
Symbol Tables, Hash Tables, and String Spaces – 1 Compiler Design – © Muhammed Mudawwar

Symbol Tables
� A symbol table is a major data structure used in a compiler:

� Associates attributes with identifiers used in a program

� For instance, a type attribute is usually associated with each identifier

� A symbol table is a necessary component because:
� Definition (declaration) of identifiers appears once in a program

� Use of identifiers may appear in many places of the program text

� Identifiers and attributes are entered by the analysis phases
� When processing a definition (declaration) of an identifier

� In simple languages with only global variables and implicit declarations:
� The scanner can enter an identifier into a symbol table if it is not already there

� In block-structured languages with scopes and explicit declarations:
� The parser and/or semantic analyzer enter identifiers and corresponding attributes

� Symbol table information is used by the analysis and synthesis phases
� To verify that used identifiers have been defined (declared)

� To verify that expressions and assignments are semantically correct – type checking

� To generate intermediate or target code

Symbol Tables, Hash Tables, and String Spaces – 2 Compiler Design – © Muhammed Mudawwar

Symbol Table Interface

� The basic operations defined on a symbol table include:
� allocate – to allocate a new empty symbol table

� free – to remove all entries and free the storage of a symbol table

� insert – to insert a name in a symbol table and return a pointer to its entry

� lookup – to search for a name and return a pointer to its entry

� set_attribute – to associate an attribute with a given entry

� get_attribute – to get an attribute associated with a given entry

� Other operations can be added depending on requirement
� For example, a delete operation removes a name previously inserted

� Some identifiers become invisible (out of scope) after exiting a block

� This interface provides an abstract view of a symbol table

� Supports the simultaneous existence of multiple tables

� Implementation can vary without modifying the interface

Symbol Tables, Hash Tables, and String Spaces – 3 Compiler Design – © Muhammed Mudawwar

Basic Implementation Techniques
� The first consideration is how to insert and lookup names

� Variety of implementation techniques exist depending on performance desired

� Unordered List
� Simplest to implement
� Implemented as an array or a linked list
� Linked list can grow dynamically – alleviates problems of a fixed size array
� Insertion is fast O(1), but lookup is very slow for large tables – O(n) on average

� Ordered List
� If an array is sorted, it can be searched using binary search – O(log2 n)
� New entry must be inserted at appropriate location – Expensive O(n) on average
� Useful when entire set of names is known in advance – table of reserved words

� Binary Search Tree
� Can grow dynamically
� Insertion and lookup are O(log2 n) on average

� Hash Table
� Probably the most commonly used data structure to implement symbol tables
� Insertion and lookup can be very fast – O(1)

Symbol Tables, Hash Tables, and String Spaces – 4 Compiler Design – © Muhammed Mudawwar

Hash Tables and Hash Functions
� A hash table is an array indexed by an integer range 0 to TableSize – 1
� A hash function maps an identifier name into a table index

� A hash function, h(name), should depend solely on name
� h(name) should be computed quickly
� h should be uniform and randomizing in distributing names over the index range
� All table indices should be mapped with equal probability
� Similar names should not cluster to the same table index

� Hash functions can be defined in many ways:
� A string can be treated as a sequence of integer words

� Several characters are fit into an integer word
� Strings longer than one integer word are folded into one word using exclusive-or
� Hash value is obtained by taking integer word modulo TableSize

� We can also compute a hash value character by character:
� h(name) = (c0 + c1 + … + cn–1) mod TableSize, where n is the length of name

� h(name) = (c0 * c1 * … * cn–1) mod TableSize

� h(name) = (cn–1 + α (cn–2 + … + α (c1 + α c0))) mod TableSize

� h(name) = (c0 * cn–1 * n) mod TableSize

Symbol Tables, Hash Tables, and String Spaces – 5 Compiler Design – © Muhammed Mudawwar

Resolving Collisions – Open Addressing
� A collision occurs when h(name1) = h(name2) and name1 ≠ name2

� Collisions are inevitable because
� The name space of identifiers is much larger than the table size

� How to deal with collisions?
� If entry h(name) is occupied, try h2(name), h3(name), etc.
� This approach is called open addressing
� h2(name) can be h(name) + 1 mod TableSize

� h3(name) can be h(name) + 2 mod TableSize
linear probing

Hash Value
0
1

TableSize – 1

2
.
.
.

Name Attributes

i
s i z e

j
t e m p

Symbol Tables, Hash Tables, and String Spaces – 6 Compiler Design – © Muhammed Mudawwar

Resolving Collisions – Chaining by Separate Lists
� Drawbacks of open addressing:

� As the array fills, collisions become more frequent – reduced performance

� Table size is an issue – dynamically increasing the table size is a difficulty

� We can however allocate multiple tables and link them together

� An alternative to open addressing is chaining by separate lists
� The hash table is an array of pointers to linked lists called buckets
� Collisions are resolved by inserting a new identifier into a linked list
� Number of identifiers is no longer restricted to table size
� If number of identifiers greatly exceed TableSize then lookup is O(n/TableSize)
� It is also possible to organize each chain as a binary search tree

Hash Value
0
1

TableSize – 1

2
.
.
.

sort

j size

Name Attrib Link

a

Symbol Tables, Hash Tables, and String Spaces – 7 Compiler Design – © Muhammed Mudawwar

String Space Array
� The length of names entered into a symbol table may vary greatly

� Entering a name directly into a symbol entry leads to considerable inefficiencies

� Enough space in a name field has to accommodate the longest possible name

� To reduce storage waste, we use a character array to store all names

� The character array, called a string space, can be allocated and deleted in one step

� Choosing the size of a string space array is a difficult problem
� A small array cannot accommodate many names; a large array wastes space

� To allow growth, array segments should be allocated and linked dynamically
Hash Value

0
1

TableSize – 1

2
.
.
.

Name Attributes Link

a s i z e s o r t j String Space

Symbol Tables, Hash Tables, and String Spaces – 8 Compiler Design – © Muhammed Mudawwar

String Segment Class Definition
� A string space can be implemented as a linked list of string segments
� Each string segment is an array of characters allocated dynamically
� We keep track of insertion location and the number of free characters
class StrSeg { // String Segment Class
friend class StrSpc; // StrSpc can access private members
public:

StrSeg(int size); // Allocate storage of given size
~StrSeg(); // Free storage of this segment
char *insert(char *s,int l); // Insert s of length l

private:
StrSeg *next; // Next segment in string space
int freechars; // Free characters in storage[]
char *nextchar; // Next free position in storage[]
char *storage; // Storage array of this segment

};

next

freechars

nextchar

storage

30

Symbol Tables, Hash Tables, and String Spaces – 9 Compiler Design – © Muhammed Mudawwar

String Segment Class Implementation
StrSeg::StrSeg(int size) { // Constructor of this segment

storage = new char[size]; // Dynamic array of size chars
freechars = size; // All characters are initially free
nextchar = storage; // insertion point starts at storage
next = 0; // No next segment at this time

}

StrSeg::~StrSeg() { // Destructor of this segment
delete [] storage; // Free storage of this segment
if (next) delete next; // Free next segment if any

}

char *StrSeg::insert(char *str, int len) {
if (freechars<=len) return 0; // No storage available
char *strptr = nextchar; // Insertion address of str
for (int i=0; i<len; i++) // Copy str character by character

strptr[i] = str[i];
strptr[len] = '\0'; // mark end of string
nextchar += (len+1); // Update nextchar
freechars -= (len+1); // Update freechars
return strptr; // Pointer to inserted string

}

Symbol Tables, Hash Tables, and String Spaces – 10 Compiler Design – © Muhammed Mudawwar

String Space Class Definition

� A string space is implemented as a linked list of string segments
� A new string segment is linked at the end of linked list and pointed by last
� This queue arrangement will preserve the order of inserted strings

class StrSpc { // String Space Class
public:

StrSpc(){first=0; last=0;} // Empty string space
~StrSpc(){if(first)delete first;} // Delete all string segments
char *insert(char *s, int len); // insert s of length len

private:
StrSeg *last; // Pointer to last segment
StrSeg *first; // Pointer to first segment

};

last

first

next

freechars

nextchar

storage

3 7

Symbol Tables, Hash Tables, and String Spaces – 11 Compiler Design – © Muhammed Mudawwar

String Space Class Implementation
const int DefSegSize = 500; // Default size of segment array

char *StrSpc::
insert(char *str, int len) { // Insert str of length len

if (len<0) return 0; // Insertion is not possible

int segsize = DefSegSize; // Compute segment array size
if (len >= segsize) // Long strings are handled

segsize = len+1;

if (last == 0) { // First segment in string space
last = new StrSeg(segsize); // Allocate new segment
first = last;

}

char *strptr=last->insert(str,len); // First attempt to insert

if (strptr == 0) { // First attempt not successful
last->next=new StrSeg(segsize); // Allocated new segment
last=last->next; // Update last pointer
strptr = last->insert(str,len); // Second attempt to insert

}

return strptr; // Pointer to inserted string
}

Symbol Tables, Hash Tables, and String Spaces – 12 Compiler Design – © Muhammed Mudawwar

Symbol and Symbol Table Class Definition
class Symbol { // Symbol class definition
friend class SymTable; // SymTable can access private members
public:

Symbol() {next=0; id=0;} // Construct empty symbol
char *name() {return id;} // Return name of this symbol

private:
Symbol *next; // Symbols can be linked
char *id; // Attributes can be added later

};

class SymTable { // Symbol Table class definition
public:

SymTable(int size); // Allocate hash table of given size
~SymTable(); // Free table, symbols, and string space
Symbol *insert(char *s); // Insert s and return pointer to symbol
Symbol *lookup(char *s); // Lookup s and return pointer to symbol

// Other public methods are listed here
private:

Symbol **htable; // Hash table allocated dynamically
StrSpc strspc; // String space facility

};

