
1

Performance

ICS 233
Computer Architecture and Assembly Language

Prof. Muhamed Mudawar

College of Computer Sciences and Engineering
King Fahd University of Petroleum and Minerals

Performance ICS 233 – KFUPM © Muhamed Mudawar – slide 2

How can we make intelligent choices about computers?

Why is some computer hardware performs better at
some programs, but performs less at other programs?

How do we measure the performance of a computer?

What factors are hardware related? software related?

How does machine’s instruction set affect performance?

Understanding performance is key to understanding
underlying organizational motivation

What is Performance?

2

Performance ICS 233 – KFUPM © Muhamed Mudawar – slide 3

Response Time and Throughput
Response Time

Time between start and completion of a task, as observed by end user
Response Time = CPU Time + Waiting Time (I/O, OS scheduling, etc.)

Throughput
Number of tasks the machine can run in a given period of time

Decreasing execution time improves throughput
Example: using a faster version of a processor
Less time to run a task ⇒ more tasks can be executed

Increasing throughput can also improve response time
Example: increasing number of processors in a multiprocessor
More tasks can be executed in parallel
Execution time of individual sequential tasks is not changed
But less waiting time in scheduling queue reduces response time

Performance ICS 233 – KFUPM © Muhamed Mudawar – slide 4

For some program running on machine X

X is n times faster than Y

Book’s Definition of Performance

Execution timeX

1
PerformanceX =

PerformanceY

PerformanceX

Execution timeX

Execution timeY = n=

3

Performance ICS 233 – KFUPM © Muhamed Mudawar – slide 5

Real Elapsed Time

Counts everything:

Waiting time, Input/output, disk access, OS scheduling, … etc.

Useful number, but often not good for comparison purposes

Our Focus: CPU Execution Time

Time spent while executing the program instructions

Doesn't count the waiting time for I/O or OS scheduling

Can be measured in seconds, or

Can be related to number of CPU clock cycles

What do we mean by Execution Time?

Performance ICS 233 – KFUPM © Muhamed Mudawar – slide 6

Clock cycle = Clock period = 1 / Clock rate

Clock rate = Clock frequency = Cycles per second
1 Hz = 1 cycle/sec 1 KHz = 103 cycles/sec

1 MHz = 106 cycles/sec 1 GHz = 109 cycles/sec

2 GHz clock has a cycle time = 1/(2×109) = 0.5 nanosecond (ns)

We often use clock cycles to report CPU execution time

Clock Cycles

Cycle 1 Cycle 2 Cycle 3

CPU Execution Time = CPU cycles × cycle time
Clock rate

CPU cycles
=

4

Performance ICS 233 – KFUPM © Muhamed Mudawar – slide 7

Improving Performance
To improve performance, we need to

Reduce number of clock cycles required by a program, or
Reduce clock cycle time (increase the clock rate)

Example:
A program runs in 10 seconds on computer X with 2 GHz clock
What is the number of CPU cycles on computer X ?
We want to design computer Y to run same program in 6 seconds
But computer Y requires 10% more cycles to execute program
What is the clock rate for computer Y ?

Solution:
CPU cycles on computer X = 10 sec × 2 × 109 cycles/s = 20 × 109

CPU cycles on computer Y = 1.1 × 20 × 109 = 22 × 109 cycles
Clock rate for computer Y = 22 × 109 cycles / 6 sec = 3.67 GHz

Performance ICS 233 – KFUPM © Muhamed Mudawar – slide 8

Instructions take different number of cycles to execute
Multiplication takes more time than addition

Floating point operations take longer than integer ones

Accessing memory takes more time than accessing registers

CPI is an average number of clock cycles per instruction

Important point

Changing the cycle time often changes the number of
cycles required for various instructions (more later)

Clock Cycles per Instruction (CPI)

1

I1

cycles

I2 I3 I6I4 I5 I7

2 3 4 5 6 7 8 9 10 11 12 13 14

CPI = 14/7 = 2

5

Performance ICS 233 – KFUPM © Muhamed Mudawar – slide 9

To execute, a given program will require …
Some number of machine instructions

Some number of clock cycles

Some number of seconds

We can relate CPU clock cycles to instruction count

Performance Equation: (related to instruction count)

Performance Equation

CPU cycles = Instruction Count × CPI

Time = Instruction Count × CPI × cycle time

Performance ICS 233 – KFUPM © Muhamed Mudawar – slide 10

XXXISA

XXOrganization

XTechnology

XXCompiler

XProgram

CycleCPII-Count

Understanding Performance Equation

Time = Instruction Count × CPI × cycle time

6

Performance ICS 233 – KFUPM © Muhamed Mudawar – slide 11

Suppose we have two implementations of the same ISA

For a given program
Machine A has a clock cycle time of 250 ps and a CPI of 2.0

Machine B has a clock cycle time of 500 ps and a CPI of 1.2

Which machine is faster for this program, and by how much?

Solution:
Both computer execute same count of instructions = I

CPU execution time (A) = I × 2.0 × 250 ps = 500 × I ps

CPU execution time (B) = I × 1.2 × 500 ps = 600 × I ps

Computer A is faster than B by a factor = = 1.2

Using the Performance Equation

600 × I

500 × I

Performance ICS 233 – KFUPM © Muhamed Mudawar – slide 12

Determining the CPI
Different types of instructions have different CPI

Let CPIi = clocks per instruction for class i of instructions

Let Ci = instruction count for class i of instructions

Designers often obtain CPI by a detailed simulation

Hardware counters are also used for operational CPUs

CPU cycles = (CPIi × Ci)
i = 1

n

∑ CPI =

(CPIi × Ci)
i = 1

n

∑

i = 1

n

∑Ci

7

Performance ICS 233 – KFUPM © Muhamed Mudawar – slide 13

Example on Determining the CPI
Problem
A compiler designer is trying to decide between two code sequences for a
particular machine. Based on the hardware implementation, there are three
different classes of instructions: class A, class B, and class C, and they
require one, two, and three cycles per instruction, respectively.

The first code sequence has 5 instructions: 2 of A, 1 of B, and 2 of C
The second sequence has 6 instructions: 4 of A, 1 of B, and 1 of C

Compute the CPU cycles for each sequence. Which sequence is faster?

What is the CPI for each sequence?

Solution
CPU cycles (1st sequence) = (2×1) + (1×2) + (2×3) = 2+2+6 = 10 cycles

CPU cycles (2nd sequence) = (4×1) + (1×2) + (1×3) = 4+2+3 = 9 cycles

Second sequence is faster, even though it executes one extra instruction

CPI (1st sequence) = 10/5 = 2 CPI (2nd sequence) = 9/6 = 1.5

Performance ICS 233 – KFUPM © Muhamed Mudawar – slide 14

Given: instruction mix of a program on a RISC processor
What is average CPI?
What is the percent of time used by each instruction class?
Classi Freqi CPIi
ALU 50% 1
Load 20% 5
Store 10% 3
Branch 20% 2

How faster would the machine be if load time is 2 cycles?
What if two ALU instructions could be executed at once?

Second Example on CPI

CPIi × Freqi

0.5×1 = 0.5
0.2×5 = 1.0
0.1×3 = 0.3
0.2×2 = 0.4

%Time
0.5/2.2 = 23%
1.0/2.2 = 45%
0.3/2.2 = 14%
0.4/2.2 = 18%

Average CPI = 0.5+1.0+0.3+0.4 = 2.2

8

Performance ICS 233 – KFUPM © Muhamed Mudawar – slide 15

MIPS: Millions Instructions Per Second

Sometimes used as performance metric
Faster machine ⇒ larger MIPS

MIPS specifies instruction execution rate

We can also relate execution time to MIPS

MIPS as a Performance Measure

Instruction Count
Execution Time × 106

Clock Rate
CPI × 106

MIPS = =

Inst Count
MIPS × 106

Inst Count × CPI
Clock Rate

Execution Time = =

Performance ICS 233 – KFUPM © Muhamed Mudawar – slide 16

Drawbacks of MIPS
Three problems using MIPS as a performance metric

1. Does not take into account the capability of instructions

Cannot use MIPS to compare computers with different
instruction sets because the instruction count will differ

2. MIPS varies between programs on the same computer

A computer cannot have a single MIPS rating for all programs

3. MIPS can vary inversely with performance

A higher MIPS rating does not always mean better performance

Example in next slide shows this anomalous behavior

9

Performance ICS 233 – KFUPM © Muhamed Mudawar – slide 17

Two different compilers are being tested on the same
program for a 4 GHz machine with three different
classes of instructions: Class A, Class B, and Class C,
which require 1, 2, and 3 cycles, respectively.
The instruction count produced by the first compiler is 5
billion Class A instructions, 1 billion Class B instructions,
and 1 billion Class C instructions.
The second compiler produces 10 billion Class A
instructions, 1 billion Class B instructions, and 1 billion
Class C instructions.
Which compiler produces a higher MIPS?
Which compiler produces a better execution time?

MIPS example

Performance ICS 233 – KFUPM © Muhamed Mudawar – slide 18

Solution to MIPS Example
First, we find the CPU cycles for both compilers

CPU cycles (compiler 1) = (5×1 + 1×2 + 1×3)×109 = 10×109

CPU cycles (compiler 2) = (10×1 + 1×2 + 1×3)×109 = 15×109

Next, we find the execution time for both compilers
Execution time (compiler 1) = 10×109 cycles / 4×109 Hz = 2.5 sec
Execution time (compiler 2) = 15×109 cycles / 4×109 Hz = 3.75 sec

Compiler1 generates faster program (less execution time)
Now, we compute MIPS rate for both compilers

MIPS = Instruction Count / (Execution Time × 106)
MIPS (compiler 1) = (5+1+1) × 109 / (2.5 × 106) = 2800
MIPS (compiler 2) = (10+1+1) × 109 / (3.75 × 106) = 3200

So, code from compiler 2 has a higher MIPS rating !!!

10

Performance ICS 233 – KFUPM © Muhamed Mudawar – slide 19

Amdahl’s Law
Amdahl's Law is a measure of Speedup

How a computer performs after an enhancement E
Relative to how it performed previously

Enhancement improves a fraction f of execution time by
a factor s and the remaining time is unaffected

Performance with E
Performance before

ExTime before
ExTime with E

Speedup(E) = =

ExTime with E = ExTime before × (f / s + (1 – f))

Speedup(E) = (f / s + (1 – f))
1

Performance ICS 233 – KFUPM © Muhamed Mudawar – slide 20

Suppose a program runs in 100 seconds on a machine,
with multiply responsible for 80 seconds of this time. How
much do we have to improve the speed of multiplication if
we want the program to run 4 times faster?

Solution: suppose we improve multiplication by a factor s

25 sec (4 times faster) = 80 sec / s + 20 sec

s = 80 / (25 – 20) = 80 / 5 = 16

Improve the speed of multiplication by s = 16 times

How about making the program 5 times faster?

20 sec (5 times faster) = 80 sec / s + 20 sec

s = 80 / (20 – 20) = ∞ Impossible to make 5 times faster!

Example on Amdahl's Law

11

Performance ICS 233 – KFUPM © Muhamed Mudawar – slide 21

Benchmarks
Performance best obtained by running a real application

Use programs typical of expected workload

Representatives of expected classes of applications

Examples: compilers, editors, scientific applications, graphics, ...

SPEC (System Performance Evaluation Corporation)
Funded and supported by a number of computer vendors

Companies have agreed on a set of real program and inputs

Various benchmarks for …

CPU performance, graphics, high-performance computing, client-
server models, file systems, Web servers, etc.

Valuable indicator of performance (and compiler technology)

Performance ICS 233 – KFUPM © Muhamed Mudawar – slide 22

The SPEC CPU2000 Benchmarks

Shallow water modelswimFPGA placement and routingvpr
Multigrid solver in 3D potential fieldmgridGNU C compilergcc
Partial differential equationappluCombinatorial optimizationmcf
Three-dimensional graphics librarymesaChess programcrafty
Computational fluid dynamicsgalgelWord processing programparser
Neural networks image recognitionartComputer visualizationeon
Seismic wave propagation simulationequakePerl applicationperlbmk
Image recognition of facesfacerecGroup theory, interpretergap
Computational chemistryammpObject-oriented databasevortex
Primality testinglucasCompressionbzip2
Crash simulation using finite elementsfma3dPlace and route simulatortwolf
High-energy nuclear physicssixtrack
Meteorology: pollutant distributionapsi

Quantum chromodynamicswupwiseCompressiongzip
DescriptionNameDescriptionName

14 FP benchmarks (Fortran 77, 90, and C)12 Integer benchmarks (C and C++)

Wall clock time is used as metric
Benchmarks measure CPU time, because of little I/O

12

Performance ICS 233 – KFUPM © Muhamed Mudawar – slide 23

SPEC 2000 Ratings (Pentium III & 4)
S

P
E

C
 ra

tio
 =

 E
xe

cu
tio

n
tim

e
is

 n
or

m
al

iz
ed

re
la

tiv
e

to
 S

un
 U

ltr
a

5
(3

00
 M

H
z)

S
P

E
C

 ra
tin

g
=

G
eo

m
et

ric
 m

ea
n

of
 S

P
E

C
 ra

tio
s

Clock rate in MHz
500 1000 1500 30002000 2500 3500

0

200

400

600

800

1000

1200

1400

Pe ntium III CINT2000

Pentium 4 CINT2000

Pentium III CFP2000

Pentium 4 CFP2000

Note the relative positions of
the CINT and CFP 2000

curves for the Pentium III & 4

Pentium III does better at
the integer benchmarks,

while Pentium 4 does better
at the floating-point

benchmarks due to its
advanced SSE2 instructions

Performance ICS 233 – KFUPM © Muhamed Mudawar – slide 24

Performance and Power
Power is a key limitation

Battery capacity has improved only slightly over time

Need to design power-efficient processors

Reduce power by
Reducing frequency

Reducing voltage

Putting components to sleep

Energy efficiency
Important metric for power-limited applications

Defined as performance divided by power consumption

13

Performance ICS 233 – KFUPM © Muhamed Mudawar – slide 25

Performance and Power
R

el
at

iv
e

P
er

fo
rm

an
ce

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

1 .2

1 .4

1 .6

SPEC INT2000 SPECF P2000 SPEC INT2000 SPECFP2000 SPEC IN T2000 SPEC FP2000

Pe ntium M @ 1 .6 /0 .6 G H z
Pe ntium 4 -M @ 2 .4 /1 .2 G H z
Pe ntium III-M @ 1 .2 /0 .8 G H z

Always on / maximum clock Laptop mode / adaptive clock Minimum power / min clock

Benchmark and Power Mode

Performance ICS 233 – KFUPM © Muhamed Mudawar – slide 26

Energy Efficiency

Energy efficiency of the Pentium M is
highest for the SPEC2000 benchmarks

R
el

at
iv

e
E

ne
rg

y
E

ffi
ci

en
cy

Always on / maximum clock Laptop mode / adaptive clock Minimum power / min clock

Benchmark and power mode

SPECINT 2000 SPECFP 2000 SPECINT 2000 SPECFP 2000 SPECINT 2000 SPECFP 2000

Pentium M @ 1.6/0.6 GHz
Pentium 4-M @ 2.4/1.2 GHz
Pentium III-M @ 1.2/0.8 GHz

14

Performance ICS 233 – KFUPM © Muhamed Mudawar – slide 27

Performance is specific to a particular program
Any measure of performance should reflect execution time

Total execution time is a consistent summary of performance

For a given ISA, performance improvements come from
Increases in clock rate (without increasing the CPI)

Improvements in processor organization that lower CPI

Compiler enhancements that lower CPI and/or instruction count

Algorithm/Language choices that affect instruction count

Pitfalls (things you should avoid)
Using a subset of the performance equation as a metric

Expecting improvement of one aspect of a computer to increase
performance proportional to the size of improvement

Things to Remember

