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ABSTRACT 
Providing the parallel programming community with a single 

abstract view to a heterogeneous network of workstations is a very 
intrinsic task. Parallel programmers want a facility to combine a set 
of workstations and use this pool to create and execute threads. 
Alleviating the programmers from time consuming mechanisms such 
as managing communication among the threads over a network, 
scheduling threads and balancing the load through thread migration 
are all crucial. We developed XTPVM (eXtended TPVM) to be a 
transparent thread scheduling and migrating virtual machine based on 
TPVM (Threaded Parallel Virtual Machine) that provides parallel 
programmers with the ability of using a network of workstations for 
parallel processing. It considers heterogeneity and differences in 
processing power between workstations, and also the dynamics of the 
system as a whole. In such a computing environment, where the use 
of resources vary as other applications consume and release 
resources, transparent scheduling of parallel threads onto the least 
loaded hosts was achieved. As workstation loads vary due to their use 
by other users, XTPVM adapts by migrating ready threads before 
being committed from loaded workstations to less loaded ones using 
DGP (Distributed Global Plan). Experiments have been performed to 
demonstrate the effect of some parameters of XTPVM on total 
execution speed and to show the usefulness of migration. 

Keywords: XTPVM, TPVM, PVM, Virtual Machine, Thread 
Scheduling, Thread Migration, Distributed Dynamic Load 
Balancing. 

1. Introduction 

Considerable advances have been made in recent years in both 
parallel and distributed computing. However, despite common 
interests, the work in the two areas has remained quite distinct. The 
main concern of the parallel community is with speed and processor 
scalability, resulting in specialized architectures and minimal reliance 
on system software, while the distributed community is concerned 
with wide area connectivity and resource sharing, resulting in open 
system platforms and largely functional system software [1]. The 
recent trend is using workstation clusters for parallel computation 
indicating that these distinctions are potentially disappearing. The 
emergence of high-powered workstations connected via fast 
communication networks has increasingly been considered as an 
alternative to dedicated high performance parallel computers. These 
workstation networks are not only cheaper, but also provide a 
general-purpose computing environment that is typically shared by 
both parallel and non-parallel application developers and users. 
Distributed Parallel Programming has been of major concern over the 
past few years, and is based on heterogeneous networked platforms, 
frequently comprising powerful workstations and software systems 
that together emulate the general purpose virtual parallel computers 
[2]. Networks of workstations can be used as large scale parallel 

machines, although at present their use is restricted to coarse grained 
computation. 

It is thus required to allow parallel program writers to make use 
of the abundantly available idle workstation power on a LAN 
transparently by giving the ability to define and run threads 
transparently and remotely. This can be achieved by using a virtual 
machine as a layer of abstraction that allows the application 
programmer to view different heterogeneous computers in a single 
perspective. A virtual machine takes advantage of the underlying 
operating system and network resources and presents a usable 
programming interface to applications. A thread-based parallel virtual 
machine should be able to schedule and migrate threads 
transparently, and adapt to changing workstation loads. Just as 
normal threads can share memory, threads in the parallel virtual 
machine should also be able to share memory. 

The goal of XTPVM is to develop a thread-based parallel virtual 
machine that provide a library of functions to develop parallel 
programs, that will schedule threads transparently on a network of 
workstations, and that will maintain a load balance through thread 
migration. Thus the application programmer will have no control 
over which workstations will be used for the execution of a particular 
thread. However, he can specify the pool of workstations over which 
threads will run. The programmer will only see an interface to a 
library of functions that can be used to execute relatively independent 
threads that can possibly share remote memory in a distributed way. 

XTPVM will balance the load on a network using the user 
specified load band that is tolerable to make use of the idle 
workstations and remove the burden off heavily loaded workstations. 
Only ready but non-committed threads can migrate. A thread is 
committed to a workstation once a context has been created for it. 
Non-committed threads do not have a context. Thus, their migration 
is simplified and the cost of migration is greatly reduced because 
there is no need to transfer their contexts across a network. The share 
of each workstation in the number of non-committed threads thus 
grows and shrinks, as a program runs. A good load metric for 
migration is the number of non-committed threads queued at each 
workstation which must be balanced within a user selected load band. 

This paper is organized into 7 sections. Section 2 presents a 
brief background of PVM and TPVM. Section 3 discusses the 
abstract machine developed, namely XTPVM. Section 4 investigates 
the scheduling and migration alternatives, and those selected for the 
implementation of XTPVM. Section 5 presents a performance 
evaluation of XTPVM. Section 6 presents related work in this field, 
and section 7 rounds off with the conclusion and discusses some 
future enhancements. 
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2. Background: PVM and TPVM 

PVM enables a collection of different computer systems to be 
viewed as a single parallel virtual machine for hosting processes [3]. 
It provides an infrastructure where networks of workstations can be 
viewed by application developers as a large distributed-memory 
multiprocessor machine, making it convenient to create parallel 
applications by virtualizing the workstation network and by 
providing the necessary primitives for process communication (via 
message passing) and for process control [4]. The PVM task is a 
process that isn’t thread safe. TPVM, on the other hand, is a thread-
based virtual machine, implemented as a layer over the native release 
version of PVM[5]. TPVM’s threads retain the original computing 
model in which an application is comprised of “components” or sub-
algorithms, each of which may be manifested as a collection of 
instances that safely cooperate via message passing [6]. TPVM 
threads form the units of parallelism and are hosted within regular 
PVM processes or “pods”. In other words, a collection of TPVM 
threads that comprise an application are created and executed within 
the context of a smaller number of pods which provide an 
environment shell and do not contribute to the computation as is 
typical with other thread systems such as SunOS LWP. Host 
processes or pods are initiated via normal native PVM mechanisms 
e.g. pvm_spawn. These pods must export thread entry points that 
specify the types and numbers of threads that the process is willing 
and able to host. 

Figure 1 shows the TPVM system. It consists of three 
components : a library, a portable thread interface, and a thread 
server module, which performs scheduling and system data 
management [6,7]. 
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Figure 1: The TPVM system 

The user interacts with the TPVM system via library calls that 
provide a number of required support services. The TPVM library is 
used for thread-based distributed computing. The library routines are 
based on PVM primitives for services such as message passing, on 
the portable thread interface module for services such as thread 
creation and scheduling, and on a TPVM thread server task for 
scheduling and export database services. Thus, the three modules 
interact together to provide the user with the TPVM system. 

The Portable Thread Interface module handles all thread-related 
services such as thread management, communication and 
synchronization. It abstracts basic thread services required to 
implement the TPVM library routines. This abstraction allows the 
implementation of the TPVM library to be decoupled from the 
available thread services on various OS and machine platforms. It 

provides for thread creation, exiting, yielding, obtaining and 
releasing mutual exclusion, and determining a unique identifier 
number associated with the running thread. There are fairly basic 
operations, which can be supported by most typical thread systems 
with little implementation effort. 

TPVM relies on a centralized thread server task which provides 
support for the thread export database, scheduling, and data-driven 
thread creations that is neither scalable nor failure resilient. 

3. XTPVM 

3.1 The Need for XTPVM 

The goals of having a simple, complete and easy to use library 
for a virtual machine that is easy to set up has been met by both PVM 
and TPVM, but in different degrees. PVM has existed for quite some 
time, and its interface has gone over several enhancements and 
modifications, and thus has a more complete set of library functions. 
TPVM on the other hand is more recent, and is not as clear as PVM, 
and thus lacks in some points. For example, it does not support non-
blocking receive between threads while PVM supports it between 
processes, making TVPM not complete enough. Also, lack of 
documentation on concepts such as remote memory, makes 
programming with TPVM difficult at first until some rules are 
discovered by experience. An example is the inability to declare 
remote memory anywhere in the program except by the main thread 
of only one pod which should then call tpvm_go. To program with 
TPVM, the user should be familiar with both the PVM and TPVM 
libraries and call appropriate functions when necessary. XTPVM can 
supply the user with only one set of library calls that provides 
consistency and simplifies programming [8]. 

Despite the success of PVM, there are areas such as resource 
allocation where PVM lacks support. In a computing environment 
where the availability of resources changes over time, the allocation 
and reallocation of resources in response to these changes is essential 
to utilize the resources effectively. Also, PVM has no provisions for 
thread safe processes, which are its basic unit of scheduling rather 
than threads. Parallel programmers are more familiar with threads 
and thus cannot port their parallel algorithms easily to PVM. TPVM, 
on the other hand, handles thread definition, creation, termination 
and invocation and has also introduced the idea of  dataflow 
computation for threads over PVM. PVM and TPVM are neither 
abstract nor transparent enough, requiring the parallel programmer to 
concentrate on many non-application specific tasks. For example, to 
schedule tasks, an application must use one of PVM’s three modes of 
scheduling processes when spawning. These are PvmTaskDefault 
(PVM can chose any machine to start task), PvmTaskHost (PVM 
should chose a particular host), and PvmTaskArch (PVM should 
chose any workstation of a particular architecture). TPVM, on the 
other hand, has 2 modes for scheduling its threads at spawn time: 
PvmThreadLocal (to start the thread in the spawning pod) and 
PvmThreadWild (to start the thread on any of the pods running in a 
workstation in the current virtual machine. 

One of the limitations of TPVM is the use of round robin 
scheduling, rather than load sensitive scheduling, to schedule threads. 
Neither PVM nor TPVM supports process/thread migration. TPVM 
requires strong encapsulation of threads, and so shared variables are 
not permitted. XTPVM alleviates some of the problems of PVM and 
TPVM for the parallel programming community. The next section 
discusses its features. 
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3.2 Features of XTPVM 

The features of the proposed virtual machine are: 
• A simple, complete and easy to use library that runs under the 

application layer. The user interface is a small set of library 
functions whose declaration is provided in a header file to be 
included for compilation with the user's program. A library 
called libxtpvm.a should be linked with the user's code to 
generate the executable. 

• Ease of virtual machine setup over a heterogeneous network. A 
simple text file called hosts.ini should be edited by the user to 
specify a list of host names to use as the pool of workstations in 
the virtual machine setup as well as the location of the user’s 
application on each workstation. 

• A simple method of thread management. XTPVM is thread-
based. The XTPVM library provides a complete set of 
operations for thread definition, creation, termination and 
invocation. 

• Transparent thread scheduling. XTPVM thread scheduling 
gives priority to least loaded workstations to receive the newly 
created threads, rather than the round robin scheduling of 
threads provided by TPVM. 

• Transparent thread migration. A major contribution of XTPVM 
not available in PVM and TPVM is load balancing through 
thread migration, which is in fact an implementation of the 
decentralized global plan algorithm discussed later. Providing 
location transparency allows the programmer to deal with 
threads without having to know where on the network they are 
located. The user can easily and transparently create and 
terminate these threads without any knowledge of their location. 
This location transparency is achieved by assigning a unique 
name for each thread function. All thread creation, termination, 
invocation, sending and receiving is done using this unique 
name and not the TPVM integer thread id, since a thread might 
migrate dynamically, and any id returned to the user might be 
invalid in later library calls. 

• Allowing threads to cooperate. XTPVM provides send and 
receive primitives between threads as well as remote shared 
memory for inter-thread communication. To use remote shared 
memory, the programmer would first specify the shared 
variables to be registered by XTPVM at initialization time, and 
then threads can get and put values to them easily, using 
xtpvm_get and xtpvm_put. 

3.3 Overall Architecture 

XTPVM is built over PVM and TPVM as shown in Figure 2, 
thus making use of previous research efforts and experimental 
experience to develop a more powerful tool for the parallel 
programming community. In summary, XTPVM has a somewhat 
abstract structure, and the user only needs to know a small set of 
XTPVM library calls. No prior knowledge of PVM or TPVM is 
required. 

XTPVM has access to both PVM and TPVM subsystems. The 
user application will have access to XTPVM, TPVM and PVM even 
though it is recommended that the XTPVM interface should be used 
solely and not bypassed via calls to TPVM or PVM routines. The 
XTPVM interface is complete enough for its specified purpose. 
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User Application

PVM

OS kernel and libraries

XTPVM

 

Figure2 : Layered Diagram relating XTPVM to PVM and TPVM 

3.4 The XTPVM Interface 

The XTPVM library is written in C and makes calls to TPVM 
and PVM. Both TPVM and PVM are portable across many 
platforms, and this makes the XTPVM library also portable. XTPVM 
is intended to work on a heterogeneous group of workstations and 
this has been accounted for (e.g,. whenever a pod is created on a 
machine, all function pointers are reevaluated). 

The following is a list of all the library calls the programmer can 
use. For a more complete description, refer to [8]. 

• xtpvm_init(threads, memnames, memlocs, memtypes): The user 
should supply this function. In it, thread names, thread function 
pointers, shared memory names, and shared memory addresses 
should be set. 

• xtpvm_main(): The user's main function. 
• xtpvm_end(): This function terminates all the pods, frees all 

allocated buffers, and then halts the PVM system for a clean 
termination. 

• xtpvm_beginthread(functionname, instance): starts a user thread 
with the XTPVM name given in functionname and instance. 

• xtpvm_beginthreads(functionname, startinstance, number): 
starts a set of user threads with the XTPVM name given in 
functionname, starting with a startinstance and ending with 
startinstance+number. 

• xtpvm_endthread(functionname, instance): broadcasts a 
message to all thread spawners to terminate a thread. 

• xtpvm_endthreads(functionname, startinstance, number): 
broadcasts a message to all thread spawners to terminate a group 
of threads. 

• xtpvm_getexitcondition(): checks if a thread is marked for 
ending condition or not. 

• xtpvm_setloadband(band): sets the value of delta to be used. 

• xtpvm_send(threadname, instance, messagetag): non-blocking 
send of a message with a tag to a thread. 

• xtpvm_receive(threadname, instance, messagetag): blocking 
receive waiting for a message with a tag from a thread. 

• xtpvm_nreceive(threadname, instance, messagetag): non-
blocking receive, returns false if no message exists, else true. 

• xtpvm_initsend(): initializes the send buffer. should be called 
before xtpvm_send(). 

• xtpvm_remoteput(name, number, loc): copy to a named shared 
memory buffer from a user specified variable. 

• xtpvm_remoteget(name, number, loc): copy to a user specified 
variable from a named shared memory buffer. 

• xtpvm_log(string): writes string to the log file. A single log file 
is created for each pod. 



Proceedings of the ISCA 11th International Conference on Parallel and Distributed Computing Systems, September 1998 

108 

• xtpvm_exit(): removes the calling thread from XTPVM. 

• xtpvm_getinstance(): returns the instance number of a thread. 

• xtpvm_upkXXX(pointer, count, stride): unpacks data of type 
XXX (can be byte, double, int, long, etc.) to address pointer. 
count items are unpacked and spaced stride appart. 

• xtpvm_pkXXX(pointer, count, stride): packs data of type XXX. 

3.5 XTPVM Internal Design 

The xtvpm_init function associates user thread names with 
thread function pointers. It should be the first xtpvm function to be 
called. The user can also declare names to remote shared memory 
regions, and sets appropriate pointers. Since every pod will first call 
this function, the problem of a function pointer having a different 
value on different architectures is alleviated by reloading its value 
whenever a pod is created, thus heterogeneity is provided. 

After calling xtpvm_init, XTPVM sets up the virtual machine by 
starting the PVM system if it is not running, adding the hosts 
specified in the hosts.ini file to the virtual machine, and spawning 
one pod per host. The hosts.ini file specifies the location of each pod 
on its corresponding host so that different pod versions run on their 
corresponding architectures. Every pod first exports all the threads 
declared by the user (so that threads can migrate to any pod in the 
virtual machine) and then exports and spawns two private XTPVM 
threads, the thread_spawner and the load_monitor threads as shown 
in Figure 3. If xtpvm_init returns TRUE, XTPM converts the master 
process into a pod, creating for it these two private threads, 
otherwise, a pod is spawned on the local machine with these two 
threads. The advantage of converting the master into a pod is that 
inter-process communication is eliminated on the local machine, thus 
increasing performance. Another advantage is that the xtpvm_main 
function is managed as a normal migratable thread. 

Pod

• export thread spawner,
load monitor

• tpvm_recv sync_key
• tpvm_export all threads
• tpvm_spawn thread spawner
• tpvm_spawn load monitor
• tpvm_send spawnerid,
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• pvm_spawn pod

• tpvm_send mytid, serial#, hostn

• tpvm_recv from allpods

• tpvm_send
       hostn, monitortids, spawnertids

Master Process

Load
Monitor

tpvm_recv

Thread
Spawner

 
Figure 3: Creating a pod and setting the load monitor and thread spawner. 

The pod and the master processes are in fact the same 
executable, but after calling xtpvm_init as the first function, both call 
xtpvm_start which will execute differently for a master process than a 
pod process. A process knows if it is a pod or a master just by making 
the PVM call pvm_parent, since only pods have a parent that spawns 
them and assigns them a serial number. The master process has no 
parent. This ensures that only the master process performs the virtual 
machine setup. 

The thread_spawner and the load_monitor threads are non-
migratable. They are exported and spawned by the main thread of 
every pod. Master processes that have changed into pods also own 

these two threads. All other threads that run in a pod are migratable 
user threads and the programmer can reference them by name. 

The thread spawner is responsible mainly for user thread 
creation and termination. Send and receive commands require 
mapping from thread name to id for transparent access to threads, and 
this is done by multicasting a message to all thread spawners 
requesting them a lookup of a thread name. The thread spawner that 
has the thread currently running on its host replies. Thus, send and 
receive require thread names as the destination and source 
respectively and not thread ids. This is how location transparency is 
achieved. A mapping is also provided from thread ids to thread 
instances so that threads can know their instance number. This is 
useful for data parallelism, where each thread works on a separate 
section of the data. 

The load monitor thread is responsible for calculating the load 
average at the local pod. It then sends this system load and the 
number of queued threads to the neighboring load monitor (the one 
in the pod with the next serial number) in a chain fashion to construct 
one common load array. The load array is used for initial scheduling 
as well as for migration (see section 4). The DGP algorithm is used to 
select threads for migration. The load monitor on the most loaded 
machine migrates the selected threads to the pod on the least loaded 
machine, while other load monitors do nothing. 

4. Scheduling and Migration in XTPVM 

4.1 Scheduling in XTPVM 

Several static scheduling schemes have been proposed. Some of 
these include Source Processor Scheduling (SPS), Sorted Spiral 
Scheduling (SSS), and Global Plan Scheduling (GPS) [9]. All these 
can be categorized as static off-line scheduling since a schedule for 
the entire system is determined at design time, before the execution 
of the system. The advantages of this approach are its low run-time 
overhead, its deterministic behavior, its provision for system-wide 
optimizations, and the ease in which task dependencies and resource 
conflicts can be resolved, eliminating the need for costly resource 
locking and synchronization operations. The disadvantages of any 
static off-line scheduling include its inflexibility to adapt to a 
changing environment, and the difficulty of finding an optimal 
schedule (which is an NP-hard problem). Heuristics are often used to 
find a feasible schedule, which might result in low system utilization. 

In XTPVM, we are concerned with the dynamic scheduling of 
threads over a set of workstations whose local loads might fluctuate 
as the threads run. Thus, we require a distributed scheduling scheme 
that takes into account local workstation loads and tries to balance 
these loads via migration of threads. The load metric used for initial 
scheduling of threads is the reported system load average since this 
adds a prediction factor as to where a thread might finish quicker. For 
migration, the load metric used is the number of ready threads 
queued at each workstation by a particular application owner. Thus, 

XTPVM scheduling = initial scheduling + migration 

Whenever the user wishes to spawn a thread, a call to 
xtpvm_beginthread is made, specifying the thread name and thread 
instance. The thread name is the name associated with a particular 
function specified in xtpvm_init by the user. A name, rather than a 
TPVM thread id, is used for location transparency since threads 
might migrate after being spawned. Since several instances of a 
thread function might be spawned, each instance is qualified by its 



Proceedings of the ISCA 11th International Conference on Parallel and Distributed Computing Systems, September 1998 

109 

instance number, which is also required for communication and 
termination of threads. 

Once this call is made, XTPM retrieves the Load Array from the 
Load Monitor thread in the caller's pod, and the least loaded 
workstation is selected as the destination to spawn this new thread. 
Once a destination host has been selected, a message is sent to the 
Thread Manager in the pod on that workstation requesting it to 
create a new thread in its encapsulating pod. The Thread Manager 
can choose either to directly spawn this new thread thus creating a 
context and committing it, or to place it on a queue until some 
currently running threads terminate. The maximum number of 
committed threads per host is determined as the number of processors 
available on the workstation multiplied by a thread Commit Factor. 
Thus, the Commit Factor is the number of threads committed per 
processor. Since flooding a processor with many threads 
simultaneously slows down the system, a Commit Factor is chosen to 
be the suitable number of threads a single processor can handle 
efficiently. Once committed, a thread cannot migrate. If a thread 
performs a blocking wait, XTPVM would be counting it as 
committed, when in fact it is not running, and another thread could 
be scheduled to run instead. To avoid this, just before blocking on a 
receive another thread on the queue is allowed to commit. This 
means that at times more than Commit Factor threads may be 
running to avoid deadlocks. 

Another approach for the initial scheduling of n threads is to 
fairly distribute them over the available workstations and let 
migration move them around to achieve quickest execution. As the 
results presented later show, the initial scheduling scheme does not 
affect execution time since migration is performed frequently. 

4.2 Distributed Global Plan (DGP) Algorithm 

In XTPVM, we are concerned with the dynamic scheduling of 
threads over a set of workstations whose local loads might fluctuate 
as the threads run. Thus, we require a distributed scheduling scheme 
that takes into account local workstation loads and tries to balance 
these loads via migration of threads. One method is to use a Genetic 
Algorithm. We have implemented one that has chromosomes 
selected, reproduced and mutated in order to converge to the best 
possible distribution of a fixed size block of totally independent tasks 
that are determined prior to scheduling. When loads change on the 
workstations, the GA will adapt to account for such a change with a 
new distribution strategy of these blocks [10]. Even though a GA is 
adaptable and performed well in the experiments conducted, yet it is 
not useful for XTVPM, which requires scheduling of threads that 
might start and end at different times. 

An alternative way of developing a scheduling policy for 
XTPVM is to investigate multiprocessor scheduling algorithms. 
These suffer from the global state problem, since it is impossible to 
know the current state of the entire system exactly, due to the latency 
of acquiring the information. When this problem is looked at from a 
distributed perspective, then the latency in acquiring information 
about the current state is much greater. Some systems such as the 
MARS architecture escape this problem via static scheduling. Kara 
has introduced a new algorithm called DGP (Distributed Global Plan) 
that addresses the problem of coherence and coordination and makes 
good local scheduling decisions without jeopardizing global goals. 
DGP is distributed since control is decentralized and no host has a 
true image of the overall state of the system. A scheduler is replicated 
on each host, and each scheduler: 

• accounts for local decisions made by other schedulers, 
• accounts for the effect of its local decisions on the system, and 
• ensures load balancing 

DGP thus prevents host overloading which occurs when several 
hosts target the least loaded host, which in turn becomes heavily 
loaded. Its use of the parameter delta (∆) avoids job thrashing which 
is when jobs infinitely move around the network and hosts spend 
their time in redistributing jobs and little on executing local jobs. The 
DGP algorithm is based on a strategy called Global Plans (GP) that 
aims at maintaining all computational loads of a distributed system 
within a band ∆. We have analyzed DGP as a static scheme for 
scheduling on multiprocessors, and experiments have shown good 
performance both in speedup and efficiency [9], and thus it looks 
promising to use for XTPVM's migration algorithm. 

The Global Goal is defined as follows: 

A network of hosts is balanced if the load on all hosts are within 
a band called ∆, (where ∆ is constant, and has the same unit as the 
load of the hosts). Furthermore, ∆r(t) is defined as the minimum band 
that contains all loads at a time t. In other words, a system is 
balanced at time t if ∆ ≥ ∆r(t)  [1,2] 

To illustrate this definition, assume that two snapshots of a 
multiprocessor with five processors were taken at time t1 and t2. Also 
assume that the load metric is the number of jobs queuing for 
execution. Using the above definition Figures 4 represents the system 
at these two times and shows the individual loads of each host. 
Assuming ∆ = 3, Figure 4A exhibits an unbalanced state because 
∆(t1)=7 and therefore ∆(t1)> ∆. Figure 4B shows a balanced system 
since all loads belong to the band ∆ since ∆ ≥ ∆(t2) 
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Figure 4: Loads of 5 hosts before and after balancing 

The Global Plan Strategy aims to satisfy the global goal by 
ensuring that all loads are within delta and are thus balanced, 
preventing instability and host overloading. This is done via 

• An Input Loads vector X 
• A parameter ∆ 
• Output loads vector Y (withing the interval ∆) 
• A table of global allocations T = { (p,q,r) .. }   p units from host 

q to host r 

In general GP can be described by the following pseudo-code 

1. Y=X 
2. compute the processor with lest load (l) 
3. compute the processor with the highest load (h) 
4. while (load of processor h - load of processor l) ≥ delta do 

• Search T for a matching triple (p,h,l) for any p 
• if Search successful then increment triple by 1 => (p+1,h,l) 
• else insert new entry (1,h,l) 
• Decrement load of processor h 
• Increment load of processor l 
• Compute the new l  
• Compute the new h 

For example, if a network consists of  5 hosts, and we use ∆ = 2 
for the initial load vector X = (2,7,3,6,3), then T would develop as 
follows: 
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Step # Y ∆ at t Status T 
0 (2,7,3,6,3) 5 unbalanced {} 
1 (3,6,3,6,3) 3 unbalanced {(1,2,1)} 
2 (4,5,3,6,3) 3 unbalanced {(2,2,1)} 
3 (4,5,4,5,3) 2 balanced {(2,2,1) ,(1,4,3)} 

Table 1 : The development of the table of global allocations in GP. 

So to move from the unbalanced state (2,7,3,6,4) where host1 
has load 2, host2 has load 7 and so on, to the balanced state 
(4,5,4,5,3), T tells us to take 2 tasks from host2 and give it to host1, 
and 1 task from host4 to host3. As one can see, the final state has a 
maximum host load of 5 and a minimum host load of 3, and since ∆ 
was selected to be 2, then such a state would have the hosts balanced. 
The GP strategy is executed periodically depending on how 
important system balance is to the user. Since XTPVM will use this 
strategy, the library calls xtpvm_setloadband and xtpvm_setloaddelay 
are required for programmers to set the load band and the delay 
between load broadcast periods respectively. 

The application  of the GP policy to a distributed algorithm 
leads to several considerations. The algorithm based on the GP policy 
is called Distributed GP or DGP because of the distributed nature of 
the environment in which GP is applied. Each host only has control 
over its own resources and local load information is periodically 
broadcast. The GP algorithm is executed at each machine to create T 
and each machine i executes all entries that include it as a source (*, 
i, *) or as a destination (*, *, i) depending whether it is sender 
initiated or receiver initiated.  

4.3 Dynamic Load Balancing and Migration in XTPVM 

Recall that load monitors cooperate in a chain fashion, passing 
their loads around back to the first load monitor which then 
broadcasts this load. In fact, not only are the load averages circulated 
this way, but with them the load managers circulate the length of 
their ready queue in terms of the number of threads queued in it. This 
in effect generates the input loads vector, X, discussed in DGP that 
must be balanced to be within ∆. 

XTPVM uses a third parameter in its specialization of DGP 
other than ∆ and the Commit Factor discussed previously. This is the 
Threshold_to_start_DGP parameter. To prevent excessive migration, 
we can control migration to initiate it only when queues are empty 
enough. Whenever the minimum queue load is less than 
Threshold_to_start_DGP then migration is invoked, otherwise 
nothing happens and execution of committed threads continues as 
normal. 

5. Performance Evaluation 

This section examines the effect of changing XTVPM 
parameters on the overall execution time of an application. To assess 
the performance, we declared 100 thread instances of the same 
function but with different instance numbers. The thread function 
loops one million times to consume CPU cycles. Upon termination, a 
message is sent from a thread instance to its parent thread indicating 
its completion before calling xtpvm_exit to remove itself from the list 
of running threads. The parent thread waits for 100 such messages 
and calculates the time difference between starting these threads and 
receiving all 100 messages. This is the total time of execution of the 
threads, which changes as different values are chosen for XTPVM 
parameters. 

5.1 The Effect of Commit Factor  

The first experiment aims at finding the optimal number of 
committed threads per processor. Recall that a committed thread is 
the one for which a context has been created. Once committed, a 
thread cannot migrate. The Commit Factor in this experiment was 
ranged from 1 to 10 while other parameters were kept constant. The 
load monitor was set to run once every second (Load Delay =1), a 
DGP delta value of 2 was chosen, and the Threshhold_to_start_DGP 
was set to a relatively large value, 100, so that migration can take 
place anytime when enabled, and its effects can be obvious. A value 
of 100 was chosen since a queue will always have less than 100 
threads in this experiment. The experiment was first performed with 
migration disabled on 2 hosts, and with migration enabled on 2 hosts 
and then 5 hosts (Sparc 5 workstations running Solaris 2.x). All hosts 
had a relatively low load average, ranging from 1 to 1.5 as reported 
by the system during the experiment. Figure 5 shows the results. 
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Figure 5: Effect of commit factor on execution time 

The curves of Figure 5 have a common pattern, regardless of 
whether migration is enabled and the number of hosts used. As the 
number of committed threads per host increases, the overall 
execution time improved up to a certain point (3 in our example), due 
to the ability of each host to run more than one thread. The optimal 
commit factor value can vary from one application to another 
depending on what threads are doing. For example, if a committed 
thread waits on I/O, another committed thread can run making better 
use of CPU time and decreasing overall execution time. Increasing 
the number of committed threads beyond a certain value made 
XTPVM perform worse, since more time is wasted in creating new 
contexts for threads and switching between them. Furthermore, 
increasing the number of committed threads will decrease the number 
of threads that can be migrated and will imbalance the loads of 
workstations. 

Besides the effect of Commit Factor, Figure 5 demonstrates the 
advantage of using migration in XTPVM and the speedup achieved 
when using many hosts. The advantage of migration is apparent, 
especially when initial scheduling is not proper or when the hosts 
have different loads or speeds. Although the upper and middle curves 
of Figure 5 were obtained by running the experiment on two hosts, 
the middle curve, with migration enabled, has much better 
performance. This is because the initial scheduling algorithm did not 
distribute the threads properly resulting in a load imbalance. 
However, with migration enabled, the Load Monitor maintained a 
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load balance, achieving high CPU utilization since all hosts are 
almost always busy. 

The sequential (non-XTPVM) version of the application ran in 
22.81 seconds. The XTPVM version ran in 14.88 seconds on two 
hosts and 5.02 seconds on five hosts with one thread committed per 
host at a time, thus achieving a speedup of 1.53 and 4.54 
respectively. When 3 threads are committed per host, the execution 
times were 9.81 seconds on two hosts and 4.23 seconds on five hosts. 
The speedups were 2.32 and 5.39 respectively. The super-linear 
speedups were because the threads were doing I/O writing data to a 
file. Committing more than one thread per processor made better use 
of CPU time. While a thread is waiting for I/O, another thread ran 
reducing the overall execution time. 

5.2 Changing the Initial Scheduling policy 

We now examine the effect of initial scheduling policy on 
overall execution time. Figure 6 depicts the number of non-
committed threads in the ready queues of two hosts at each migration 
step. The initial scheduling policy of Figure 6A assigned all the 
newly created threads to one host. At first, Q2 was empty due to the 
initial scheduling scheme, but after the first migration, the queues 
were balanced out with 48 threads each. One host was faster than the 
other, and was able to run more of its queued threads. When the Load 
Monitor ran for the second time, it balanced the loads to 42 and 41 
(difference less than ∆=2). The end effect is that threads are migrated 
from slower to faster hosts. Even though the initial execution policy 
was improper, migration had compensated for it. 
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Figure 6A: Balancing the thread queues with initially imbalanced queues. 

When the initial scheduling policy fairly divides the threads 
among the hosts, the changes in queue sizes were very similar to the 
first situation as shown in Figure 6B. The overall execution times in 
both cases were very close (14.9 and 14.5 seconds). Thus, initial 
scheduling does not play a significant role when the number of 
threads is large and migration is enabled. It should be emphasized 
that migration has a very small overhead in XTPVM, since only one 
message is required to specify the n threads to be migrated, just by 
sending n thread names and instances. The message is also small in 
size since no thread context is transferred. This is to be contrasted 
with alternative methods of migration in which the entire thread 
context (code, data, and state) is migrated. 
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Figure 6B: Balancing the thread queues with initially balanced queues. 

5.3 The Effect of Threshhold_to_start_DGP 

An experiment similar to that in section 5.1 was performed but 
with a different Threshhold_to_start_DGP value. Instead of setting it 
to 100, a value of 10 was chosen this time. It was noticed that 
migration took place usually once only rather than 4 or 5 times as 
with a value of 100, and this had a noticeable effect on the total 
execution time only when the hosts had noticeably different loads. 
More frequent migration of threads to the fast host meant that the fast 
host was executing most of the threads while less frequent migration 
didn’t migrate too many threads to the fast host. For example, out of 
100 threads, the fast host executed an average of 66 threads when 
Threshhold_to_start_DGP=100 compared to an average of 64 when 
Threshhold_to_start_DGP=10. 

6. Related Work 

Introducing a new abstract machine necessitates a comparison 
with the existing ones to see the similarities and differences, the 
advantages and disadvantages. We already discussed the differences 
between XTPVM, PVM and TPVM. We will now compare XTPVM 
with other abstract machines surveyed.  

6.1 Orca/Panda and HAWK 

These deal with objects as the major item of abstraction and not 
threads, and thus use the Object-Oriented programming paradigm, 
which is at a higher level of abstraction. In both VMs, objects are 
shared and replicated transparently, and in HAWK they are also 
partitioned transparently. Unlike XTPVM, these VMs do not have 
provisions for threads and the process model of programming. 
XTPVM, on the other hand, does not replicate or partition shared 
regions as in Orca/Panda and HAWK [11,12]. 

6.2 TAM and LAM  

These expose communication, synchronization, and scheduling 
of threads to allow compilers to optimize for important special cases, 
whereas no compiler optimization is provided in XTPVM. They also 
deal with threads but do not transparently migrate them [13,14]. They 
run on a single multiprocessor with only one running activation 
frame at any moment in time possibly with several threads, while 
XTPVM can work on multiprocessors and effectively exploit them, 
allowing multiple threads in different address spaces (pods) to 
concurrently run on the same machine. Thus, in TAM and LAM, 
synchronization is only among threads of same activation frame 
rather than threads of different activations, whereas in XTPVM 



Proceedings of the ISCA 11th International Conference on Parallel and Distributed Computing Systems, September 1998 

112 

threads in different pods, possibly on different hosts, can 
synchronize. 

6.3 LPVM 

LPVM is a Lightweight process version of PVM but with a 
different user interface. It has threads that are thread safe as its basic 
unit, but it is specifically targeted at symmetric multiprocessors that 
support threads and global shared memory and does not provide 
smart scheduling and migration of these threads over a network of 
workstations[15]. 

6.4 MPVM and MIST  

Just like XTPVM, MPVM is also based on PVM, but migrates 
processes rather than threads over a pool of workstations, and the 
system MIST has been build to support task migration, application 
checkpointing, and multi-user application execution, having an 
MPVM kernel [16,17]. MIST has a Multi-user Migratable PVM 
kernel, which is an enhanced version of PVM that supports 
transparent task migration, application checkpointing and multi-user 
application execution, but not thread migration. It makes use of the 
enhanced version of the resource manager interface provided by 
PVM [16]. 

7. Conclusion and Future Enhancements 

XTPVM, a transparent thread scheduling and migrating virtual 
machine, has been implemented as a layer on top of TPVM and PVM 
to simplify the task of parallel programmers producing applications 
for a virtual parallel computer constructed by the cooperation of 
several hosts on a LAN. The DGP algorithm was used to initiate the 
migration of ready non-committed threads queued in a FIFO queue, 
waiting to be committed on the current host. An experiment was 
performed to show the advantage of queuing threads and not 
committing them as soon as they are ready. 

A future enhancement to include in XTPVM is fault tolerance 
since PVM makes no attempt to automatically recover tasks that are 
killed because of host failure but leaves this task to the application 
programmer. Another feature is to make the commit factor change 
dynamically at runtime according to the behavior of threads. 

REFERENCES 

[1] M. Kara, "Simulation and Prototyping of a Coherent Distributed 
Dynamic Load Balancing Algorithm", Research Report Series, 
School of Computer Studies, The University of Leeds, Report 
97.17, May 1997. 

[2] M. Kara, "Using dynamic load balancing in distributed 
information systems" Research Report Series, School of 
Computer Studies, The University of Leeds, Report 94.18, May 
1994.  

[3] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Mancheck, and 
V. Sunderam, "PVM: A User's Guide and Tutorial for 
Networked Parallel Computing'', MIT Press, 1994. 

[4] A.S. Tanenbaum, H.E. Bal, and M.F. Kaashoek, "Programming 
Multicomputers Using Shared Objects", In Proceeding of the 
Third International Workshop on Object Orientation in 
Operating Systems (IWOOOS'93), pages 199--202, December 
1993. 

[5] A. Ferrari, and V. Sunderam, "Multiparadigm Distributed 
Computing with TPVM", Technical Report CSTR-951201, 
Department of Mathematics and Computer Science, Emory 
University, December 1995, Submitted to the Journal of 
Parallel and Distributed Computing, Special Issue on 
Multithreading for Multiprocessors 

[6] A. Ferrari, and V. Sunderam, "TPVM: Distributed Concurrent 
Computing with Lightweight Processes", Proceedings of IEEE 
High Performance Distributed Computing 4, Washington, D.C., 
pp. 211-218, August 1995. 

[7] A. Ferrari, and V. Sunderam, "TPVM: A Threads-Based 
Interface and Subsystem for PVM", Technical Report CSTR-
940802. Department of Math and Computer Science, Emory 
University, Atlanta, August 1994. 

[8] T. Abdel-Radi, "XTPVM: A Transparent Thread Scheduling 
and Migrating Abstract machine", Master thesis, April 98, AUC. 

[9] M. Mahmoud, A. Abdelbar and T. Abdel-Radi, "A Framework 
for Analyzing Multiprocessor Scheduling", Submitted to PDCS-
98, Chicago, Illonois. 

[10] A. Sameh, T. Abdel-Radi, and I. Khalil. "Scheduling jobs using 
a Genetic Algorithm in a Distributed Environment", 6th 
International Conference on Artificial Intelligence Applications 
’98 (ICAIA’98). 

[11] H.E. Bal, M.F. Kaashoek, and A.S. Tanenbaum, "Orca: A 
Language For Parallel Programming of Distributed Systems", 
IEEE Transactions on Software Engineering, 18(3):190-205, 
March 1992. 

[12] R. Bhoedjang, T. Ruhl, R. Hofman, K. Langendoen, H. Bal, and 
M.F. Kaashoek, "Panda: A Portable Platform to Support Parallel 
Programming Languages," Symposium on Experiences with 
Distributed and Multiprocessor Systems IV, San Diego, pp. 213-
226, Sep. 1993. 

[13] T. Eicken, D. Culler, S.C. Goldstein, and K.E. Schauser, "TAM 
- a Compiler Controlled Threaded Abstract Machine", J. 
Parallel and Distributed Computing, 1992. 

[14] S. Davis, "The Liquid Abstract Machine", MIT Transit Project, 
Transit Note #86, October 1993. 

[15] H. Zhou, and A. Geist, "LPVM: A Step Towards Multithreaded 
PVM", Oak Ridge National Laboratory. Mathematical Sciences 
Section, Oak Ridge National Laboratory, Oak Ridge. 

[16] J. Casas, D.L. Clark, P.S. Galbiati, R. Konuru, S.W. Otto, R.M. 
Prouty, and J. Walpole, "MIST: PVM with Transparent 
Migration and Checkpointing", presented at the 3rd Annual 
PVM Users' Group Meeting, Pittsburgh, PA, May 7-9, 1995. 

[17] J. Casas, D.L. Clark, R. Konuru, S.W. Otto, R.M. Prouty, and J. 
Walpole, "MPVM: A Migration Transparent Version of PVM," 
Technical Report CSE-95-002, Oregon Graduate Institute of 
Science and Technology, February 1995. 


