
Prepared by Dr. Muhamed Mudawar Page 1 of 5

ICS 233 – Computer Architecture

& Assembly Language
Assignment 6 Solution

Single-Cycle Processor Implementation

1. (5 pts) Describe the effect that a single stuck-at-0 fault (i.e., the signal is always 0
regardless of what it should be) would have for the signals shown below, in the single-
cycle Datapath. Which instructions, if any, will not work correctly? Explain why.

 Consider each of the following faults separately:

a) RegWrite = 0

This means that no register can be written in the register file. All R-type instructions
with destination register Rd, such as ADD and SUB, and all I-type instructions with
destination register Rt, such as ORI and LW, will not work because these
instructions will not be able to write their results to the register file.

b) RegDst = 0

This means that RegDst is stuck at Rt and can never be Rd. All R-type instructions
with destination register Rd, such as ADD and SUB, will not work because these
instructions will not be able to write their results to Rd. Instead, they will write their
results to the second source register Rt.

c) ALUScr = 0

This means that ALU is stuck to have its second operand coming from the register
file, and can never be the immediate constant encoded inside the instruction. All I-
type instructions with a 16-bit immediate constant, such as ORI, BEQ, LW, and SW,
will not work because these instructions will not be able to use the 16-bit immediate
constant encoded inside the instruction.

d) MemtoReg = 0

This means that the value written back to the register file is always the ALU result,
and can never be the value read from data memory. The load instructions, such as
LW, will not work because these instructions will not be able to write back the value
read from data memory into the register file.

e) Branch = 0

This means that the Branch control signal will never indicate the presence of a
branch instruction. The branch instructions, such as BEQ, will not work because
these instructions will not be able to branch (branch is never taken) even when the
branch condition is true.

Prepared by Dr. Muhamed Mudawar Page 2 of 5

2. (5 pts) Repeat question 1 but this time consider stuck-at-1 faults (the signal is always 1).

a) RegWrite = 1

This means that all instructions will write ‘some value’ in the register file. Store
instructions, such as SW, branch instructions, such as BEQ, and jump instructions
will not work properly. These instructions are not supposed to modify the register
file. However, when RegWrite = 1 then Store, Branch, and Jump instructions will
modify the register file.

b) RegDst = 1

This means that RegDst is stuck at Rd and can never be Rt. All I-type instructions
with destination register Rt, such as ORI and LW, will not work because these
instructions will not be able to write their results to Rt. Instead, they will write their
result to some arbitrary register Rd whose number is encoded in the upper 5 bits of
immediate constant.

c) ALUScr = 1

This means that the ALU is stuck to have its second operand coming from the
immediate constant encoded inside the instruction. All R-type instructions with a
second source register Rt, such as ADD and SUB, will not work because these
instructions will not be able to use the second operand read from the register file.
Instead the datapath will assume that the R-type instruction was an I-type
instruction, and will assume the second ALU operand to be an immediate constant.

d) MemtoReg = 1

This means that the value written back to the register file is always the value read
from data memory, and can never be the ALU result. All instructions that produce
an ALU result, such as ADD, SUB, and ORI, will not work because these
instructions will not be able to write back the ALU result into the register file.

e) Branch = 1

This means that the Branch control signal will always indicate the presence of a
branch instruction. All non-branch instructions, such as ADD, SUB, ORI, LW, and
SW, will not work because these instructions will be able to branch. However, these
instructions were never supposed to branch.

3. (6 pts) We wish to add the instruction jalr (jump and link register) to the single-cycle
datapath. Add any necessary datapath and control signals and draw the result datapath.
Show the values of the control signals to control the execution of the jalr instruction.

 The jump and link register instruction is described below:

 jalr rd, rs # rd = pc + 4 , pc = rs

op6 = 0 rs5 0 rd5 0 func6 = 9

Prepared by Dr. Muhamed Mudawar Page 3 of 5

ExtOp

Imm16
Extend

Rs

Rt

Instruction
Memory

Inc

P
C

00

Address

Instruction
A
L
U

Data
Memory

Address

Data_in

ALU result

zero

Rd

Registers

B
us

W

R
W

m
u
x

0

1

RegDst ALUSrcRegWrite MemWrite

ALUCtrl

ALUOp

Control Unit

Op

PC
Control

JReg

m
u
x

00

01

10

11

PCSrc

Branch

Imm26

Jump ExtOp MemtoReg

0

1

ALU
Control

A
d
d

func

m
u
x

0

1

m
u
x

0

1

RA

Prepared by Dr. Muhamed Mudawar

The necessary changes to the datapath and control are shown in red.

For the datapath, we need a bigger 4-input multiplexer at the input of the PC. The
first input is used to increment the PC. The second input is used for taken branches,
where the branch target is PC-relative. The third input is used to jump register,
where the input to the PC comes from a general-purpose register, and the fourth
input is used for jump instructions.

Our focus here is on the implementation of the JALR instruction. Part of this
instruction is to jump to register ‘Rs’, so we must ensure that we add a path from
the output of register Rs (first ALU input) back to the PC multiplexer input. This
path is shown in red for clarity.

We need a ‘JReg’ (Jump Register) control signal to jump according to the value of
register ‘Rs’. This signal is best generated by the ALU control logic, since it depends
on the function field. This control signal is shown in red and is used as an input to
the ‘PC Control’ logic. The ‘PC Control’ logic generates the ‘PCSrc’ control signal,
which is used to control the 4-input multiplexer at the input of the PC. When JReg is
equal to ‘1’, PCSrc will be '10' to select the value of register Rs as input to PC.

We also need to store PC+4 in register Rd. To accomplish this, we need another
multiplexer (shown in red) to select between the incremented PC and the ALU result
to be placed on BusW. Again here, multiple solutions exist.

We must add a path from the output of the incremented PC to the input of this new
multiplexer. This path is shown in red in the above diagram. Another control signal
called ‘RA’ (Return Address) selects between the incremented PC and the ALU
result. The MemtoReg multiplexer selects between the output of the ‘RA’
multiplexer and the Data Memory output to place on BusW.

The main control signals for the JALR instruction are the same for other R-type
instructions, such as ADD and SUB. These control signals are shown in the table
below:

Instr. RegDst RegWrite ALUSrc ALUOp MemWrite MemtoReg Branch Jump

JALR Rd = 1 1 Rt = 0 R-type 0 0 0 0

The ALU Control signals for the JALR instruction are shown below. JReg = 1 and
RA = 1. ALUCtrl is a don't care.

ALUOp func JReg RA ALUCtrl

R-type JALR 1 1 X

 Note to my grader:

 Please make sure you understand the student solution because there is no unique

solution to this problem.

Prepared by Dr. Muhamed Mudawar

4. (4 pts) We want to compare the performance of a single-cycle CPU design with a multi-
cycle CPU. Suppose we add the multiply and divide instructions. The operation times are
as follows:

 Instruction memory access time = 190 ps, Data memory access time = 190 ps
Register file read access time = 150 ps, Register file write access = 150 ps
ALU delay for basic instructions = 190 ps, ALU delay for multiply or divide = 550 ps

 Ignore the other delays in the multiplexers, control unit, sign-extension, etc.

 Assume the following instruction mix: 30% ALU, 15% multiply & divide, 30% load &
store, 15% branch, and 10% jump.

 a) What is the total delay for each instruction class and the clock cycle for the single-
cycle CPU design.

Instruction
Class

Instruction
Memory

Register
Read

ALU
Data

Memory
Register

Write
Total
Delay

Basic ALU 190 ps 150 ps 190 ps 150 ps 680 ps

Mul & Div 190 ps 150 ps 550 ps 150 ps 1040 ps

Load 190 ps 150 ps 190 ps 190 ps 150 ps 870 ps

Store 190 ps 150 ps 190 ps 190 ps 720 ps

Branch 190 ps 150 ps 190 ps 530 ps

Jump 190 ps 150 ps 340 ps

 Clock cycle = max delay = 1040 ps.

 b) Assume we fix the clock cycle to 200 ps for a multi-cycle CPU, what is the CPI for
each instruction class and the speedup over a fixed-length clock cycle?

 CPI for Basic ALU = 4 cycles

 CPI for Multiply & Divide = 6 cycles (ALU takes 3 cycles)

 CPI for Load = 5 cycles

 CPI for Store = 4 cycles

 CPI for Branch = 3 cycles

 CPI for Jump = 2 cycles

 I am going to assume that 30% for load and store is divided equally as 15% and
15%, because the problem does not separate their percentages.

 Average CPI = 0.3 * 4 + 0.15 * 6 + 0.15 * 5 + 0.15 * 4 + 0.15 * 3 + 0.1 * 2 = 4.1

 Speedup of multi-cycle over single-cycle = (1040 * 1) / (200 * 4.1) = 1.27

