R. Hofman, K. Langendoen, H. Bal, and
migration of ready non-committed threads queued in a FIFO queue, M.F. Kaashoek, "Panda: A Portable Platform to Support Parallel
waiting to be committed on the current host. An experiment was Programming Languages,Symposium on Experiences with
performed to show the advantage of queuing threads and not Distributed and Multiprocessor Systems 8an Diego, pp. 213-
committing them as soon as they are ready. 226, Sep. 1993.

A future enhancement to include in XTPVM is fault tolerancg13] T. Eicken, D. Culler, S.C. Goldstein, and K.E. Schauser, "TAM
since PVM makes no attempt to automatically recover tasks that are - a Compiler Controlled Threaded Abstract Machind!,
killed because of host failure but leaves this task to the application Parallel and Distributed Computind.992.

programmer. Another feature is to make the commit factor chan?f4] S. Davis, "The Liquid Abstract Machine", MIT Transit Project,
dynamically at runtime according to the behavior of threads. Transit Note #86. October 1993

[15] H. Zhou, and A. Geist, "LPVM: A Step Towards Multithreaded
PVM", Oak Ridge National Laboratory. Mathematical Sciences

[1] M. Kara, "Simulation and Prototyping of a Coherent Distributed ~ S€ction, Oak Ridge National Laboratory, Oak Ridge.
Dynamic Load Balancing Algorithm", Research Report Serie$16] J. Casas, D.L. Clark, P.S. Galbiati, R. Konuru, S.W. Otto, R.M.
School of Computer Studies, The University of Leeds, Report Prouty, and J. Walpole, "MIST: PVM with Transparent
97.17, May 1997. Migration and Checkpointing”, presented at the 3rd Annual

[2] M. Kara, "Using dynamic load balancing in distributed ~ PVM Users’ Group Meetin@ittsburgh, PA, May 7-9, 1995.
information systems" Research Report Series, School [f7] J. Casas, D.L. Clark, R. Konuru, S.W. Otto, R.M. Prouty, and J.
Computer Studies, The University of Leeds, Report 94.18, May Walpole, "MPVM: A Migration Transparent Version of PVM,"
1994, Technical Report CSE-95-002, Oregon Graduate Institute of

[3] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Mancheck, and Sciénce and Technology, February 1995.
V. Sunderam, "PVM: A User's Guide and Tutorial for
Networked Parallel Computing”, MIT Pred9§94.

[4] A.S. Tanenbaum, H.E. Bal, and M.F. Kaashoek, "Programming
Multicomputers Using Shared Objects”, Broceeding of the
Third International Workshop on Object Orientation in
Operating System@WOOOS'93), pages 199--202,eBember
1993.

REFERENCES

112

