Symbol Tables

< A symbol tableisamajor data structure used in a compiler:
#* Associates attributes with identifiers used in a program
* For instance, atype attribute is usually associated with each identifier

#* A symbol table is a necessary component
<> Definition (declaration) of identifiers appears once in a program
< Use of identifiers may appear in many places of the program text

»* |dentifiers and attributes are entered by the analysis phases
<> When processing a definition (declaration) of an identifier

< In simple languages with only global variables and implicit declarations:
e The scanner can enter an identifier into asymbol tableif it is not already there

< In block-structured languages with scopes and explicit declarations:
e The parser and/or semantic analyzer enter identifiers and corresponding attributes
»* Symbol table information is used by the analysis and synthesis phases
< To verify that used identifiers have been defined (declared)
< To verify that expressions and assignments are semantically correct — type checking
<> To generate intermediate or target code

Symbol Tables, Hashing, and Hash Tables— 1 Compiler Design — © Muhammed Mudawwar

Symbol Table Interface

< The basic operations defined on a symbol table include:
* allocate —to allocate a new empty symbol table
* free—to remove all entries and free the storage of a symbol table
* insert —to insert aname in asymbol table and return a pointer to its entry
#* |ookup —to search for aname and return a pointer to its entry
* set_attribute —to associate an attribute with a given entry
* get_attribute—to get an attribute associated with a given entry

< Other operations can be added depending on requirement

»* For example, adelete operation removes a name previoudy inserted
<> Some identifiers become invisible (out of scope) after exiting a block

< Thisinterface provides an abstract view of a symbol table
< Supports the simultaneous existence of multiple tables
< Implementation can vary without modifying the interface

Symbol Tables, Hashing, and Hash Tables—2 Compiler Design — © Muhammed Mudawwar

Basic Implementation Techniques

< First consideration is how to insert and lookup names
< Variety of implementation techniques

< Unordered List
#* Simplest to implement
* Implemented as an array or alinked list
#* Linked list can grow dynamically — alleviates problem of afixed size array
* Insertion isfast O(1), but lookup is slow for large tables — O(n) on average

< Ordered List
» |f an array is sorted, it can be searched using binary search — O(log, n)
* Insertion into a sorted array is expensive — O(n) on average
#* Useful when set of names is known in advance — table of reserved words

< Binary Search Tree
#* Can grow dynamically
* |nsertion and lookup are O(log, n) on average

Symbol Tables, Hashing, and Hash Tables—3 Compiler Design — © Muhammed Mudawwar

Hash Tables and Hash Functions

< A hash tableisan array with index range: 0 to TableSze—1
< Most commonly used data structure to implement symbol tables
< Insertion and lookup can be made very fast — O(1)

< A hash function maps an identifier name into atable index
#* A hash function, h(name), should depend solely on name
#* h(name) should be computed quickly
#* h should be uniform and randomizing in distributing names
» All table indices should be mapped with equal probability
»* Similar names should not cluster to the same table index

Symbol Tables, Hashing, and Hash Tables— 4 Compiler Design — © Muhammed Mudawwar

Hash Functions

< Hash functions can be defined in many ways. . .

< A string can be treated as a sequence of integer words
#* Several characters arefit into an integer word
»* Strings longer than one word are folded using exclusive-or or addition

» Hash value is obtained by taking integer word modulo TableSze
< We can also compute a hash value character by character:
* h(name) = (c,+ ¢, + ... + C, ;) mod TableSze, where n is name length
* h(name) = (c,* ¢, * ... * ¢, ;) mod TableSze
* h(name) = (c,;, +a(c,,+ ... +a(¢, +acy)) mod TableSze

* h(name) = (¢, * ¢, ; * n) mod TableSze

Symbol Tables, Hashing, and Hash Tables—5 Compiler Design — © Muhammed Mudawwar

Implementing a Hash Function

/[l Hash string s
// Hash value = (s, , + 16(s,., + .. + 16(s,+16s,)))
/] Return hash val ue (i ndependent of table size)

unsi gned hash(char* s) {

unsi gned hval = O;

while (*s '="\0") {
hval = (hval << 4) + *s;
S++:

}

return hval :

Symbol Tables, Hashing, and Hash Tables— 6 Compiler Design — © Muhammed Mudawwar

Another Hash Function

/] Treat string s as an array of unsigned integers
// Fold array into an unsigned integer using addition
/] Return hash val ue (independent of table size)

unsi gned hash(char* s) {
unsi gned hval = O;
while (s[0]!'=0 && s[1]!=0 && s[2]!=0 && s[3]!=0){
unsigned u = *((unsigned*) s);
hval += u; s += 4;

}

I f (s[0] == 0) return hval; a

hval += s[0];

if (s[1] == 0) return hval; Last 3 characters
hval += s[1]<<8; > arehandled ina
if (s[2] == 0) return hval; special way
hval += s[2] <<16;

return hval ;

}

Symbol Tables, Hashing, and Hash Tables— 7 Compiler Design — © Muhammed Mudawwar

Resolving Collisions — Open Addressing
< A collision occurs when h(name,) = h(name,) and name, # name,

< Collisions are inevitable because
»* The name space of identifiersis much larger than the table size

< How to deal with collisions?
* |f entry h(name) is occupied, try h,(name), h;(name), etc.

»* This approach is called open addressing
* h,(name) can be h(name) + 1 mod TabIeSize} ' o
* h,(name) can be h(name) + 2 mod TableSze NSl proding

Hash Value Name Attributes

0 sort

1

2 si ze

j

. a

TableSze—-1
Compiler Design — © Muhammed Mudawwar

Symbol Tables, Hashing, and Hash Tables—8

Chaining by Separate Lists

< Drawbacks of open addressing:
#* Asthe array fills, collisions become more frequent — reduced performance
»* Table sizeis an issue — dynamically increasing the table size is a difficulty

< An aternative to open addressing is chaining by separate lists
»* The hash tableis an array of pointersto linked lists called buckets
#* Collisions are resolved by inserting a new identifier into alinked list
»* Number of identifiersisno longer restricted to table size
#* Lookup is O(n/TableSze) when number of identifiers exceeds TableSze

Hash Value Name Attrib Next
0 ° »sort
1
2 ° >] ° »si ze
. [> a
TableSze—-1

Symbol Tables, Hashing, and Hash Tables—9 Compiler Design — © Muhammed Mudawwar

Symbol Class Definition

cl ass Synbol {

friend class Tabl e;

public:
Synmbol (char* s);
~Symbol () ;

const char* id();
Synbol * nextinlist();
Synbol * nexti nbucket () ;

private:

char* nane;
Synbol * |1 st;
Synbol * next;

};.

/]
/]

/]
/]
/]
/]
/]
/]

/]
/]
/]
/]

Synbol class definition

To access private nenbers

Wth nane s
poi nters

Initialize synbol
Del et e nane and cl ear

Return pointer to synbol nane
Next synbol in |ist

Next synbol i1n bucket

Q her net hods

Synbol nane

Next synbol in |ist

Next synbol in bucket

Attributes (added | ater)

Symbol Tables, Hashing, and Hash Tables— 10

Compiler Design — © Muhammed Mudawwar

Symbol Class Implementation

[l Initialize synbol and copy s

Synbol : : Synbol (char* s) {
name = new char[strlen(s)+1];
strcpy(nane, s);
next = list = 0;

}

/'l Delete nane and cl ear pointers

Synbol : : ~Synbol () {

delete [] nane;

name = O;
next = list = 0;
}
const char* Synbol ::id() {return nane;}

Synbol * Synbol : : nexti nbucket () {return next;}
Synmbol * Synbol : : nextinlist() {return list;}

Symbol Tables, Hashing, and Hash Tables— 11 Compiler Design — © Muhammed Mudawwar

Symbol Table Class Definition

const unsigned HT_SIZE = 1021; /[l Hash Table Size

cl ass Tabl e { /| Synbol Tabl e cl ass

publ i c:
Tabl e() ; [l Initialize table
Synbol * cl ear(); [/ Cear synbol table
Synmbol * | ookup(char*s); /| Lookup nanme s

Synmbol * | ookup(char*s, unsigned h); // Lookup s with hash h

Synmbol * insert(char*s,unsigned h); // Insert s with hash h

Synmbol * | ookupl nsert (char*s); /[l Lookup and insert s

Synmbol * symist() {return first;} // List of synbols

unsi gned synbol s(){return count;} // Synbol count

Co /1 O her nethods
private:

Synbol * ht[HT_SI ZE] ; /| Hash table

Synmbol * first; /[l First inserted synbol

Synbol * | ast; [/l Last inserted synbol
\ unsi gned count; /1 Synmbol count

Symbol Tables, Hashing, and Hash Tables — 12 Compiler Design — © Muhammed Mudawwar

Initialize and Clear a Symbol Table

[/ Initialize a synbol table

Tabl e: : Tabl e() {
for (int i=0; i<HT _SIZE;, i++) ht[i] = O;
first | ast = O;
count 0;

}

/[l Clear a synbol table and return its synbol |ist

Synbol * Tabl e::clear() {
Synmbol * list = first;
for (int i=0; i<HT _SIZE;, i++) ht[i] = O;
first = last = 0;
count 0;
return |ist;

}

Symbol Tables, Hashing, and Hash Tables — 13 Compiler Design — © Muhammed Mudawwar

Lookup a Name in a Symbol Table

[/ Lookup nane s in synbol table
/'l Return pointer to found synbol
/[l Return NULL if synbol not found

Synbol * Tabl e: : | ookup(char* s) {
unsi gned h = hash(s);
return | ookup(s, h);

}

[/ Lookup name s wth hash value h
/'l Hash value is passed to avoid its conputation

Synbol * Tabl e: : | ookup(char* s, unsigned h) {
unsi gned i ndex = h % HT_SI ZE;
Synmbol * sym = ht[i ndex];
while (sym!= 0) {
I f (strcnp(sym >nane, s) == 0) break;
sym = sym >next;

}

return sym

}

Symbol Tables, Hashing, and Hash Tables— 14 Compiler Design — © Muhammed Mudawwar

Insert a Name into a Symbol Table

/1l Insert nane s with a given hash val ue h

/'l New synbol is allocated

// New synbol is inserted at front of a bucket |1 st

/'l New synbol is also linked at end of synbol list in table
/'l Return pointer to newy allocated synbol

Synbol * Tabl e::insert(char* s, unsigned h) {
unsi gned 1 ndex = h % HT_SI ZE;
Synmbol * sym = new Synbol (s);
sym >next = ht[index];
ht[i ndex] = sym

I f (count == 0) { first = last = sym }
el se {
|ast -> list = sym
\ | ast = sym
count ++;

return sym

}

Symbol Tables, Hashing, and Hash Tables— 15 Compiler Design — © Muhammed Mudawwar

lllustrating Symbol Insertion

Table Structure

ht[O] | e i
[1] s
|
[2]
® > T
1] ¢"
n
name list next
° > T I/l ® » T t
[HT_SI ZE- 1] B T
| a mai n
first| e
| ast | e Last Symbol
count| 4 inserted in blue

Symbol Tables, Hashing, and Hash Tables — 16

Compiler Design — © Muhammed Mudawwar

Lookup and then Insert a Name

/] Lookup first and then Insert nane s

[/ 1f name s exists then return pointer to its synbol
/[l Oherw se, insert a new synbol and copy nane s

// Return address of newl y added synbol

Synmbol * Tabl e: : | ookupl nsert (char* s) {

unsi gned h = hash(s); /| Conmput ed once
Synbol * sym
sym = | ookup(s, h); /] Locate synbol first
1T (sym== 0) { /[l 1f not found

sym = insert(s, h); /[l Insert a new synbol
}
return sym

Symbol Tables, Hashing, and Hash Tables— 17 Compiler Design — © Muhammed Mudawwar

