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ICS 233 - Computer Architecture 

& Assembly Language 
 

Final Exam – Fall 2007 
 

Wednesday, January 23, 2007 

7:30 am – 10:00 am 
 

Computer Engineering Department 

College of Computer Sciences & Engineering 

King Fahd University of Petroleum & Minerals 

 
Student Name: SOLUTION  

 
Student ID:   

 
Q1 / 10 Q2 / 20 

Q3 / 15 Q4 / 15 

Q5 / 20 Q6 / 25 

Total               / 105 

 
 
Important Reminder on Academic Honesty 

Using unauthorized information or notes on an exam, peeking at others work, or 
altering graded exams to claim more credit are severe violations of academic 
honesty. Detected cases will receive a failing grade in the course. 
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Q1. (10 pts) Consider the following MIPS code sequence: 

lw  $5, 100($2) 

add $2, $3, $5 

sub $5, $5, $2 

sw  $5, 100($2) 

 

a) (5 pts) Identify all the RAW dependencies between pairs of instructions. 

 

lw  $5, 100($2) and add $2, $3, $5 

lw  $5, 100($2) and sub $5, $5, $2 

add $2, $3, $5 and sub $5, $5, $2 

add $2, $3, $5 and sw  $5, 100($2) 

sub $5, $5, $2 and sw  $5, 100($2) 

 

 

b) (3 pts) Identify all the WAR dependencies between pairs of instructions 

 

lw  $5, 100($2) and add $2, $3, $5 

add $2, $3, $5 and sub $5, $5, $2 

 

 
c) (2 pts) Identify all the WAW dependencies between pairs of instructions 
 

lw  $5, 100($2) and sub $5, $5, $2 
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 Q2. (20 pts) We have a program core consisting of five conditional branches. The program 
core will be executed millions of times. Below are the outcomes of each branch for one 
execution of the program core (T for taken and N for not taken). 

 
 Branch 1: T-T-T-T-T 
 Branch 2: N-N-N 
 Branch 3: T-N-T-N-T-N-T-N 
 Branch 4: T-T-T-N-N-N 
 Branch 5: T-T-T-N-T-T-T-N-T 
 
 Assume that the behavior of each branch remains the same for each program core 

execution. For dynamic branch prediction schemes, assume that each branch has its own 
prediction buffer and each buffer is initialized to the same state before each execution. 
List the predictions and the accuracies for each of the following branch prediction 
schemes: 

 
a) Always taken 
b) Always not taken 
c) 1-bit predictor, initialized to predict taken 
d) 2-bit predictor, initialized to weakly predict taken 
 
a) Branch 1: prediction = T-T-T-T-T, correct = 5, wrong = 0 

Branch 2: prediction = T-T-T, correct = 0, wrong = 3 
Branch 3: prediction = T-T-T-T-T-T-T-T, correct = 4, wrong = 4 
Branch 4: prediction = T-T-T-T-T-T, correct = 3, wrong = 3 
Branch 5: prediction = T-T-T-T-T-T-T-T-T, correct = 7, wrong = 2 
 
Total correct = 19, Total wrong = 12, Accuracy = 19/31 = 61.3% 
 

b) Branch 1: prediction = N-N-N-N-N, correct = 0, wrong = 5 
Branch 2: prediction = N-N-N, correct = 3, wrong = 0 
Branch 3: prediction = N-N-N-N-N-N-N-N, correct = 4, wrong = 4 
Branch 4: prediction = N-N-N-N-N-N, correct = 3, wrong = 3 
Branch 5: prediction = N-N-N-N-N-N-N-N-N, correct = 2, wrong = 7 
 
Total correct = 12, Total wrong = 19, Accuracy = 12/31 = 38.7% 
 

c) Branch 1: prediction = T-T-T-T-T, correct = 5, wrong = 0 
Branch 2: prediction = T-N-N, correct = 2, wrong = 1 
Branch 3: prediction = T-T-N-T-N-T-N-T, correct = 1, wrong = 7 
Branch 4: prediction = T-T-T-T-N-N, correct = 5, wrong = 1 
Branch 5: prediction = T-T-T-T-N-T-T-T-N, correct = 5, wrong = 4 
 
Total correct = 18, Total wrong = 13, Accuracy = 18/31 = 58.1% 

 
d) Branch 1: prediction = T-T-T-T-T, correct = 5, wrong = 0 

Branch 2: prediction = T-N-N, correct = 2, wrong = 1 
Branch 3: prediction = T-T-T-T-T-T-T-T, correct = 4, wrong = 4 
Branch 4: prediction = T-T-T-T-T-N, correct = 4, wrong = 2 
Branch 5: prediction = T-T-T-T-T-T-T-T-T, correct = 7, wrong = 2 
 
Total correct = 22, Total wrong = 9, Accuracy = 22/31 = 71% 
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Q3. (15 pts) Consider a direct-mapped cache with 128 blocks. The block size is 32 bytes. 

a) (3 pts) Find the number of tag bits, index bits, and offset bits in a 32-bit address. 

 

Offset bits = 5 

Index bits = 7 

Tag bits = 32 – 12 = 20 bits 

 

b) (4 pts) Find the number of bits required to store all the valid and tag bits in the cache. 

 

 Total number of tag and valid bits = 128 * (20 + 1) = 2688 bits 

 

c) (8 pts) Given the following sequence of address references in decimal: 

20000, 20004, 20008, 20016, 24108, 24112, 24116, 24120 

Starting with an empty cache, show the index and tag for each address and indicate 
whether a hit or a miss. 

 

Address = Hex Offset (5 bits) Index (7 bits) Tag Hit or Miss 

20000 = 0x4E20 0x00 = 0 0x71 = 113 4 Miss (initially empty) 

20004 = 0x4E24 0x04 = 4 0x71 = 113 4 Hit 

20008 = 0x4E28 0x08 = 8 0x71 = 113 4 Hit 

20016 = 0x4E30 0x10 = 16 0x71 = 113 4 Hit 

24108 = 0x5E2C 0x0C = 12 0x71 = 113 5 Miss (different tag) 

24112 = 0x5E30 0x10 = 16 0x71 = 113 5 Hit 

24116 = 0x5E34 0x14 = 20 0x71 = 113 5 Hit 

24120 = 0x5E38 0x18 = 24 0x71 = 113 5 Hit 
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Q4. (15 pts) A processor runs at 2 GHz and has a CPI of 1.2 without including the stall 
cycles due to cache misses. Load and store instructions count 30% of all instructions. 

 The processor has an I-cache and a D-cache. The hit time is 1 clock cycle. The I-cache 
has a 2% miss rate. The D-cache has a 5% miss rate on load and store instructions. 

 The miss penalty is 50 ns, which is the time to access and transfer a cache block between 
main memory and the processor. 

a) (3 pts) What is the average memory access time for instruction access in clock cycles? 

 

 Miss penalty = 50 ns * 2 GHz  = 100 clock cycles 

 AMAT = hit time + miss rate * miss penalty = 1 + 0.02 * 100 = 3 clock cycles 

 

b) (3 pts) What is the average memory access time for data access in clock cycles? 

 

 AMAT = 1 + 0.05 * 100 = 6 clock cycles 

 

c) (4 pts) What is the number of stall cycles per instruction and the overall CPI? 

 

Stall cycles per instruction = 1 * 0.02 * 100 + 0.3 * 0.05 * 100 = 3.5 cycles 

Overall CPI = 1.2 + 3.5 = 4.7 cycles per instruction 

 

d) (5 pts) You are considering replacing the 2 GHz CPU with one that runs at 4 GHz, but is 
otherwise identical. How much faster does the new processor run? Assume that hit time 
in the I-cache and the D-cache is 1 clock cycle in the new processor, and the time to 
access and transfer a cache block between main memory and the processor is still 50 ns. 

 

 For the new processor running at 4 GHz: 

 Miss penalty =  50 ns * 4 GHz = 200 clock cycles 

 Stall cycles per instruction: 

 (1 * 0.02 + 0.3 * 0.05) * 200 = 7 cycles 

 Overall CPI = 1.2 + 7 = 8.2 cycles per instruction 

 Speedup = (CPIc / CPId) * (Clock Rated / Clock Ratec) = (4.7 / 8.2) * (4/2) = 1.146 
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Q5. (20 pts) Consider the following idea: we want to modify all load and store instructions in the instruction set such that the offset is always 0. The load 
and store instructions can be of the R-type and there is NO need for the ALU to compute the memory address. This means that all load and store 
instructions will have the following format, where Rs is the register that contains the memory address. 

 LW Rt, (Rs) # No immediate constant used 
 SW Rt, (Rs) # No immediate constant used 
 

a) (10 pts) Draw the modified single-cycle datapath. Identify the changes that you are making to the single-cycle datapath. 
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b) (4 pts) Assume that the operation delays for the major components are as follows: 

 Instruction Memory: 200 ps 

 Data Memory: 200 ps 

 ALU: 150 ps 

 Register file (read or write): 100 ps 

 Ignore the delays in the multiplexers, control, PC access, extension logic, and wires. 

 What is the cycle time for the single-cycle datapath BEFORE and AFTER making the 
modification? 

 

 BEFORE making the modification: 

 Cycle time = 200 + 100 + 150 + 200 + 100 = 750 ps 

 

 AFTER making the modification: 

 Cycle time = 200 + 100 + max(150, 200) + 100 = 200 + 100 + 200 + 100 = 600 ps 
 

c) (6 pts) Because we have removed the offset in all load and store instructions, all original 
load-store instructions with non-zero offsets would now require an additional ADDI 
instruction to compute the address. This will increase the instruction count. 

 Suppose we have a program in which 20% of the instructions are load-store instructions. 
Assume further that only 10% of the original load-store instructions have a non-zero 
offset and would require an additional ADDI instruction to compute the address. 

 What is the percent increase in the instruction count when additional ADDI instructions 
are used? 

 

 Percent increase in the instruction count = 20% * 10% = 2% (for additional ADDI) 

  

 Which design is better, the original one that allowed non-zero offsets, or the modified 
one with zero offsets, and why? 

 

 Execution Time = Instruction Count * CPI * Clock Cycle 

 CPI = 1 in both cases because this is single-cycle design 

 Original Design Execution Time = I-Count * 1 * 750 ps = 750 I-Count 

 Modified Design Execution Time = 1.02 I-Count * 1 * 600 ps = 612 I-Count 

 Modified Design is better because it takes less time to execute program 

 

 What is the speedup factor? 
 

Speedup factor = 750 / (600*1.02) = 1.225 
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Q6. (25 pts) Use the following MIPS code fragment: 

I1: ADDI $3, $0, 100 # $3 = 100 
I2: ADD $4, $0, $0 # $4 = 0 
Loop: 
I3: LW $5, 0($1) # $5 = MEM[$1] 
I4: ADD $4, $4, $5 # $4 = $4 + $5 
I5: LW $6, 0($2) # $6 = MEM[$2] 
I6: SUB $4, $4, $6 # $4 = $4 – $6 
I7: ADDI $1, $1, 4 # $1 = $1 + 4 
I8: ADDI $2, $2, 4 # $2 = $2 + 4 
I9: ADDI $3, $3, -1 # $3 = $3 – 1 
I10: BNE $3, $0, Loop if ($3 != 0) goto Loop 

a) (10 pts) Show the timing of one loop iteration on the 5-stage MIPS pipeline without forwarding hardware. Complete the timing table, showing 
all the stall cycles. Assume that the branch will stall the pipeline for 1 clock cycle only. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

I1: ADDI IF ID EX M WB                     

I2: ADD  IF ID EX M WB                    

I3: LW   IF ID EX M WB                   

I4: ADD     IF stall stall ID EX M WB                

I5: LW       IF ID EX M WB               

I6: SUB        IF stall stall ID EX M WB            

I7: ADDI           IF ID EX M WB           

I8: ADDI            IF ID EX M WB          

I9: ADDI             IF ID EX M WB         

I10: BNE              IF stall stall ID         

I3: LW                 IF IF ID EX M WB    

I4: ADD                   IF stall stall ID EX M WB 

 Time of one loop iteration = 15 cycles 

2 stall cycles 

2 stall cycles 

2 stall cycles 

1 delay cycle 
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b) (5 pts) According to the timing diagram of part (a), compute the number of clock cycles 
and the average CPI to execute ALL the iterations of the above loop. 
 
There are 100 iterations 

 Each iteration requires 15 cycles =  
8 cycles to start the 8 instructions in loop body +  7 stall cycles 
There are 2 additional cycles to start the first 2 instructions before the loop. 
Therefore, total cycles = 100 * 15 + 2 (can be ignored) = 1502 cycles ≈ 1500 cycles 

 Total instruction executed = 2 + 8 * 100 = 802 instructions (counting first two) 
 Average CPI  = 1502 / 802 = 1.87  
 If we ignore first two instructions and the time to terminate last iteration then 
 Average CPI = 1500/800 = 1.88 (almost same answer) 

 

c) (5 pts) Reorder the instructions of the above loop to fill the load-delay and the branch-
delay slots, without changing the computation. Write the code of the modified loop. 

 

  ADDI $3, $0, 100 # $3 = 100 
  ADD $4, $0, $0 # $4 = 0 
 Loop: 
  LW $5, 0($1) # $5 = MEM[$1] 
  LW $6, 0($2) # Moved earlier to avoid load-delay 
  ADDI $3, $3, -1 # Moved earlier 
  ADD $4, $4, $5 # $4 = $4 + $5 
  ADDI $1, $1, 4 # $1 = $1 + 4 
  ADDI $2, $2, 4 # $2 = $2 + 4 
  BNE $3, $0, Loop # if ($3 != 0) goto Loop 
  SUB $4, $4, $6 # Fills branch delay slot 
 
 Other re-orderings are possible as long as we avoid the load 

delay and we fill branch delay slot with an independent 
instruction. We should be able to reduce the stall cycles to 0. 

 

d) (5 pts) Compute the number of cycles and the average CPI to execute ALL the iteration 
of the modified loop. What is the speedup factor? 

 
There are 100 iterations 

 Each iteration requires 8 cycles =  
8 cycles to start the 8 instructions in loop body +  0 stall cycles 
There are 2 additional cycles to start the first 2 instructions before the loop 
+ 4 additional cycles to terminate the ADDI instruction in the last iteration. 
Therefore, total cycles = 100 * 8 + 6 (can be ignored) = 806 cycles ≈ 800 cycles 

 Total instruction executed = 2 + 8 * 100 = 802 instructions (counting first two) 
 Average CPI  = 806 / 802 = 1.00 
 If we ignore first two instructions and the time to terminate last iteration then 
 Average CPI = 800/800 = 1.00 (almost same answer) 
 Speedup Factor = CPIpart-b/CPIpart-d = 1.88/1.00 = 1.88 

 


