
Scanning Theory – 1 Compiler Design – © Muhammed Mudawwar

Overview of Scanning Chapter 2
� The function of a scanner, called also lexical analyzer, is to:

� Read characters from the source file

� Group input characters into meaningful units, called tokens

� The scanner takes care of other things as well:
� Removal of comments and white space

� Keeping track of current line number and character position
� Required for reporting error messages

� Case conversions of identifiers and keywords
� Simplifies searching if the language is not case-sensitive

� Interpretation of compiler directives
� Flags are internally set to direct code generation

� Communication with the symbol or literal table
� Identifiers can be entered in the symbol table

� String literals can be entered in the literal table



Scanning Theory – 2 Compiler Design – © Muhammed Mudawwar

Tokens and Lexemes
� Consider the following statement:

if distance >= rate * (time1 – time0) then distance := maxdist ;

� Contains 5 identifiers: distance, rate, time1, time0, maxdist

� For parsing purposes, all identifiers are alike
� It is enough to tell the parser that the next token is an identifier

� However, the code generator needs the name of the identifier

� Similarly, for parsing purposes all relational operators are alike
� The syntactic structure would not change if >= were changed to > or <=

� However, the code generator needs to know exactly what operator is used

� We make the following distinction:
� A token is a logical entity described as part of the syntax of a language

� A lexeme is a special instance of the token, which is the string value

� For the above statement, the scanner should return the following tokens:

if  id  relop id  *  (  id – id  )  then  id  :=  id  ;



Scanning Theory – 3 Compiler Design – © Muhammed Mudawwar

Formal Languages
� An alphabet is a finite set of characters, denoted by the Greek symbol � (sigma)

� The alphabet can be the ASCII set, a subset of ASCII, or so ASCII

� A string over some alphabet is a sequence of symbols drawn from the alphabet
� Example: 01001 is string over the alphabet {0,1}

� The empty or null string � is a special string of length zero
� When � is concatenated with any string s yields s. That is,  s ������s ��s

� A formal language is a set of strings (possibly infinite) over some alphabet
� Just a set of strings. No specific relationship with a programming language.

� Example: L = {00, 01, 10, 11} is the set of all 2-character strings over � = {0,1}

� The concatenation of two languages L1 and L2 (sets of strings) is:
� Obtained by concatenating every string in L1 with every string in L2

� L = L1 L2 = {s = s1 s2 | s1 � L1 and s2 � L2 }

� L1 = {�, 0, 00}, L2 = {�, 1, 11}, L = L1 L2 = {�, 1, 11, 0, 01, 011, 00, 001, 0011}



Scanning Theory – 4 Compiler Design – © Muhammed Mudawwar

Formal Languages – cont'd
� The exponentiation of a language is defined as follows:

� L0 = {�} and Li-1 = Li-1 L
� L = {0,1}, L0 = {�}, L1 = L = {0,1}
� L2 = {00, 01, 10, 11} and L3 = {000, 001, 010, 011, 100, 101, 110, 111}

� The Kleene closure of a language L, denoted as L*, is defined as:
� L = {0,1}, L* = {�, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, …}
� � � L* for any set L

� The Positive closure of a language L, denoted as L+, is defined as:
� L = {0,1}, L+ = {0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, …}

� Examples:
� Let L = {A, B, …, Z, a, b, …, z} set of all English letters
� Let D = {0, 1, …, 9} set of all digits
� L � D is the set of letters and digits
� LD is the set of strings consisting of a letter followed by a digit
� L4 is the set of all four-letter strings
� L* is the set of all strings of letters , including �
� L(L � D)* is the set of all strings of letters and digits beginning with a letter

�
�

�
�

0
LL*

i

i

�
�

�

� �
1
LL

i

i



Scanning Theory – 5 Compiler Design – © Muhammed Mudawwar

Regular Expression
� Is a notation that denotes a set of strings that follows a certain pattern

� A regular expression r  corresponds to set of strings L(r)

� L(r) is called a regular set or a regular language and may be infinite

� A regular expression is defined as follows:
� A basic regular expression a denotes the set {a} where a � ��; L(a) = {a}

� The regular expression � denotes the set {�}
� Technically, regular expression � is different from string �

� If r and s are two regular expressions denoting the sets L(r) and L(s) then:

� r|s is a regular expression denoting the union set: L(r) � L(s)

� r s is a regular expression denoting the concatenation set: L(r) L(s)

� r* is a regular expression denoting the Kleene closure set: L(r)*

� (r) is a regular expression denoting the set L(r)

� Regular expressions are of practical interest. They can be used to:
� Specify the structure of tokens

� Program a scanner generator



Scanning Theory – 6 Compiler Design – © Muhammed Mudawwar

Examples of Regular Expressions
� 0|1 denotes the set {0,1}

� 0* denotes the set {�, 0, 00, 000, 0000, …}

� (0|1)(0|1) denotes the set {00, 01, 10, 11}

� (0|1)* denotes the set {�, 0, 1, 00, 01, 10, 11, 000, 001, …}

� 0|0*1 denotes the set {0, 1, 01, 001, 0001, …}

� Consider the alphabet � = {a, b, c}, the set of all:
� Strings containing exactly one b is represented by: (a|c)*b(a|c)*

� Strings containing at most one b is represented by: (a|c)*|(a|c)*b(a|c)*
� Alternative solution: (a|c)*(b|�)(a|c)*
� There is NO unique answer, but we attempt to find a simple regular expression

� Strings that contain NO two consecutive b’s is represented by:
� (notb|b notb)*(b|�) where notb = (a|c)

� Equivalent to: (a|c|b(a|c))*(b|�) = (a|c|ba|bc)*(b|�)
� Equivalent to: (b|�)(a|c|ab|cb)*

� Any finite set of strings is regular and can be represented by: (s1|s2|…|sk)



Scanning Theory – 7 Compiler Design – © Muhammed Mudawwar

Extensions to Regular Expressions
� The standard regular operations are sufficient to describe any regular expression

� Standard regular operations are: alternation, concatenation, and Kleene closure

� In practice, additional operations are often utilized
� r+ is a regular expression denoting the positive closure set: L(r)+

� r+ is read as one or more repetitions of r, while r* is zero or more repetitions of r

� r+ = r r* and  r* = r+|�

� r? is a regular expression denoting the set L(r) � {�}. r? = r|�
� To specify a range of characters, we will use Lex notation as follows:

� [0-9] = 0|1|2|...|9

� [A-Za-z] = A|B|...|Z|a|b|...|z

� To exclude characters from the alphabet, we will use Lex notation as follows:
� [^a] matches any character in the alphabet except a

� [^abc] matches any character in the alphabet, which is not a, b, or c

� [^0-9] matches any character in the alphabet which is not a digit



Scanning Theory – 8 Compiler Design – © Muhammed Mudawwar

Regular Definitions
� We may assign a name to a regular expression to:

� Use and Reuse the name in other (more complex) regular expressions

� Enhance the readability of longer regular expressions

� Given the following regular definitions:
� digit = [0-9], letter = [A-Za-z], eol = \n, and neol = [^\n]

� We can use them to write complex regular expressions:
� Integer Literal = digit+

� Fixed-Point Literal = digit+ "." digit+

� Floating-Point Literal = digit+ "." digit+(e|E)(+|-)?digit+

� Identifier = letter(letter|digit)*

� Ada Comment = -- neol* eol

� Not all infinite sets of strings are regular
� The set {anban | n 	 0} cannot be described by a regular expression
� a*ba* does not guarantee the same number of a’s at the beginning and end



Scanning Theory – 9 Compiler Design – © Muhammed Mudawwar

Finite Automata
� Used to recognize the tokens specified by a regular expression
� Can be converted to an algorithm for matching input strings
� A Finite Automaton (FA) consists of:

� A finite set of states
� A set of transitions (or moves) between states

� The transitions are labeled by characters form the alphabet

� A special start state
� A set of final or accepting states

� A finite automaton for letter(letter|digit)* is shown below
� We may label a transition with more than one character for convenience
� We start at the start state
� We make a transition if next input character matches label on transition
� If no move is possible, we stop
� If we end in an accepting state then

� input sequence of characters is valid

� Otherwise, we do not have a valid sequence

1 2
letter

letter

digit



Scanning Theory – 10 Compiler Design – © Muhammed Mudawwar

Deterministic Finite Automata (DFA)
� Has a unique transition for every state and input character
� Can be represented by a transition table T

� Table T is indexed by state s and input character c
� T[s][c] is the next state to visit from state s if the input character is c
� T can also be described as a transition function
� T: S 
 � � S maps the pair (s, c) to next_s

� DFA and transition table for a C comment are show below
� Blank entries in the table represent an error state
� A full transition table will contain one column for each character (may waste space)
� Characters are combined into character classes when treated identically in a DFA

1 5
/

2
*

3
*

4
/

*[^*]

[^*/]

State / * other

1 2
2 3
3 3 4 3
4 5 4 3
5



Scanning Theory – 11 Compiler Design – © Muhammed Mudawwar

Combining DFAs
� In a programming language there are many tokens
� Each token is recognized by its own DFA
� We need to combine DFAs together into one large DFA

� Unite the starting states of various DFAs into one starting state
� Simple if each token begins with a different character
� Becomes more complex if some tokens have a common prefix

� Consider the DFAs for <, <=, and <>
� They share a common prefix <
� They are combined into one DFA as shown on the right

1 2
<

1 3
<

2
=

1 3
<

2
>

return LT

return LE

return NE

1 2
<

3

4

=

>return LT

return LE

return NE



Scanning Theory – 12 Compiler Design – © Muhammed Mudawwar

Algorithmic Aspects of a DFA
� A DFA diagram is just an outline of a scanning algorithm
� A DFA does NOT describe every aspect of the algorithm
� What happens when making a transition? A typical action is to

� Save the character read in a string buffer belonging to a single token
� The string value is the lexeme of the token

� What happens when we reach an accepting state?
� If no further transition is possible, we return the token recognized
� If further transitions are possible, we continue to match the longest string

� What happens when no transition exist from an non-accepting state?
� We can backtrack to the last accepting state, if we visited one

� The extra characters read, called lookahead characters, are returned back to input

� We can return an error token if no accepting state is visited

1 4
digit

5
.

3 6
E|e

E|e

2

digit

digit

digit

+|-
7

digit

digit

digit



Scanning Theory – 13 Compiler Design – © Muhammed Mudawwar

Converting a DFA into an Algorithm
� We can convert a DFA into an algorithm by:

� Using a variable, state, to maintain the current state

� Writing transitions as case statements inside a loop
� The first case statement tests the current state

� The nested case statements tests the input character ch

� The unput(ch) statement returns ch back to input

1 2
letter

letter

digit

state := 1; input(ch);
while not eof do

case state of
1: case ch of

letter: state := 2; input(ch); 
else exit while;

end case;
2: case ch of

letter, digit: input(ch);
else unput(ch); exit while;

end case;
end case;

end while;
if state = 2 then return id; else error; end if;

state := 1; input(ch);
while not eof do

case state of
1: case ch of

’/’: state := 2; input(ch);
else exit while;

end case;
2: case ch of

’*’: state := 3; input(ch);
else exit while;

end case;
3: case ch of

’*’: state := 4; input(ch);
else state := 3; input(ch);

end case;
4: case ch of

’*’: state := 4; input(ch);
’/’: state := 5; exit while;
else state := 3; input(ch);

end case;
end case;

end while;
if state = 5 then accept_comment;
else error; end if;

1 5
/ *

3
*

4
/

*[^*]

[^*/]

2



Scanning Theory – 14 Compiler Design – © Muhammed Mudawwar

Table-Driven Generic Algorithm for a DFA
� A DFA can be implemented as a generic algorithm

� Driven by a transition table

� Suitable for scanner generators such as Lex

� Advantages of a generic algorithm:
� Size of code is reduced

� Same code works with different DFAs

� Transition table is only modified

� Code is easier to change and maintain

� Disadvantages:
� Transition table can be very large

� Much of the table space is unused

� Table compression is required

state := 1;
input(ch);
while not eof

next_state := T[state][ch];
if next_state = undefined then

exit while;
end if ;
state := next_state;
input(ch);

end while;
if final(state) then

unput(ch); -- extra char
return token;

else if previous final state
backtrack to previous final state
return token;

else
error;

end if ;



Scanning Theory – 15 Compiler Design – © Muhammed Mudawwar

Nondeterministic Finite Automata (NFA)
� An NFA is similar to a DFA except that:

� Multiple transitions labeled by same character from same state are allowed 
� �-transitions are allowed

� �-transitions are spontaneous. They occur without consuming any character
� An NFA can be converted to an algorithm, except that:

� There can be many transitions that must be tried to match an input sequence of chars
� Transitions that have not been tried must be stored to backtrack to them on failure
� Resulting algorithm of NFA is slower than the one that corresponds to a DFA

� DFAs with common prefixes can be combined into one large NFA by:
� Uniting their starting states as show on the left
� Introducing a new start state and �-transitions as shown on the right

6

<
4

2

=

>

return LT

return LE

return NE

3

<

1

5

<

<

return LT

return LE

return NE

3

�

1

6

3
<

5
=

4

<
8

>
7

2

�

�



Scanning Theory – 16 Compiler Design – © Muhammed Mudawwar

From Regular Expressions to Scanner Function
� A scanner generator transforms regular expressions into a function

� First, regular expressions are transformed into NFAs

� Second, combined NFAs are converted into one large DFA

� Third, the DFA is converted into a scanner function

� Thompson’s construction transforms regular expressions into NFA
� Transforming regular expressions into a  DFA directly is more complex

� Subset construction is used to transform an NFA into a DFA

regular
expressions

combined
NFAs

one large
DFA

scanner
function



Scanning Theory – 17 Compiler Design – © Muhammed Mudawwar

From a Regular Expression to an NFA
� Regular expressions are built out of:

� Basic regular expressions a (where a � �) and �
� Basic operations: concatenation r s, alternation r|s, and Kleene closure r*

� Regular expression for a and �

� Thompson’s construction of r s, r|s, and r*
� The NFA of each regular expression r has one accepting state

a �

r

s

�

�

�

�r
� �

�

�

r s
�

NFA rs NFA r|s

NFA r*



Scanning Theory – 18 Compiler Design – © Muhammed Mudawwar

Alternative Construction of an NFA
� The following is a variation of Thompson’s construction

� Less �-transitions

� Less states
� The NFA of each regular expression r has one accepting state as before

� Construction of r s, r|s, and r*

r s NFA rs

r

s

�

�

NFA r|s

r

�

�

NFA r*�



Scanning Theory – 19 Compiler Design – © Muhammed Mudawwar

Example on NFA Construction
� Consider the construction of (a|b)*abb

ba

a

b

�

�

NFA for a NFA for b

NFA for a|b

�
NFA for (a|b)*

a

b

�

�

�

�
a

b

�

�

�

�

a b b

NFA for (a|b)*abb

�



Scanning Theory – 20 Compiler Design – © Muhammed Mudawwar

From an NFA to a DFA – Subset Construction
� For any NFA N, we can construct a DFA M equivalent to it

� Each state of M corresponds to a subset of the states of N

� M will be in state {s1, s2, s3} after reading an input string iff N can be in s1, s2, or s3

� The initial state of M is the subset of all states that N could be in initially
� This is the set of states reachable from the initial state of N following only �-transitions

� The set of states reachable following only �-transitions is called the �-closure
� �-closure(state s) = {s} � {all states reachable from s following only �-transitions}

� Start state of M = �-closure(start state of N) 

� Once the start state of M is computed, we determine the successor states
� Take any state S of M, S corresponds to a subset of states of N. S = {s1, s2, …}

� To compute S-successor under character c, we find the successors of {s1, s2, …} under c

� The successors of {s1, s2, …} under c will be a new set of states {t1, t2, …}

� We compute T = �-closure({t1, t2, …}) ;

� T is included in M and a transition from S to T is labeled with c

� We continue adding states and transitions to M until all possible successors are added

� The process of adding new states to M must eventually terminate. Why?

�
Tt

tT
  

)(closure-   ) states oft closure(se-
�

�



Scanning Theory – 21 Compiler Design – © Muhammed Mudawwar

Example on Subset Construction Algorithm
� The start state of the DFA is �-closure({1}) = {1, 2, 5}; Call it state A
� A-successor under a is {3, 6}; �-closure({3, 6}) = {3, 6, 5, 2}; Call it state B
� A-successor under b is {4}; �-closure({4}) = {4, 5, 2}; Call it state C
� B-successor under a is {3, 6}; �-closure({3, 6}) = {3, 6, 5, 2}; This is state B
� B-successor under b is {4, 7}; �-closure({4, 7}) = {4, 7, 5, 2}; Call it state D
� C-successor under a is {3, 6}; �-closure({3, 6}) = {3, 6, 5, 2}; This is state B
� C-successor under b is {4}; �-closure({4}) = {4, 5, 2}; This is state C
� D-successor under a is {3, 6}; �-closure({3, 6}) = {3, 6, 5, 2}; This is state B
� D-successor under b is {4, 8}; �-closure({4, 8}) = {4, 8, 5, 2}; Call it state E
� E-successor under a is {3, 6}; �-closure({3, 6}) = {3, 6, 5, 2}; This is state B
� E-successor under b is {4}; �-closure({4}) = {4, 5, 2}; This is state C

DFA for (a|b)*abb

a b b
B

C

D EA

a

a a a

b

b

b

a

b

�

�
�

�

a b b1 2 5 6 7 8

3

4

NFA for (a|b)*abb

�



Scanning Theory – 22 Compiler Design – © Muhammed Mudawwar

Minimizing the Number of States in a DFA
� The DFA obtained by the subset construction algorithm can be minimized

� State s can be distinguished from state t in a DFA when for some string w:
� Starting at state s and reading string w, we end up in an accepting state

� Starting at state t and reading string w, we end up in a non-accepting state

� An algorithm that produces a minimum-state DFA is given below:
1. Construct an initial partition � of the DFA set of states, S, with 2 groups:

� The set of final states F
� The set of non-final states S – F

2. For each group G of �:
� Partition G into subgroups such that 2 states s and t of G are in the same subgroup iff:

� 
 a � �, states s and t have transitions on a to states in the same subgroup of �
� Call the new partition �new. At worse, each state will be in a subgroup by itself

3. If �new � � then go back to step 2 with � �� �new; otherwise, proceed at step 4

4. Each group in the final � becomes a state in the minimized DFA
� The states of a group G of � cannot be distinguished and are merged into one state
� A transition from group G1 to G2 is marked with input symbol a when:

� All states of  G1 make transition to states in G2 on input symbol a



Scanning Theory – 23 Compiler Design – © Muhammed Mudawwar

Example on DFA Minimization
� Consider the DFA for (a|b)*abb obtained using subset construction algorithm
� Initial partition � consists of 2 groups = {{A, B, C, D},{E}}
� {A, B, C}-succ under b � {A, B, C, D}, while D-succ under b is E
� Therefore, �new = {{A, B, C},{D},{E}}
� {A, C}-succ under b is C while B-succ under b is D
� Therefore, �new = {{A, C},{B},{D},{E}}
� {A, C}-succ under a is B, and {A, C}-succ under b is C
� {A, C} does not require further partitioning; states A and C can be merged
� Therefore, final � = {{A, C},{B},{D},{E}}

DFA for (a|b)*abb

a b b
B

C

D EA

a

a a a

bb

b
Minimized DFA for (a|b)*abb

a b b
B D EA,C

a a a

bb


