
Symbol Tables, Hashing, and Hash Tables – 1 Compiler Design – © Muhammed Mudawwar

Symbol Tables
� A symbol table is a major data structure used in a compiler:

� Associates attributes with identifiers used in a program

� For instance, a type attribute is usually associated with each identifier

� A symbol table is a necessary component
� Definition (declaration) of identifiers appears once in a program

� Use of identifiers may appear in many places of the program text

� Identifiers and attributes are entered by the analysis phases
� When processing a definition (declaration) of an identifier

� In simple languages with only global variables and implicit declarations:
� The scanner can enter an identifier into a symbol table if it is not already there

� In block-structured languages with scopes and explicit declarations:
� The parser and/or semantic analyzer enter identifiers and corresponding attributes

� Symbol table information is used by the analysis and synthesis phases
� To verify that used identifiers have been defined (declared)

� To verify that expressions and assignments are semantically correct – type checking

� To generate intermediate or target code

Symbol Tables, Hashing, and Hash Tables – 2 Compiler Design – © Muhammed Mudawwar

Symbol Table Interface
� The basic operations defined on a symbol table include:

� allocate – to allocate a new empty symbol table

� free – to remove all entries and free the storage of a symbol table

� insert – to insert a name in a symbol table and return a pointer to its entry

� lookup – to search for a name and return a pointer to its entry

� set_attribute – to associate an attribute with a given entry

� get_attribute – to get an attribute associated with a given entry

� Other operations can be added depending on requirement
� For example, a delete operation removes a name previously inserted

� Some identifiers become invisible (out of scope) after exiting a block

� This interface provides an abstract view of a symbol table

� Supports the simultaneous existence of multiple tables

� Implementation can vary without modifying the interface

Symbol Tables, Hashing, and Hash Tables – 3 Compiler Design – © Muhammed Mudawwar

Basic Implementation Techniques
� First consideration is how to insert and lookup names
� Variety of implementation techniques

� Unordered List
� Simplest to implement
� Implemented as an array or a linked list
� Linked list can grow dynamically – alleviates problem of a fixed size array
� Insertion is fast O(1), but lookup is slow for large tables – O(n) on average

� Ordered List
� If an array is sorted, it can be searched using binary search – O(log2 n)
� Insertion into a sorted array is expensive – O(n) on average
� Useful when set of names is known in advance – table of reserved words

� Binary Search Tree
� Can grow dynamically
� Insertion and lookup are O(log2 n) on average

Symbol Tables, Hashing, and Hash Tables – 4 Compiler Design – © Muhammed Mudawwar

Hash Tables and Hash Functions

� A hash table is an array with index range: 0 to TableSize – 1

� Most commonly used data structure to implement symbol tables

� Insertion and lookup can be made very fast – O(1)

� A hash function maps an identifier name into a table index

� A hash function, h(name), should depend solely on name

� h(name) should be computed quickly

� h should be uniform and randomizing in distributing names

� All table indices should be mapped with equal probability

� Similar names should not cluster to the same table index

Symbol Tables, Hashing, and Hash Tables – 5 Compiler Design – © Muhammed Mudawwar

Hash Functions
� Hash functions can be defined in many ways . . .

� A string can be treated as a sequence of integer words

� Several characters are fit into an integer word

� Strings longer than one word are folded using exclusive-or or addition

� Hash value is obtained by taking integer word modulo TableSize

� We can also compute a hash value character by character:

� h(name) = (c0 + c1 + … + cn–1) mod TableSize, where n is name length

� h(name) = (c0 * c1 * … * cn–1) mod TableSize

� h(name) = (cn–1 + ��� cn–2 + … + ��� c1 + ��c0))) mod TableSize

� h(name) = (c0 * cn–1 * n) mod TableSize

Symbol Tables, Hashing, and Hash Tables – 6 Compiler Design – © Muhammed Mudawwar

Implementing a Hash Function
// Hash string s
// Hash value = (sn-1 + 16(sn-2 + .. + 16(s1+16s0)))
// Return hash value (independent of table size)

unsigned hash(char* s) {

unsigned hval = 0;

while (*s != ’\0’) {

hval = (hval << 4) + *s;

s++;

}

return hval;

}

Symbol Tables, Hashing, and Hash Tables – 7 Compiler Design – © Muhammed Mudawwar

Another Hash Function
// Treat string s as an array of unsigned integers
// Fold array into an unsigned integer using addition
// Return hash value (independent of table size)

unsigned hash(char* s) {
unsigned hval = 0;
while (s[0]!=0 && s[1]!=0 && s[2]!=0 && s[3]!=0){
unsigned u = *((unsigned*) s);
hval += u; s += 4;

}
if (s[0] == 0) return hval;
hval += s[0];
if (s[1] == 0) return hval;
hval += s[1]<<8;
if (s[2] == 0) return hval;
hval += s[2]<<16;
return hval;

}

Last 3 characters
are handled in a

special way

Symbol Tables, Hashing, and Hash Tables – 8 Compiler Design – © Muhammed Mudawwar

Resolving Collisions – Open Addressing
� A collision occurs when h(name1) = h(name2) and name1 � name2

� Collisions are inevitable because
� The name space of identifiers is much larger than the table size

� How to deal with collisions?
� If entry h(name) is occupied, try h2(name), h3(name), etc.

� This approach is called open addressing
� h2(name) can be h(name) + 1 mod TableSize

� h3(name) can be h(name) + 2 mod TableSize
linear probing

Hash Value Name Attributes

0
1

TableSize – 1

2
.
. a

size

sort

j

Symbol Tables, Hashing, and Hash Tables – 9 Compiler Design – © Muhammed Mudawwar

Chaining by Separate Lists
� Drawbacks of open addressing:

� As the array fills, collisions become more frequent – reduced performance

� Table size is an issue – dynamically increasing the table size is a difficulty

� An alternative to open addressing is chaining by separate lists
� The hash table is an array of pointers to linked lists called buckets
� Collisions are resolved by inserting a new identifier into a linked list

� Number of identifiers is no longer restricted to table size

� Lookup is O(n/TableSize) when number of identifiers exceeds TableSize

Hash Value
0
1

TableSize – 1

2
.
.
.

sort

j size

Name Attrib Next

a

Symbol Tables, Hashing, and Hash Tables – 10 Compiler Design – © Muhammed Mudawwar

Symbol Class Definition
class Symbol { // Symbol class definition

friend class Table; // To access private members

public:

Symbol(char* s); // Initialize symbol with name s
~Symbol(); // Delete name and clear pointers
const char* id(); // Return pointer to symbol name
Symbol* nextinlist(); // Next symbol in list
Symbol* nextinbucket(); // Next symbol in bucket
. . . // Other methods

private:

char* name; // Symbol name
Symbol* list; // Next symbol in list
Symbol* next; // Next symbol in bucket
. . . // Attributes (added later)

};

Symbol Tables, Hashing, and Hash Tables – 11 Compiler Design – © Muhammed Mudawwar

Symbol Class Implementation
// Initialize symbol and copy s

Symbol::Symbol(char* s) {
name = new char[strlen(s)+1];
strcpy(name,s);
next = list = 0;

}

// Delete name and clear pointers

Symbol::~Symbol() {
delete [] name;
name = 0;
next = list = 0;

}

const char* Symbol::id() {return name;}

Symbol* Symbol::nextinbucket() {return next;}

Symbol* Symbol::nextinlist() {return list;}

Symbol Tables, Hashing, and Hash Tables – 12 Compiler Design – © Muhammed Mudawwar

Symbol Table Class Definition
const unsigned HT_SIZE = 1021; // Hash Table Size

class Table { // Symbol Table class
public:

Table(); // Initialize table
Symbol* clear(); // Clear symbol table
Symbol* lookup(char*s); // Lookup name s
Symbol* lookup(char*s,unsigned h); // Lookup s with hash h
Symbol* insert(char*s,unsigned h); // Insert s with hash h
Symbol* lookupInsert(char*s); // Lookup and insert s
Symbol* symlist() {return first;} // List of symbols
unsigned symbols(){return count;} // Symbol count
. . . // Other methods

private:
Symbol* ht[HT_SIZE]; // Hash table
Symbol* first; // First inserted symbol
Symbol* last; // Last inserted symbol
unsigned count; // Symbol count

};

Symbol Tables, Hashing, and Hash Tables – 13 Compiler Design – © Muhammed Mudawwar

Initialize and Clear a Symbol Table
// Initialize a symbol table

Table::Table() {
for (int i=0; i<HT_SIZE; i++) ht[i] = 0;
first = last = 0;
count = 0;

}

// Clear a symbol table and return its symbol list

Symbol* Table::clear() {
Symbol* list = first;
for (int i=0; i<HT_SIZE; i++) ht[i] = 0;
first = last = 0;
count = 0;
return list;

}

Symbol Tables, Hashing, and Hash Tables – 14 Compiler Design – © Muhammed Mudawwar

Lookup a Name in a Symbol Table
// Lookup name s in symbol table
// Return pointer to found symbol
// Return NULL if symbol not found

Symbol* Table::lookup(char* s) {
unsigned h = hash(s);
return lookup(s,h);

}

// Lookup name s with hash value h
// Hash value is passed to avoid its computation

Symbol* Table::lookup(char* s, unsigned h) {
unsigned index = h % HT_SIZE;
Symbol* sym = ht[index];
while (sym != 0) {
if (strcmp(sym->name, s) == 0) break;
sym = sym->next;

}
return sym;

}

Symbol Tables, Hashing, and Hash Tables – 15 Compiler Design – © Muhammed Mudawwar

Insert a Name into a Symbol Table
// Insert name s with a given hash value h
// New symbol is allocated
// New symbol is inserted at front of a bucket list
// New symbol is also linked at end of symbol list in table
// Return pointer to newly allocated symbol

Symbol* Table::insert(char* s, unsigned h) {
unsigned index = h % HT_SIZE;
Symbol* sym = new Symbol(s);
sym->next = ht[index];
ht[index] = sym;
if (count == 0) { first = last = sym; }
else {
last -> list = sym;
last = sym;

}
count++;
return sym;

}

Symbol Tables, Hashing, and Hash Tables – 16 Compiler Design – © Muhammed Mudawwar

Illustrating Symbol Insertion

"i"

"n"

"a" "main"

4count

first

last

ht[0]

[1]

[2]

.

.

.

[HT_SIZE-1]

Table Structure

name list next

Last Symbol
inserted in blue

Symbol Tables, Hashing, and Hash Tables – 17 Compiler Design – © Muhammed Mudawwar

Lookup and then Insert a Name
// Lookup first and then Insert name s

// If name s exists then return pointer to its symbol
// Otherwise, insert a new symbol and copy name s

// Return address of newly added symbol

Symbol* Table::lookupInsert(char* s) {

unsigned h = hash(s); // Computed once

Symbol* sym;

sym = lookup(s,h); // Locate symbol first

if (sym == 0) { // If not found

sym = insert(s,h); // Insert a new symbol

}

return sym;

}

