Symbol Tables

< A symbol tableisamajor data structure used in a compiler:
#* Associates attributes with identifiers used in a program
* For instance, atype attributeis usually associated with each identifier

#* A symbol table is a necessary component because:
< Definition (declaration) of identifiers appears once in a program
< Use of identifiers may appear in many places of the program text

»* |dentifiers and attributes are entered by the analysis phases
<> When processing a definition (declaration) of an identifier

< In ssimple languages with only global variables and implicit declarations:
e The scanner can enter an identifier into asymbol tableif it is not already there

<> In block-structured languages with scopes and explicit declarations:
e The parser and/or semantic analyzer enter identifiers and corresponding attributes
#* Symbol table information is used by the analysis and synthesis phases
<> To verify that used identifiers have been defined (declared)
< To verify that expressions and assignments are semantically correct — type checking
<~ To generate intermediate or target code

Symbol Tables, Hash Tables, and String Spaces— 1 Compiler Design — © Muhammed Mudawwar

Symbol Table Interface

< The basic operations defined on a symbol table include:
* allocate —to allocate a new empty symbol table
* free—to remove all entries and free the storage of a symbol table
* insert —to insert aname in a symbol table and return a pointer to its entry
#* |ookup —to search for aname and return a pointer to its entry
* set_attribute —to associate an attribute with a given entry
* get_attribute—to get an attribute associated with a given entry

< Other operations can be added depending on requirement

»* For example, adelete operation removes a name previoudy inserted
< Some identifiers become invisible (out of scope) after exiting a block

< Thisinterface provides an abstract view of a symbol table
< Supports the simultaneous existence of multiple tables
< Implementation can vary without modifying the interface

Symbol Tables, Hash Tables, and String Spaces — 2 Compiler Design — © Muhammed Mudawwar

Basic Implementation Techniques

L/ L/
0‘0 0‘0

J
0’0

Thefirst consideration is how to insert and lookup names
Variety of implementation techniques exist depending on performance desired

Unordered List
* Simplest to implement
»* Implemented as an array or alinked list
»* Linked list can grow dynamically — aleviates problems of afixed size array
#* |Insertionisfast O(1), but lookup is very slow for large tables — O(n) on average

Ordered List
* |f an array Is sorted, it can be searched using binary search — O(log, n)
#* New entry must be inserted at appropriate location — Expensive O(n) on average
» Useful when entire set of names is known in advance — table of reserved words

Binary Search Tree
» Can grow dynamically
* |nsertion and lookup are O(log, n) on average

Hash Table
»* Probably the most commonly used data structure to implement symbol tables
* |nsertion and lookup can be very fast — O(1)

Symbol Tables, Hash Tables, and String Spaces — 3 Compiler Design — © Muhammed Mudawwar

Hash Tables and Hash Functions

< A hash tableisan array indexed by an integer range O to TableSze—1

< A hash function maps an identifier name into atable index
»* A hash function, h(name), should depend solely on name
»* h(name) should be computed quickly
»* h should be uniform and randomizing in distributing names over the index range
#* All table indices should be mapped with equal probability
»* Similar names should not cluster to the same table index

< Hash functions can be defined in many ways.

* A string can be treated as a sequence of integer words
<> Severa characters arefit into an integer word
<> Strings longer than one integer word are folded into one word using exclusive-or
<> Hash value is obtained by taking integer word modulo TableSze
#* \We can also compute a hash value character by character:
< h(name) = (¢, + ¢, + ... + C,4) mod TableSze, where n is the length of name
< h(name) = (c,* ¢, * ... * ¢,;) mod TableSze
< h(name) = (c,;+a(c,o+ ... +a (¢, +acy))) mod TableSze
< h(name) = (c, * ¢, * n) mod TableSze

Symbol Tables, Hash Tables, and String Spaces — 4 Compiler Design — © Muhammed Mudawwar

Resolving Collisions — Open Addressing

< A collision occurs when h(name,) = h(name,) and name, # name,

< Collisions are inevitable because
#* The name space of identifiersis much larger than the table size

< How to deal with collisions?
* |f entry h(name) is occupied, try h,(name), hy(name), etc.
#* This approach is called open addressing
* h,(name) can be h(name) + 1 mod TabIeS'ze} i .
_ Inear probing
* hy(name) can be h(name) + 2 mod TableSze

Hash Value Name Attributes

0
1
2

— —| n|—
N
D

TableSze—-1

Symbol Tables, Hash Tables, and String Spaces—5 Compiler Design — © Muhammed Mudawwar

Resolving Collisions — Chaining by Separate Lists

< Drawbacks of open addressing:
#* Asthe array fills, collisions become more frequent — reduced performance
» Table sizeisan issue — dynamically increasing the table size is a difficulty
» \We can however allocate multiple tables and link them together

< An alternative to open addressing is chaining by separatelists

»* The hash table isan array of pointersto linked lists called buckets

» Collisions are resolved by inserting a new identifier into alinked list

» Number of identifiersis no longer restricted to table size

»* |f number of identifiers greatly exceed TableS ze then lookup is O(n/TableS ze)
* |t isalso possible to organize each chain as a binary search tree

si ze

Hash Value
0 Name Attrib Link
1 e——»sort
2
: o——> |]
. o——»la

TableSze—-1

Symbol Tables, Hash Tables, and String Spaces — 6

Compiler Design — © Muhammed Mudawwar

String Space Array

< Thelength of names entered into a symbol table may vary greatly
* Entering a name directly into a symbol entry leads to considerable inefficiencies
»* Enough space in a name field has to accommodate the longest possible name
#* To reduce storage waste, we use a character array to store all names
* The character array, called astring space, can be allocated and deleted in one step

#* Choosing the size of a string space array isadifficult problem
<> A small array cannot accommodate many names; alarge array wastes space

»* To allow growth, array segments should be allocated and linked dynamically

Hash Value
0 Name Attributes Link
1 ——> e
2
——> @ ——>» e
o——> o
TableSze—-1 J
a

stiiziesioirit Xj X ... StringSpace

Symbol Tables, Hash Tables, and String Spaces— 7 Compiler Design — © Muhammed Mudawwar

String Segment Class Definition

< A string space can be implemented as alinked list of string segments
< Each string segment is an array of characters allocated dynamically
<+ We keep track of insertion location and the number of free characters

class StrSeg { [l
friend class StrSpc; Il
publi c:
StrSeg(int size); /]
~Str Seg() ; /]
char *insert(char *s,int |); [/
private:
StrSeg *next; /]
| nt freechars; [l
char *next char; Il
char *st or age; [l
b
next
freechars| 30

next char °

String Segnent Cl ass
StrSpc can access private nenbers

Al l ocate storage of given size
Free storage of this segnent
| nsert s of length |

Next segnent in string space
Free characters in storage[]
Next free position in storage[]
Storage array of this segnent

st or age

Symbol Tables, Hash Tables, and String Spaces— 8

Compiler Design — © Muhammed Mudawwar

String Segment Class Implementation

StrSeqg::StrSeg(int size) {

storage = new char][si
freechars = size;
next char = storage;
next = O;

}

StrSeg::~StrSeg() {
delete [] storage;

ze] ;

I f (next) del ete next;

}

char *StrSeqg::insert(char *str,
i f (freechars<=len) return O;

char *strptr = nextchar;

for (int i=0; i<len;
strptr[i] = str[i];

strptr[len] = "\0";
nextchar += (len+l);
freechars -= (|l en+l);
return strptr;

}

| ++)

/]
/]
/]
/]
/]

/]
/]
/]

I nt

/]
/]
/1

/]
/]
/]
/]

Constructor of this segnent
Dynami c array of size chars

Al characters are initially free
I nsertion point starts at storage
No next segnent at this tine

Destructor of this segnent
Free storage of this segnent
Free next segnent if any

| en) {

No storage avail abl e
| nsertion address of str
Copy str character by character

mar k end of string

Updat e next char

Update freechars

Pointer to inserted string

Symbol Tables, Hash Tables, and String Spaces—9

Compiler Design — © Muhammed Mudawwar

String Space Class Definition

< A string space isimplemented as alinked list of string segments
< A new string segment is linked at the end of linked list and pointed by last
< This queue arrangement will preserve the order of inserted strings

class StrSpc { /'l String Space C ass
publi c:
StrSpc(){first=0; |ast=0;} /] Enpty string space
~StrSpc(){if(first)delete first;} // Delete all string segnents
char *insert(char *s, int |en); Il insert s of length |en
private:
StrSeg *l ast; /1l Pointer to | ast segnent
StrSeg *first; /1l Pointer to first segnment
b
| ast ° next ° >
first ° freechars 3 7
next char v ° v
st or age o— >l — | »

Symbol Tables, Hash Tables, and String Spaces— 10

Compiler Design — © Muhammed Mudawwar

String Space Class Implementation

const int Def SegSize = 500;

char *Str Spc: :

}

nsert(char *str, int len) {

I f (len<0) return O;

I nt segsize = Def SegSi ze;

i f (len >= segsize)
segsi ze = | en+1;

if (last == 0) {
| ast = new Str Seg(segsi ze);
first = |ast;

}

char *strptr=last->insert(str,len);

I f (strptr == 0) {
| ast - >next =new Str Seg(segsi ze);
| ast =l ast - >next ;
strptr = last->insert(str,len);

}

return strptr;

/]

/1
/]

/]
/]

/]
/]

/]

/]
/]
/]
/]

/1

Default size of segnent array

| nsert str of length |en
| nsertion is not possible

Conput e segnment array size
Long strings are handl ed

First segnent in string space
Al | ocat e new segnent

First attenpt to insert

First attenpt not successful
Al | ocat ed new segnent

Updat e | ast pointer

Second attenpt to insert

Pointer to inserted string

Symbol Tables, Hash Tables, and String Spaces— 11

Compiler Design — © Muhammed Mudawwar

Symbol and Symbol Table Class Definition

cl ass Synbol { [l Symbol class definition
friend class SynTabl e; /'l SyniTabl e can access private nenbers
publi c:

Synmbol () {next=0; i1d=0;} // Construct enpty synbol
char *nanme() {return id;} // Return name of this synbol

private:
Synbol *next; /1 Symbols can be |inked
char *id; /] Attributes can be added | ater
¥
cl ass Syniabl e { /1 Synmbol Table class definition
publi c:
Symrlabl e(i nt size); /'l Allocate hash table of given size
~Symrlabl e() ; /'l Free table, synbols, and string space

Synbol *insert(char *s); [/ Insert s and return pointer to synbol
Synbol *I| ookup(char *s); [/ Lookup s and return pointer to synbol
[l Other public nethods are listed here

private:
Synbol **ht abl e; /1l Hash table allocated dynam cally
StrSpc strspc; /[l String space facility

}

Symbol Tables, Hash Tables, and String Spaces — 12 Compiler Design — © Muhammed Mudawwar

