
Yacc: an LALR(1) Parser Generator – 1 Compiler Design – © Muhammed Mudawwar

Using an LALR(1) Parser Generator
� Yacc is an LALR(1) parser generator

� Developed by S.C. Johnson and others at AT&T Bell Labs

� Yacc is an acronym for Yet another compiler compiler
� Yacc generates an integrated parser, not an entire compiler

� One popular compatible version of Yacc is Bison
� Part of the Gnu software distributed by the Free Software Foundation

� Input to yacc is called yacc specification
� The .y extention is a convention for yacc specification (example: parser.y)

� Yacc produces an entire parser module in C
� Parser module can be compiled and linked to other modules
� yacc parser.y (command produces y.tab.c)

� cc –c y.tab.c (command produces y.tab.o)

� y.tab.o can be linked to other object files

Yacc: an LALR(1) Parser Generator – 2 Compiler Design – © Muhammed Mudawwar

Yacc Basics
� The parser generated by yacc is a C function called yyparse()
� yyparse() is an LALR(1) parser

� yyparse() calls yylex() repeatedly to obtain the next input token
� The function yylex() can be hand-coded in C or generated by lex

� yyparse() returns an integer value
� 0 is returned if parsing succeeds and end of file is reached

� 1 is returned if parsing fails due to a syntax error

� A yacc specification file has three sections:

declarations
%%
productions
%%
user subroutines

The %% separates
between sections

Yacc: an LALR(1) Parser Generator – 3 Compiler Design – © Muhammed Mudawwar

Example of a Yacc Specification
The following is a yacc specification for an expression sequence

%token NUMBER 300

%%

ExprSeq : ExprSeq ’,’ Expr
| Expr
;

Expr : Expr ’+’ Term
| Expr ’-’ Term
| Term
;

Term : Term ’*’ Factor
| Term ’/’ Factor
| Factor
;

Factor : ’(’ Expr ’)’
| NUMBER
;

Production Rules

Token Declaration

Yacc: an LALR(1) Parser Generator – 4 Compiler Design – © Muhammed Mudawwar

Yacc Declarations
� The first section can include a variety of declarations

� A literal block is C code delimited by %{ and %}
� Ordinary C declarations and #include directives are placed in literal block

� Declarations made in literal block can be used in second and third sections

� Tokens should be declared in the first section
� Tokens can either be named or quoted character literals (example, ’+’)

� Named tokens must be declared to distinguish them from non-terminals

� A token declaration is of the form:
%token token1 value1 token2 value2 . . .

� The integer values define the token codes used by the scanner

� All declared tokens should have positive code values

� Assignment of code values to tokens is optional

� Tokens not assigned an explicit code receive an implicit code value

Yacc: an LALR(1) Parser Generator – 5 Compiler Design – © Muhammed Mudawwar

Production Rules

� The productions section defines the grammar that will be parsed

� Productions are of the form:

A : X1 . . . Xn ;

A is a non-terminal on the left-hand side of the production

X1 ... Xn are zero or more grammar symbols on the right-hand side

A production may span multiple lines and should terminate with a semicolon

� A sequence of productions with same LHS may be written as:

A : X1 . . . Xl ;
A : Y1 . . . Ym ;
A : Z1 . . . Zn ;

Equivalently, it may be written as:

A : X1 . . . Xl
| Y1 . . . Ym
| Z1 . . . Zn ;

Yacc: an LALR(1) Parser Generator – 6 Compiler Design – © Muhammed Mudawwar

Start Symbol and Auxiliary Code

� The LHS of first production is assumed to be the start symbol

� You may also declare the start symbol in the declaration section

%start name

� This will make name as the start symbol

� Required when start symbol does not appear on LHS of first production

� Additional code can be provided in third section as necessary

� Example: yylex() can be implemented in third section

� Alternatively, yylex() can be generated by lex

� Error reporting and recovery routines may be added as well

Yacc: an LALR(1) Parser Generator – 7 Compiler Design – © Muhammed Mudawwar

Attribute Values and Semantic Actions
� Every grammar symbol has an associated attribute value
� An attribute value can represent anything we choose

� The value of an expression

� The data type of an expression

� The translated code

� Yacc associates an attribute with every token and non-terminal
� Token attributes are returned by the scanner in the yylval variable

� Non-terminal attributes are computed while parsing

� Attribute values are pushed an popped on a semantic stack
� The semantic stack operates in parallel with the parser stack

� A semantic action in Yacc is a code fragment delimited by { }
� Executed when yacc matches a rule in the grammar

� Semantic Actions can be used to make calls to semantic routines

Yacc: an LALR(1) Parser Generator – 8 Compiler Design – © Muhammed Mudawwar

Yacc Specification for a Simple Calculator
%{
#include <stdio.h>
extern int yylex();
%}
%token NUMBER 300
%%
ExprSeq : ExprSeq ’,’ Expr {printf("%d\n",$3);}

| Expr {printf("%d\n",$1);}
;

Expr : Expr ’+’ Term {$$ = $1 + $3;}
| Expr ’-’ Term {$$ = $1 - $3;}
| Term {$$ = $1;}
;

Term : Term ’*’ Factor {$$ = $1 * $3;}
| Term ’/’ Factor {$$ = $1 / $3;}
| Factor {$$ = $1;}
;

Factor : ’(’ Expr ’)’ {$$ = $2;}
| NUMBER {$$ = $1;}
;

Production
Rules and
Semantic
Actions

Literal Block

Yacc: an LALR(1) Parser Generator – 9 Compiler Design – © Muhammed Mudawwar

The $ Notation

� The $ notation in Yacc is used to represent the attribute values

� $$ is the attribute value of the left-hand side nonterminal

� $1, $2, ... are the attribute values of right-hand side symbols
� $1 is attribute value of first symbol, $2 is attribute of second, … etc

� Yacc uses the $ notation to locate attributes on semantic stack
� Consider A : X1 . . . Xn ;

� Just before reducing the above production …
� $1 = stack [top–n+1] , $2 = stack [top–n+2] , … , $n = stack [top]

� When reducing the above production …
� $n , … , $2 , $1 are popped from semantic stack

� $$ is pushed on top of semantic stack in place of $1

� top = top – n + 1 ; stack [top] = $$

Yacc: an LALR(1) Parser Generator – 10 Compiler Design – © Muhammed Mudawwar

Attribute Data Types and %union

� Unless explicitly specified, the default type of attributes is int
� The types of $$, $1, $2, … is integer by default

� Suppose, we want floating-point values for numbers
� We can change the types of $$, $1, $2, … to double by placing

#define YYSTYPE double in the literal block

� The elements of the semantic stack are of type YYSTYPE

� In general, we may associate different types to different attributes

� The %union declaration identifies all possible attribute types
%union { . . . field declarations . . . }

� The fields of a %union declaration are copied into a C union
� YYSTYPE is defined to be the C union type

� Yacc puts the generated C union in the generated output file

Yacc: an LALR(1) Parser Generator – 11 Compiler Design – © Muhammed Mudawwar

%union and %type Declarations
� Example of a %union declaration

%union {
Operator op; char* name;
Treenode* tree; Symbol* sym;

}

� We associate the fields in %union with tokens and nonterminals

� A %token declaration may specify the attribute type of a token
%token <name> ID
%token <op> ADDOP MULOP

� The attribute of ADDOP and MULOP is an op of type Operator
� The attribute of ID is a name of type char*

� Type of a nonterminal is specified with a %type declaration
%type <tree> Expr Term Factor

� The attribute of Expr, Term, and Factor is a tree of type Treenode*

Yacc: an LALR(1) Parser Generator – 12 Compiler Design – © Muhammed Mudawwar

Generating Syntax Trees for Expressions
%union {
Operator op; char* name;
Treenode* tree; Symbol* sym;

}

%token <op> ADDOP MULOP
%token <name> ID
%token <sym> NUMBER
%type <tree> E T F

%%
E : E ADDOP T {$$ = new Treenode($2, $1, $3);};
E : T {$$ = $1;};
T : T MULOP F {$$ = new Treenode($2, $1, $3);};
T : F {$$ = $1;};
F : ’(’ E ’)’ {$$ = $2;};
F : ID {$$ = (Treenode*) idTable.lookup($1);};
F : NUMBER {$$ = (Treenode*) $1;};

Yacc: an LALR(1) Parser Generator – 13 Compiler Design – © Muhammed Mudawwar

Ambiguity and Conflicts in Yacc

� Parser generators of all varieties reject ambiguous grammars

� Ambiguous grammars fail to be LR(k) for any value of k

� Yacc will report conflicts: shift-reduce and reduce-reduce
� In some cases, a conflict is due to ambiguity in the grammar

� In other cases, a conflict is a limitation of the LALR(1) method
� Only one token of lookahead is used by Yacc

� A grammar may require more than one token of lookahead

� A shift-reduce conflict occurs when two parses exist
� One of the parses completes a production rule - the reduce action
� A second parse shifts a token - the shift action

� A reduce-reduce conflict occurs when …
� Same lookahead token could complete two different productions

Yacc: an LALR(1) Parser Generator – 14 Compiler Design – © Muhammed Mudawwar

Ambiguity and Conflicts – cont'd
� Example of a shift-reduce conflict:

E : E ’+’ E
| id ;

� For the input id + id + id there are two parses:
� (id + id) + id that uses the reduce action, and

� id + (id + id) that uses the shift action

� Yacc always chooses the shift action in a shift-reduce conflict

� Example of a reduce-reduce conflict:
S : X | Y ;
X : A ;
Y : A ;

� Reduce-reduce conflicts represent mistakes in the grammar

� Yacc reduces the first production in a reduce-reduce conflict

Yacc: an LALR(1) Parser Generator – 15 Compiler Design – © Muhammed Mudawwar

More on Conflicts

� Having two productions with the same right-hand side does not
imply a reduce-reduce conflict

� the following example does not cause any conflict
� Lookahead token uniquely determines the production to be reduced
S : X b | Y c ;

X : A ;

Y : A ;

� Some reduce-reduce conflicts are due to the limitations of Yacc

� Reduce-reduce conflict caused by the limitation of LALR(1)
S : X B c | Y B d ;

X : A ;

Y : A ;

Yacc: an LALR(1) Parser Generator – 16 Compiler Design – © Muhammed Mudawwar

Using Yacc with Ambiguous Grammars

� Ambiguity, if controlled, can be of value

� An ambiguous grammar provides a shorter specification
� Can be more natural than any equivalent unambiguous grammar

� Produces more efficient parsers for real programming languages

� For language constructs like expressions …
� An ambiguous grammar is more natural and more efficient

E : E ADDOP E | E MULOP E | … | '(' E ')' | ID

� Operator precedence and associativity eliminate the ambiguity

� Most binary operators, like +, – , *, and /, are left-associative

� Few, such as the exponentiation operator, are right-associative

� Few, typically the relational operators, do not associate at all
� Two relational operators cannot be combined at all

Yacc: an LALR(1) Parser Generator – 17 Compiler Design – © Muhammed Mudawwar

Operator Precedence and Associativity

� Yacc provides operator precedence and associativity rules for …
� Eliminating ambiguity and resolving shift-reduce conflicts

� Example on precedence and associativity of operators:
%nonassoc RELOP
%left ADDOP
%left MULOP
%right EXPOP

� The order of declarations defines precedence of operators
� RELOP has least precedence and EXPOP has the highest

� ADDOP has higher precedence than RELOP

� %left declarations means left-associative
� %right declarations means right-associative
� %nonassoc declarations means non-associative

Yacc: an LALR(1) Parser Generator – 18 Compiler Design – © Muhammed Mudawwar

Resolving Conflicts

� The operator precedence and associativity resolve conflicts

� Given the two productions:

E : E op1 E ;

E : E op2 E ;

� Suppose E op1 E is on top of parser stack and next token is op2

� If op2 has a higher precedence than op1, we shift

� If op2 has a lower precedence than op1, we reduce

� If op2 has an equal precedence to op1, we use associativity
� If op1 and op2 are left-associative, we reduce

� If op1 and op2 are right-associative, we shift

� If op1 and op2 are non-associative, we have a syntax error

