Performance

ICS 233

Computer Architecture and Assembly Language
Prof. Muhamed Mudawar

College of Computer Sciences and Engineering
King Fahd University of Petroleum and Minerals

What is Performance?

% How can we make intelligent choices about computers?

s Why is some computer hardware performs better at
some programs, but performs less at other programs?

+ How do we measure the performance of a computer?
% What factors are hardware related? software related?
%+ How does machine’s instruction set affect performance?

% Understanding performance is key to understanding
underlying organizational motivation

Performance ICS 233 - KFUPM © Muhamed Mudawar — slide 2

Response Time and Throughput

+» Response Time
< Time between start and completion of a task, as observed by end user
<~ Response Time = CPU Time + Waiting Time (I/O, OS scheduling, etc.)
¢ Throughput
< Number of tasks the machine can run in a given period of time
++ Decreasing execution time improves throughput

<~ Example: using a faster version of a processor
<> Less time to run a task = more tasks can be executed

% Increasing throughput can also improve response time
<~ Example: increasing number of processors in a multiprocessor
< More tasks can be executed in parallel
<~ Execution time of individual sequential tasks is not changed
<~ But less waiting time in scheduling queue reduces response time

Performance ICS 233 - KFUPM © Muhamed Mudawar — slide 3

Book's Definition of Performance

¢ For some program running on machine X

1
Execution timey

Performancey =

++ X is n times faster than Y

Performancey Execution time,

Performance, ~ Execution timey

Performance ICS 233 - KFUPM © Muhamed Mudawar — slide 4

What do we mean by Execution Time?

¢ Real Elapsed Time

< Counts everything:
= Waiting time, Input/output, disk access, OS scheduling, ... etc.

< Useful number, but often not good for comparison purposes

% Our Focus: CPU Execution Time
< Time spent while executing the program instructions
< Doesn't count the waiting time for 1/0 or OS scheduling
< Can be measured in seconds, or

< Can be related to number of CPU clock cycles

Performance ICS 233 - KFUPM © Muhamed Mudawar — slide 5

Clock Cycles

+¢+ Clock cycle = Clock period = 1 / Clock rate
J — I [| [L

«<— Cycle1 —>i«— Cycle2 —>«— Cycle3 —>i

+ Clock rate = Clock frequency = Cycles per second
<1 Hz =1 cycle/sec 1 KHz = 108 cycles/sec
<1 MHz = 10° cycles/sec 1 GHz = 10° cycles/sec
< 2 GHz clock has a cycle time = 1/(2x10°) = 0.5 nanosecond (ns)

« We often use clock cycles to report CPU execution time

CPU cycles

CPU Execution Time = CPU cycles x cycle time =
Clock rate

Performance ICS 233 - KFUPM © Muhamed Mudawar — slide 6

Improving Performance

¢ To improve performance, we need to
< Reduce number of clock cycles required by a program, or
< Reduce clock cycle time (increase the clock rate)
« Example:
< A program runs in 10 seconds on computer X with 2 GHz clock
<~ What is the number of CPU cycles on computer X ?
< We want to design computer Y to run same program in 6 seconds
< But computer Y requires 10% more cycles to execute program
< What is the clock rate for computer Y ?
% Solution:
< CPU cycles on computer X = 10 sec x 2 x 10° cycles/s = 20 x 10°
< CPU cycles on computer Y = 1.1 x 20 x 10° = 22 x 10° cycles
<~ Clock rate for computer Y = 22 x 10° cycles / 6 sec = 3.67 GHz

Performance ICS 233 - KFUPM © Muhamed Mudawar — slide 7

Clock Cycles per Instruction (CPI)

 Instructions take different number of cycles to execute
< Multiplication takes more time than addition
< Floating point operations take longer than integer ones

< Accessing memory takes more time than accessing registers

% CPl is an average number of clock cycles per instruction

] 12 |13 [raf5] 16 | 17 |CPI=14/7=2
"1 2 3 4 5 6 7 8 9 10 11 12 13 14 cycles
+ Important point

Changing the cycle time often changes the number of
cycles required for various instructions (more later)

Performance ICS 233 - KFUPM © Muhamed Mudawar — slide 8

Performance Equation

% To execute, a given program will require ...
< Some number of machine instructions
< Some number of clock cycles

<> Some number of seconds

% We can relate CPU clock cycles to instruction count

CPU cycles = Instruction Count x CPI

s Performance Equation: (related to instruction count)

Time = Instruction Count x CPI x cycle time

Performance ICS 233 - KFUPM © Muhamed Mudawar — slide 9

Understanding Performance Equation

Time = Instruction Count x CPI x cycle time
[-Count CPI Cycle
Program X
Compiler X X
ISA X X X
Organization X X
Technology X

Performance ICS 233 - KFUPM © Muhamed Mudawar - slide 10

Using the Performance Equation

% Suppose we have two implementations of the same ISA
% For a given program

<> Machine A has a clock cycle time of 250 ps and a CPI of 2.0

<> Machine B has a clock cycle time of 500 ps and a CPI of 1.2

< Which machine is faster for this program, and by how much?

% Solution:
<> Both computer execute same count of instructions = |
< CPU execution time (A) = 1 x 2.0 x 250 ps = 500 x | ps
< CPU execution time (B) =1 x 1.2 x 500 ps = 600 x | ps
600 x | -
500 x |

Performance ICS 233 - KFUPM © Muhamed Mudawar - slide 11

< Computer A is faster than B by a factor =

Determining the CPI

+ Different types of instructions have different CPI
Let CPI, = clocks per instruction for class i of instructions

Let C; =instruction count for class i of instructions

CPU cycles =Y (CPI,xC) | | cPI=
i=1

% Designers often obtain CPI by a detailed simulation

¢+ Hardware counters are also used for operational CPUs

Performance ICS 233 - KFUPM © Muhamed Mudawar - slide 12

X/
L X4

Example on Determining the CPT

Problem

A compiler designer is trying to decide between two code sequences for a
particular machine. Based on the hardware implementation, there are three
different classes of instructions: class A, class B, and class C, and they
require one, two, and three cycles per instruction, respectively.

The first code sequence has 5 instructions: 2 of A, 1 of B, and 2 of C
The second sequence has 6 instructions: 4 of A, 1 of B,and 1 of C

Compute the CPU cycles for each sequence. Which sequence is faster?
What is the CPI for each sequence?

Solution

CPU cycles (15t sequence) = (2x1) + (1x2) + (2x3) = 2+2+6 = 10 cycles
CPU cycles (2"¥sequence) = (4x1) + (1x2) + (1x3) = 4+2+3 = 9 cycles
Second sequence is faster, even though it executes one extra instruction
CPI (15t sequence) = 10/5 = 2 CPI (21 sequence) = 9/6 = 1.5

Performance ICS 233 - KFUPM © Muhamed Mudawar - slide 13

Second Example on CPI

Given: instruction mix of a program on a RISC processor
What is average CPI?
What is the percent of time used by each instruction class?

Class; Freq; CPI; CPI; x Freq; %Time

ALU 50% 1 05x1=0.5 0.5/2.2=23%
Load 20% 5 02x5=1.0 1.0/22=45%
Store 10% 3 01x3=03 0.3/22=14%
Branch 20% 2 02x2=04 0.4/22=18%

Average CPl = 0.5+1.0+0.3+0.4 = 2.2

How faster would the machine be if load time is 2 cycles?

What if two ALU instructions could be executed at once?

Performance ICS 233 - KFUPM © Muhamed Mudawar - slide 14

MIPS as a Performance Measure

«* MIPS: Millions Instructions Per Second

s Sometimes used as performance metric

< Faster machine = larger MIPS

s MIPS specifies instruction execution rate

MIPS =

Instruction Count

Clock Rate

Execution Time x 106

CPI x 106

«» We can also relate execution time to MIPS

Execution Time =

Inst Count

Inst Count x CPI

MIPS x 108

Clock Rate

Performance

ICS 233 - KFUPM

© Muhamed Mudawar - slide 15

Drawbacks of MIPS

Three problems using MIPS as a performance metric

1. Does not take into account the capability of instructions

<~ Cannot use MIPS to compare computers with different
instruction sets because the instruction count will differ

2. MIPS varies between programs on the same computer

< A computer cannot have a single MIPS rating for all programs

3. MIPS can vary inversely with performance

< A higher MIPS rating does not always mean better performance

<~ Example in next slide shows this anomalous behavior

Performance

ICS 233 - KFUPM

© Muhamed Mudawar - slide 16

MIPS example

+ Two different compilers are being tested on the same
program for a 4 GHz machine with three different
classes of instructions: Class A, Class B, and Class C,
which require 1, 2, and 3 cycles, respectively.

% The instruction count produced by the first compiler is 5
billion Class A instructions, 1 billion Class B instructions,
and 1 billion Class C instructions.

“+ The second compiler produces 10 billion Class A
instructions, 1 billion Class B instructions, and 1 billion
Class C instructions.

s Which compiler produces a higher MIPS?
s Which compiler produces a better execution time?

Performance ICS 233 - KFUPM © Muhamed Mudawar - slide 17

Solution to MIPS Example

% First, we find the CPU cycles for both compilers
< CPU cycles (compiler 1) = (5%1 + 1x2 + 1x3)x10° = 10x10°
< CPU cycles (compiler 2) = (10x1 + 1x2 + 1x3)x10° = 15x10°
* Next, we find the execution time for both compilers
< Execution time (compiler 1) = 10x10° cycles / 4x10° Hz = 2.5 sec
< Execution time (compiler 2) = 15x10°% cycles / 4x10° Hz = 3.75 sec
s Compiler1 generates faster program (less execution time)

s Now, we compute MIPS rate for both compilers

< MIPS = Instruction Count / (Execution Time x 10°)

< MIPS (compiler 1) = (5+1+1) x 10°/ (2.5 x 106) = 2800

< MIPS (compiler 2) = (10+1+1) x 10°/ (3.75 x 108) = 3200
% So, code from compiler 2 has a higher MIPS rating !!!

Performance ICS 233 - KFUPM © Muhamed Mudawar - slide 18

Amdahl's Law

+» Amdahl's Law is a measure of Speedup
<~ How a computer performs after an enhancement E
< Relative to how it performed previously

Speedup(E) = Performance with E _ _ExTime before

Performance before ExTime with E

« Enhancement improves a fraction f of execution time by
a factor s and the remaining time is unaffected

ExTime with E = ExTime before x (f/s+ (1-1))

1
(f/s+(1=1))

Performance ICS 233 - KFUPM © Muhamed Mudawar - slide 19

Speedup(E) =

Example on Amdahl's Law

% Suppose a program runs in 100 seconds on a machine,
with multiply responsible for 80 seconds of this time. How
much do we have to improve the speed of multiplication if
we want the program to run 4 times faster?

++ Solution: suppose we improve multiplication by a factor s
25 sec (4 times faster) = 80 sec /s + 20 sec
s=80/(25-20)=80/5=16
Improve the speed of multiplication by s = 16 times

+ How about making the program 5 times faster?

20 sec (5 times faster) = 80 sec /s + 20 sec

s =80/(20 — 20) = » Impossible to make 5 times faster!

Performance ICS 233 - KFUPM © Muhamed Mudawar - slide 20

10

Benchmarks

+ Performance best obtained by running a real application
< Use programs typical of expected workload
< Representatives of expected classes of applications

< Examples: compilers, editors, scientific applications, graphics, ...

s SPEC (System Performance Evaluation Corporation)
< Funded and supported by a number of computer vendors
<~ Companies have agreed on a set of real program and inputs

<> Various benchmarks for ...

CPU performance, graphics, high-performance computing, client-
server models, file systems, Web servers, etc.

< Valuable indicator of performance (and compiler technology)

Performance ICS 233 - KFUPM © Muhamed Mudawar - slide 21

The SPEC CPU2000 Benchmarks

12 Integer benchmarks (C and C++) 14 FP benchmarks (Fortran 77, 90, and C)
Name Description Name Description
gzip Compression wupwise | Quantum chromodynamics
vpr FPGA placement and routing swim Shallow water model
gcc GNU C compiler mgrid Multigrid solver in 3D potential field
mcf Combinatorial optimization applu Partial differential equation
crafty Chess program mesa Three-dimensional graphics library
parser Word processing program galgel Computational fluid dynamics
eon Computer visualization art Neural networks image recognition
perlbmk | Perl application equake Seismic wave propagation simulation
gap Group theory, interpreter facerec Image recognition of faces
vortex Object-oriented database ammp Computational chemistry
bzip2 Compression lucas Primality testing
twolf Place and route simulator fma3d Crash simulation using finite elements
sixtrack High-energy nuclear physics
apsi Meteorology: pollutant distribution

+» Wall clock time is used as metric
+» Benchmarks measure CPU time, because of little I/O

Performance ICS 233 - KFUPM © Muhamed Mudawar - slide 22

11

SPEC 2000 Ratings (Pentium IIT & 4)

[2]
- i) 1400
.g o ° Note the relative positions of /.
T3 8 € 1200 H the CINT and CFP 2000 4>
§ Tao ¢ curves for the Pentium Il & 4)
oS wm é Pentium 4 CFP2000
s 9% g 1000
025 8 /:/:/‘/‘//‘:P/eomium 4 CINT2000
Ew g & 800
c S (@]
o= .0 o /6'//)
=T R R
SZ @ 8 600
[&] .
° 3 g g Pentium Il CINT2000 5546/0 Pentium Il does better at
Wod & 400 the integer benchmarks,
I ‘5 | o while Pentium 4 does better
220 r“‘:entium Il CFP2000 at the floating-point |
TS § 200 benchmarks due to its
o¢ew advanced SSE2 instructions
& (@) 0 T T T T T T
) E 500 1000 1500 2000 2500 3000 3500
w Clock rate in MHz
Performance 1CS 233 - KFUPM © Muhamed Mudawar - slide 23

Performance and Power

«» Power is a key limitation

< Battery capacity has improved only slightly over time
+ Need to design power-efficient processors

+ Reduce power by
< Reducing frequency
< Reducing voltage
< Putting components to sleep
% Energy efficiency
< Important metric for power-limited applications

< Defined as performance divided by power consumption

Performance ICS 233 - KFUPM © Muhamed Mudawar - slide 24

12

1.6

1.4

Performance and Power

M Pentium M @ 1.6/0.6 GHz
I Pentium 4-M @ 2.4/1.2 GHz
[Pentium 111-M @ 1.2/0.8 GHz

(]
o
c 12
©
I3
a 0.8
o
> 06
=
KW
O 04
o
0.2
0.0
SPECINT2000|SPECFP2000 [SPECINT2000|SPECFP2000 [SPECINT2000|SPECFP2000
Always on / maximum clock |Laptop mode / adaptive clock | Minimum power / min clock
Benchmark and Power Mode
Performance ICS 233 - KFUPM © Muhamed Mudawar — slide 25
6 -
[JPentium M @ 1.6/0.6 GHz
- [CPentium 4-M @ 2.4/1.2 GHz —
O s - [[JPentiumlll-M @ 1.2/0.8 GHz
C I
.0
o
& a4 Energy efficiency of the Pentium M is
”i highest for the SPEC2000 benchmarks
o
B 3
c
L
O 2
=
=
KW
O 1
e
[o]
SPECINT 2000 | SPECFP 2000 | SPECINT 2000 | SPECFP 2000 | SPECINT 2000 | SPECFP 2000
Always on / maximum clock | Laptop mode / adaptive clock | Minimum power / min clock

Performance

Benchmark and power mode
ICS 233 - KFUPM © Muhamed Mudawar - slide 26

13

Things to Remember

s Performance is specific to a particular program
<> Any measure of performance should reflect execution time
< Total execution time is a consistent summary of performance

% For a given ISA, performance improvements come from
< Increases in clock rate (without increasing the CPI)
< Improvements in processor organization that lower CPI
<> Compiler enhancements that lower CPI and/or instruction count
< Algorithm/Language choices that affect instruction count

+ Pitfalls (things you should avoid)
< Using a subset of the performance equation as a metric

< Expecting improvement of one aspect of a computer to increase
performance proportional to the size of improvement

Performance ICS 233 - KFUPM © Muhamed Mudawar - slide 27

14

