Overview of Scanning Chapter 2

< The function of a scanner, called also lexical analyzer, isto:
»* Read characters from the sourcefile
% Group input characters into meaningful units, called tokens

< The scanner takes care of other things as well:

»* Removal of comments and white space

» Keeping track of current line number and character position
<- Required for reporting error messages

#* Case conversions of identifiers and keywords
< Simplifies searching if the language is not case-sensitive

* |nterpretation of compiler directives
<> Flags are internally set to direct code generation

* Communication with the symbol or literal table

< ldentifiers can be entered in the symbol table
<> String literals can be entered in the literal table

Scanning Theory — 1 Compiler Design — © Muhammed Mudawwar

Tokens and Lexemes

» Consider the following statement:
If distance >=rate * (timel — time0) then distance := maxdist ;
» Contains 5 identifiers: distance, rate, timel, time0, maxdist
< For parsing purposes, al identifiers are alike
* |t is enough to tell the parser that the next token is an identifier
* However, the code generator needs the name of the identifier
» Similarly, for parsing purposes all relational operators are alike
* The syntactic structure would not change if >= were changed to > or <=
» However, the code generator needs to know exactly what operator is used
» We make the following distinction:
» A token isalogical entity described as part of the syntax of alanguage
* A lexemeisagpecia instance of the token, which isthe string value
< For the above statement, the scanner should return the following tokens:

if id relop id * (id—id) then id := id ;

Scanning Theory — 2 Compiler Design — © Muhammed Mudawwar

Formal Languages

» An alphabet isafinite set of characters, denoted by the Greek symbol X (sigma)
»* The alphabet can be the ASCII set, a subset of ASCII, or so ASCI|

» A string over some alphabet is a sequence of symbols drawn from the alphabet
» Example: 01001 is string over the al phabet { 0,1}

» The empty or null string ¢ isaspecial string of length zero
#* When ¢ is concatenated with any string syieldss. Thatis, se=gs=-s

» A formal language is aset of strings (possibly infinite) over some alphabet
»* Just a set of strings. No specific relationship with a programming language.
» Example: L ={00, 01, 10, 11} isthe set of all 2-character stringsover ¥ ={0,1}

» The concatenation of two languages L, and L, (sets of strings) is.

» Obtained by concatenating every string in L, with every stringin L,
*L=L,L,={s=ss[sel,ands eL,}
*L,={¢0,00},L,={¢,1,11},L =L, L,={¢, 1, 11, 0, 01, 011, 00, 001, 0011}

Scanning Theory — 3 Compiler Design — © Muhammed Mudawwar

Formal Languages — cont'd

< The exponentiation of alanguage is defined as follows:
* L0={¢} andLi-1= L1 L
*» L={01},Lo={¢},L1=L ={0,1}
* L2={00, 01, 10, 11} and L3 = {000, 001, 010, 011, 100, 101, 110, 111} |
% TheKleene closure of alanguage L, denoted as L*, isdefined as: L* = | JL'
* L={01},L*={g, 0, 1,00, 01, 10, 11, 000, 001, 010, 011, 100, ...} =0
* ¢ e L*forany setL o
% The Positive closure of alanguage L, denoted asL*, isdefined as; L™ = JL'
»* L={01}, L*={0, 1, 00,01, 10, 11, 000, 001, 010, 011, 100, ...} i=1
< Examples:
» LetL={A,B,....,Z,ab,..., z} setof al English letters
LetD={0,1,...,9} setof al digits
L U D isthe set of letters and digits
LD isthe set of strings consisting of aletter followed by adigit
L4 isthe set of all four-letter strings

L* isthe set of al strings of letters, including €
L(L U D)* isthe set of all strings of letters and digits beginning with a letter

LI N S S NS

Scanning Theory — 4 Compiler Design — © Muhammed Mudawwar

Reqgular Expression

< |sanotation that denotes a set of strings that follows a certain pattern
»* A regular expression r corresponds to set of strings L(r)
»* L(r)iscalledaregular set or aregular language and may beinfinite

< A regular expression is defined as follows:
#* A basic regular expression a denotesthe set {a} wherea € ¥ ; L(a) ={a}
#* Theregular expression € denotesthe set { €}

< Technically, regular expression € is different from string €
» |fr and s aretwo regular expressions denoting the sets L(r) and L(s) then:

<r|s isaregular expression denoting the union set: L(r) u L(S)
<r s isaregular expression denoting the concatenation set: L(r) L(S)
<>r* isaregular expression denoting the Kleene closure set: L(r)*
< (r) isaregular expression denoting the set L(r)
< Regular expressions are of practical interest. They can be used to:
»* Specify the structure of tokens
* Program a scanner generator

Scanning Theory — 5 Compiler Design — © Muhammed Mudawwar

Examples of Regular Expressions

< 0] 1 denotesthe set { 0,1}
< 0* denotesthe set { €, 0, 00, 000, 0000, ...}
<+ (0] 1) (0| 1) denotestheset {00, 01, 10, 11}

>

L)

(0] 1) * denotesthe set {&, 0, 1, 00, 01, 10, 11, 000, 001, ...}
0] 0* 1 denotesthe set {0, 1, 01, 001, 0001, ...}

< Consider the alphabet >~ ={a, b, ¢}, the set of al:
»* Strings containing exactly one b isrepresented by: (a| ¢) *b(al c) *
» Strings containing at most one b isrepresented by: (al c) *| (al ¢c) *b(al c) *
< Alternative solution: (a| c) *(b| €) (alc) *
<> Thereis NO unique answer, but we attempt to find a simple regular expression
»* Strings that contain NO two consecutive b'sis represented by:
< (notb| b notb)*(ble) wheenotb = (alc)
< Equivalentto: (al c| b(alc))*(ble) = (a]c|balbc)*(b|eg)
< Equivalentto: (b| €) (a| c| ab] cb) *
< Any finite set of stringsisregular and can be represented by: (s,| S,| ..} Sy)

R

*

‘0

Scanning Theory — 6 Compiler Design — © Muhammed Mudawwar

Extensions to Regular Expressions

< The standard regular operations are sufficient to describe any regular expression
» Standard regular operations are: alternation, concatenation, and Kleene closure
In practice, additional operations are often utilized
I + isaregular expression denoting the positive closure set: L(r)+
* I + isread asone or morerepetitionsof r, whiler * iszero or more repetitions of r
r+ =rr andr* =r+|¢
r ? isaregular expression denotingtheset L(r) u{e}.r? = r| e
To specify arange of characters, we will use Lex notation as follows:
*»[0-9] =0[1]2]...]9
*[A-Za-z] = A/B|...|Zla|b]...|z
To exclude characters from the alphabet, we will use Lex notation as follows:
» [“a] matches any character in the alphabet except a
» [“abc] matches any character in the alphabet, which isnot a, b, or ¢
»* [70- 9] matches any character in the alphabet which is not adigit

0’0

0’0

L)

*

L)

0‘0

L)

*

Scanning Theory — 7 Compiler Design — © Muhammed Mudawwar

Reqgular Definitions

< We may assign aname to aregular expression to:
»* Use and Reuse the name in other (more complex) regular expressions
»* Enhance the readability of longer regular expressions

< Given the following regular definitions:
»digit =[0-9],letter =[A-Za-z],eol =\n,andneol =["\ n]
* \We can use them to write complex regular expressions:
< Integer Literal = digit +
< Fixed-Point Literal = digit+"." digit+
< Foating-Point Literal = digit+"." digit+(e|E)(+|-)?digit+
< ldentifier= letter(letter|digit)*
< AdaComment = - - neol * eol

< Not all infinite sets of strings are regular

* The set {a"ba" | n> 0} cannot be described by aregular expression
* a* ba* does not guarantee the same number of a’s at the beginning and end

Scanning Theory — 8 Compiler Design — © Muhammed Mudawwar

Finite Automata

L/
0‘0

Used to recognize the tokens specified by aregular expression
» Can be converted to an algorithm for matching input strings
A Finite Automaton (FA) consists of:

* A finite set of states

»* A set of transitions (or moves) between states

< Thetransitions are labeled by characters form the al phabet

»* A specid start state

»* A set of final or accepting states
A finiteautomatonforl etter (l etter| di gi t)* isshown below
We may label atransition with more than one character for convenience
We start at the start state
We make atransition if next input character matches label on transition
If no move is possible, we stop ter
If we end in an accepting state then < 1 > letter #@

* input sequence of charactersisvalid

digit

0

L/
0‘0

L/
0’0

L/
0’0

XS

%

XS

%

XS

%

L/
0‘0

L)

» Otherwise, we do not have avalid sequence

L)

Scanning Theory — 9 Compiler Design — © Muhammed Mudawwar

Deterministic Finite Automata (DFA)

< Hasaunique transition for every state and input character

< Can berepresented by atransition table T
» Table T isindexed by state s and input character ¢
#* T[9][c] isthe next state to visit from state sif the input character isc
» T can also be described asatransition function
* T:Sx X — S mapsthe pair (s, c) tonext_s
< DFA and transition table for a C comment are show below
»* Blank entriesin the table represent an error state
» A full transition table will contain one column for each character (may waste space)
» Characters are combined into character classes when treated identically in aDFA

(] . State | / | * |other
1 |2
2 3
3 |3 |4 3
4 |5 |4 3
5

Scanning Theory — 10 Compiler Design — © Muhammed Mudawwar

Combining DFAs

In a programming language there are many tokens
Each token is recognized by its own DFA

We need to combine DFASs together into one large DFA
»* Unite the starting states of various DFAs into one starting state
» Simple if each token begins with a different character
»* Becomes more complex if some tokens have a common prefix

Consider the DFAsfor <, <=, and <>
#* They share acommon prefix <
» They are combined into one DFA as shown on the right

‘,@;, return LT

return LE ,<: > <,
return LT

return NE

Scanning Theory — 11

L/ L/
< 0’0 0’0

%

*

return LE

return NE

Compiler Design — © Muhammed Mudawwar

Algorithmic Aspects of a DFA

>

L)

» A DFA diagramisjust an outline of a scanning algorithm
A DFA does NOT describe every aspect of the algorithm
What happens when making atransition? A typical action isto
» Save the character read in astring buffer belonging to a single token
»* The string value is the lexeme of the token
What happens when we reach an accepting state?
» |f no further transition is possible, we return the token recognized
» |f further transitions are possible, we continue to match the longest string
What happens when no transition exist from an non-accepting state?

#* We can backtrack to the last accepting state, if we visited one
<> The extra characters read, called lookahead characters, are returned back to input

» We can return an error token if no accepting state is visited
di gi t di gi t

L/
> 0‘0 L)

%

‘0

L)

X4

L)

digit

Scanning Theory — 12 Compiler Design — © Muhammed Mudawwar

Converting a DFA into an Algorithm

< We can convert aDFA into an algorithm by: state := 1; input(ch);
_ _ o while not eof do
» Using avariable, state, to maintain the current state case state of
» Writing transitions as case statements inside aloop Lo s nput(ch):
< Thefirst case statement tests the current state else exit while;
<~ The nested case statements tests the input character ch end case,
: 2: case ch of
< The unput(ch) statement returns ch back to input "% - tate = 3: input(ch):
_ else exit while;
state := 1; input(ch); end case
while not eof do 3 case ch of
case state of ' * : gtate ;= 4; input(ch);
1: casechof _ else state := 3; input(ch);
letter: state := 2; input(ch); end case:
else exit while; 4 case ch of
end case; ("] * ' % dtate = 4; input(ch);
2:casechof / R ARy ' [state:=5; exit while
letter, digit: '”_pUt(_Ch)? . 0 9 Q‘Q @ else state := 3; input(ch);
else un.put(ch), exit while; (A% /] end case
end case; end case:
end case end while;
end while; _ _ if state = 5 then accept_comment;
if state=2then returnid; elseerror; end if; dseerror: end if:

Scanning Theory — 13 Compiler Design — © Muhammed Mudawwar

Table-Driven Generic Algorithm for a DFA

< A DFA can be implemented as a generic algorithm

* Driven by atransition table
< Suitable for scanner generators such as Lex

< Advantages of a generic algorithm:
#* Size of code is reduced
#* Same code works with different DFASs
»* Transition table is only modified
#* Code is easier to change and maintain
< Disadvantages:
* Transition table can be very large
#* Much of the table space is unused
»* Table compression isrequired

state:=1,
input(ch);
while not eof
next_state := T[state][ch];
If next_state = undefined then
exit while;
end if ;
state := next_state;
input(ch);
end while;
iIf final (state) then
unput(ch); -- extra char
return token;
elseif previousfinal state
backtrack to previous final state
return token;
else
error;
end if ;

Scanning Theory — 14

Compiler Design — © Muhammed Mudawwar

Nondeterministic Finite Automata (NFA)

» An NFA issimilar to aDFA except that:
» Multiple transitions labeled by same character from same state are allowed
* g-transitions are allowed
< e-trangitions are spontaneous. They occur without consuming any character
» An NFA can be converted to an algorithm, except that:
* There can be many transitions that must be tried to match an input sequence of chars
» Transitions that have not been tried must be stored to backtrack to them on failure
» Resulting algorithm of NFA is slower than the one that corresponds to a DFA

» DFAswith common prefixes can be combined into one large NFA by:
» Uniting their starting states as show on the | eft
* |ntroducing a new start state and e-transitions as shown on the right

<
return LT return LT
e

return LE

>
return NE

return LE

return NE

Scanning Theory — 15 Compiler Design — © Muhammed Mudawwar

From Regular Expressions to Scanner Function

< A scanner generator transforms regular expressions into a function
< First, regular expressions are transformed into NFAs
< Second, combined NFASs are converted into one large DFA

< Third, the DFA is converted into a scanner function

regular combined one large scanner
expressions NFAs DFA function

< Thompson's construction transforms regular expressions into NFA
»* Transforming regular expressionsinto a DFA directly is more complex

< Subset construction 1s used to transform an NFA into a DFA

Scanning Theory — 16 Compiler Design — © Muhammed Mudawwar

From a Regular Expression to an NFA

< Regular expressions are built out of:
» Basic regular expressionsa (wherea € X) and
» Basic operations. concatenationr s, alternationr | s, and Kleene closurer *

< Regular expression for a and
—~0=0 00
< Thompson's constructionof r s,r| s,andr*
»* The NFA of each regular expression r has one accepting state

(O OO Openrs_sons
e e
— ~(] ©
e e 4 N\
f e (0 s OF
_ J
e

Scanning Theory — 17 Compiler Design — © Muhammed Mudawwar

Alternative Construction of an NFA

< Thefollowing is avariation of Thompson’s construction

* Less e-transitions
* Less states
* The NFA of each regular expression r has one accepting state as before

< Constructionofr s,r|s,andr*

O G

e
QS_E@ (@] NEA 1 *
4
e

Scanning Theory — 18 Compiler Design — © Muhammed Mudawwar

Example on NFA Construction
< Consider the construction of (a| b) *abb

NFA for a NFA for b

From an NFA to a DFA — Subset Construction

< For any NFA N, we can construct aDFA M equivalent to it
» Each state of M corresponds to a subset of the states of N
» M will bein state {s,, S,, S;} after reading an input string iff Ncanbeins, s, or s,
* Theinitial state of M isthe subset of all statesthat N could beininitially
< Thisisthe set of states reachable from the initial state of N following only e-transitions
»* The set of states reachable following only e-transitions is called the e-closure
<> g-closure(state s) = {s} U {all states reachable from s following only e-transitions}
< Start state of M = e-closure(start state of N)
#* Once the start state of M is computed, we determine the successor states
< Take any state Sof M, Scorrespondsto a subset of statesof N. S={s,,s,, ...}
< To compute S-successor under character ¢, we find the successors of {s,, S,, ...} under c
< The successorsof {s,, S,, ...} under c will be anew set of states{t,, t,, ...}
< We compute T = e-closure({t,, t,, ...}) ; £ - closure(set of statesT) = | J ¢ - closure(t)
% Tisincluded in M and atransition from Sto T is labeled with ¢ teT
» \We continue adding states and transitions to M until all possible successors are added

* The process of adding new statesto M must eventually terminate. Why?

Scanning Theory — 20 Compiler Design — © Muhammed Mudawwar

Example on Subset Construction Algorithm

The start state of the DFA ise-closure({1}) ={1, 2, 5}; Cdl it state A
A-successor under ais{3, 6}; e-closure({ 3, 6}) ={3, 6, 5, 2}; Call it state B
A-successor under b is{4}; e-closure({4}) ={4, 5, 2} ; Call it state C
B-successor under ais{3, 6}; e-closure({ 3, 6}) ={3, 6, 5, 2}; Thisis state B
B-successor under bis{4, 7}; e-closure({4, 7}) ={4, 7, 5, 2}; Call it state D
C-successor under ais{3, 6}; e-closure({ 3, 6}) ={3, 6, 5, 2}; Thisis state B
C-successor under bis{4}; e-closure({4}) ={4, 5, 2}; Thisisstate C
D-successor under ais{3, 6}; e-closure({3, 6}) ={3, 6, 5, 2}; Thisisstate B
D-successor under bis{4, 8}; e-closure({4, 8}) ={4, 8, 5, 2}; Cdl it state E
E-successor under ais{3, 6}; e-closure({3, 6}) ={3, 6, 5, 2}; Thisis state B
E-successor under bis{4}; e-closure({4}) ={4, 5, 2}; Thisisstate C

J
0‘0

3

*

3

*

3

*

3

*

3

*

R/
‘0

D)

3

*

3

*

3

*

K/
0’0

Scanning Theory — 21 Compiler Design — © Muhammed Mudawwar

Minimizing the Number of States in a DFA

< The DFA obtained by the subset construction algorithm can be minimized

< State s can be distinguished from statet in a DFA when for some string w:
» Starting at state s and reading string w, we end up in an accepting state
» Starting at state t and reading string w, we end up in a non-accepting state

< An agorithm that produces a minimum-state DFA is given below:

1. Construct an initial partition IT of the DFA set of states, S, with 2 groups:
< The set of final states F
< The set of non-final states S—F

2. For each group G of IT:

< Partition G into subgroups such that 2 states s and t of G are in the same subgroup iff:
e V acZ, statessandt havetransitions on a to states in the same subgroup of I1

< Call the new partition I'1,,. At worse, each state will be in a subgroup by itself
3. If T, # Il then go back to step 2 with IT :=I1_,; otherwise, proceed at step 4

4. Each group in the final IT becomes a state in the minimized DFA
< The states of agroup G of IT cannot be distinguished and are merged into one state

< A transition from group G, to G, is marked with input symbol a when:
o All statesof G, maketransition to statesin G, on input symbol a

Scanning Theory — 22 Compiler Design — © Muhammed Mudawwar

Example on DFA Minimization

< Consider the DFA for (a| b) *abb obtained using subset construction algorithm
< Initia partition IT consists of 2 groups={{A, B, C, D} {E}}

<+ {A, B, C}-succunder b € {A, B, C, D}, while D-succ under bisE

< Therefore, 11, = {{A, B, C} {D} {E}}

< {A, C}-succ under bis C while B-succ under bisD

< Therefore, I, = {{A, C} ,{B}.{D} {E}}

<+ {A, C}-succunder aisB, and { A, C}-succ under bisC

<+ {A, C} doesnot require further partitioning; states A and C can be merged

< Therefore, fina IT = {{A, C} {B} {D} {E}}

Minimized DFA for (a| b) *abb

Scanning Theory — 23 Compiler Design — © Muhammed Mudawwar

