## **Overview of Scanning**

# Chapter 2

- ✤ The function of a scanner, called also lexical analyzer, is to:
  - \* Read characters from the source file
  - **\*** Group input characters into meaningful units, called **tokens**
- ✤ The scanner takes care of other things as well:
  - \* Removal of comments and white space
  - Keeping track of current line number and character position
    Required for reporting error messages
  - \* Case conversions of identifiers and keywords
    - $\diamond$  Simplifies searching if the language is not case-sensitive
  - \* Interpretation of compiler directives
    - $\diamond$  Flags are internally set to direct code generation
  - \* Communication with the symbol or literal table
    - $\diamond$  Identifiers can be entered in the symbol table
    - $\diamond$  String literals can be entered in the literal table

#### **Tokens and Lexemes**

- Consider the following statement:
  - if distance >= rate \* (time1 time0) then distance := maxdist ;
  - \* Contains 5 identifiers: distance, rate, time1, time0, maxdist
- ✤ For parsing purposes, all identifiers are alike
  - \* It is enough to tell the parser that the next token is an identifier
  - \* However, the code generator needs the name of the identifier
- Similarly, for parsing purposes all relational operators are alike
  - ★ The syntactic structure would not change if >= were changed to > or <=</p>
  - \* However, the code generator needs to know exactly what operator is used
- ✤ We make the following distinction:
  - \* A token is a logical entity described as part of the syntax of a language
  - \* A lexeme is a special instance of the token, which is the string value
- ✤ For the above statement, the scanner should return the following tokens:

if id relop id \* (id – id ) then id := id ;

#### Formal Languages

- An **alphabet** is a finite set of characters, denoted by the Greek symbol  $\Sigma$  (sigma)
  - \* The alphabet can be the ASCII set, a subset of ASCII, or so ASCII
- \* A string over some alphabet is a sequence of symbols drawn from the alphabet
  - \* Example: 01001 is string over the alphabet {0,1}
- The empty or **null string**  $\varepsilon$  is a special string of length zero
  - \* When  $\varepsilon$  is concatenated with any string *s* yields *s*. That is,  $s \varepsilon = \varepsilon s = s$
- \* A **formal language** is a set of strings (possibly infinite) over some alphabet
  - \* Just a set of strings. No specific relationship with a programming language.
  - \* Example: L = {00, 01, 10, 11} is the set of all 2-character strings over  $\Sigma = \{0,1\}$
- The concatenation of two languages  $L_1$  and  $L_2$  (sets of strings) is:
  - \* Obtained by concatenating every string in  $L_1$  with every string in  $L_2$

\* 
$$L = L_1 L_2 = \{ s = s_1 s_2 \mid s_1 \in L_1 \text{ and } s_2 \in L_2 \}$$

\*  $L_1 = \{\epsilon, 0, 00\}, L_2 = \{\epsilon, 1, 11\}, L = L_1 L_2 = \{\epsilon, 1, 11, 0, 01, 011, 00, 001, 0011\}$ 

### Formal Languages – cont'd

- The exponentiation of a language is defined as follows:
  - \*  $L^0 = \{\epsilon\}$  and  $L^{i-1} = L^{i-1} L$
  - \* L = {0,1}, L<sup>0</sup> = { $\epsilon$ }, L<sup>1</sup> = L = {0,1}
  - \*  $L^2 = \{00, 01, 10, 11\}$  and  $L^3 = \{000, 001, 010, 011, 100, 101, 110, 111\}$
- ★ The Kleene closure of a language L, denoted as L\*, is defined as:  $L^* = \bigcup L^i$ ★ L = (0,1) L\* = (2,0,1,00,01,10,11,000,001,010,011,100,...) i=0
  - \* L = {0,1}, L\* = { $\epsilon$ , 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, ...}
  - ${\boldsymbol{\ast}} \ \epsilon \in L^{\ast} \ \text{for any set } L$
- ★ The Positive closure of a language L, denoted as L<sup>+</sup>, is defined as: L<sup>+</sup> =  $\bigcup_{i=1}^{i} L^{i}$ ★ L = {0,1}, L<sup>+</sup> = {0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, ...}
- ✤ Examples:
  - \* Let  $L = \{A, B, ..., Z, a, b, ..., z\}$  set of all English letters
  - \* Let  $D = \{0, 1, ..., 9\}$  set of all digits
  - \*  $L \cup D$  is the set of letters and digits
  - \* LD is the set of strings consisting of a letter followed by a digit
  - \* L<sup>4</sup> is the set of all four-letter strings
  - \* L\* is the set of all strings of letters , including  $\epsilon$
  - \*  $L(L \cup D)$ \* is the set of all strings of letters and digits beginning with a letter

 $\infty$ 

### Regular Expression

- ✤ Is a notation that denotes a set of strings that follows a certain pattern
  - \* A regular expression r corresponds to set of strings L(r)
  - \* L(r) is called a **regular set** or a **regular language** and may be infinite
- ✤ A regular expression is defined as follows:
  - \* A basic regular expression **a** denotes the set  $\{a\}$  where  $a \in \Sigma$ ;  $L(\mathbf{a}) = \{a\}$
  - \* The regular expression  $\varepsilon$  denotes the set { $\varepsilon$ }

 $\diamond$  Technically, regular expression  $\epsilon$  is different from string  $\epsilon$ 

- \* If **r** and **s** are two regular expressions denoting the sets L(r) and L(s) then:
  - $\diamond \mathbf{r} \mid \mathbf{s}$  is a regular expression denoting the union set:  $L(r) \cup L(s)$
  - $\diamond$ **rs** is a regular expression denoting the concatenation set: L(r) L(s)
  - $\diamond r^*$  is a regular expression denoting the Kleene closure set:  $L(r)^*$
  - $\diamond$  (r) is a regular expression denoting the set L(r)
- ✤ Regular expressions are of practical interest. They can be used to:
  - \* Specify the structure of tokens
  - \* Program a scanner generator

### **Examples of Regular Expressions**

- ◆ 0 | 1 denotes the set {0,1}
- ♦ 0 \* denotes the set {ε, 0, 00, 000, 0000, …}
- (0|1)(0|1) denotes the set {00, 01, 10, 11}
- \* (0|1)\* denotes the set { $\epsilon$ , 0, 1, 00, 01, 10, 11, 000, 001, ...}
- ♦ 0 | 0\*1 denotes the set {0, 1, 01, 001, 0001, ...}
- Consider the alphabet  $\Sigma = \{a, b, c\}$ , the set of all:
  - \* Strings containing exactly one b is represented by: (a|c)\*b(a|c)\*
  - \* Strings containing at most one b is represented by: (a|c)\*|(a|c)\*b(a|c)\*
    - $\diamond$  Alternative solution: (**a**|**c**)\*(**b**| $\epsilon$ )(**a**|**c**)\*
    - $\diamond$  There is NO unique answer, but we attempt to find a simple regular expression
  - \* Strings that contain NO two consecutive *b*'s is represented by:
    - $(notb/b notb)*(b|\varepsilon)$  where notb = (a|c)
    - $\Rightarrow \text{ Equivalent to: } (\mathbf{a} | \mathbf{c} | \mathbf{b} (\mathbf{a} | \mathbf{c})) * (\mathbf{b} | \varepsilon) = (\mathbf{a} | \mathbf{c} | \mathbf{b} \mathbf{a} | \mathbf{b} \mathbf{c}) * (\mathbf{b} | \varepsilon)$
    - $\diamond$  Equivalent to: (**b**| $\epsilon$ )(**a**|**c**|**ab**|**cb**)\*
- \* Any finite set of strings is regular and can be represented by:  $(\mathbf{s}_1 | \mathbf{s}_2 | ... | \mathbf{s}_k)$

#### Extensions to Regular Expressions

- ✤ The standard regular operations are sufficient to describe any regular expression
  - \* Standard regular operations are: alternation, concatenation, and Kleene closure
- ✤ In practice, additional operations are often utilized
- \* **r**+ is a regular expression denoting the positive closure set: L(r)+
  - \* r+ is read as one or more repetitions of r, while r\* is zero or more repetitions of r

\*  $\mathbf{r}$  + =  $\mathbf{r}\mathbf{r}$ \* and  $\mathbf{r}$ \* =  $\mathbf{r}$ + | $\varepsilon$ 

- \* **r**? is a regular expression denoting the set  $L(r) \cup \{\varepsilon\}$ . **r**? = **r**  $|\varepsilon|$
- ✤ To specify a range of characters, we will use Lex notation as follows:
  - \*  $[0-9] = 0 |1| 2 | \dots |9$
  - \* [A-Za-z] = A|B|...|Z|a|b|...|z
- ✤ To exclude characters from the alphabet, we will use Lex notation as follows:
  - \* [^a] matches any character in the alphabet except a
  - \* [^abc] matches any character in the alphabet, which is not a, b, or c
  - \* [^0-9] matches any character in the alphabet which is not a digit

### **Regular Definitions**

- ✤ We may assign a name to a regular expression to:
  - \* Use and Reuse the name in other (more complex) regular expressions
  - \* Enhance the readability of longer regular expressions
- ✤ Given the following regular definitions:
  - \* digit = [0-9], letter = [A-Za-z], eol = n, and neol = [ $^n$ ]
  - \* We can use them to write complex regular expressions:
    - ♦ Integer Literal = digit+
    - Fixed-Point Literal = digit+ "." digit+
    - Floating-Point Literal = digit+ "." digit+(e|E)(+|-)?digit+
    - Identifier = letter(letter|digit)\*
    - ♦ Ada Comment = -- neol\* eol
- ✤ Not all infinite sets of strings are regular
  - \* The set  $\{a^n b a^n | n \ge 0\}$  cannot be described by a regular expression
  - **\* a\*ba\*** does not guarantee the same number of *a*'s at the beginning and end

### Finite Automata

- ✤ Used to recognize the tokens specified by a regular expression
- Can be converted to an algorithm for matching input strings
- ✤ A Finite Automaton (FA) consists of:
  - \* A finite set of **states**
  - \* A set of **transitions** (or moves) between states
    - $\diamond\,$  The transitions are labeled by characters form the alphabet
  - \* A special start state
  - \* A set of **final** or **accepting states**
- ✤ A finite automaton for letter(letter|digit) \* is shown below
- ✤ We may label a transition with more than one character for convenience
- ✤ We start at the start state
- ✤ We make a transition if next input character matches label on transition
- ✤ If no move is possible, we stop
- ✤ If we end in an accepting state then
  - \* input sequence of characters is valid



Otherwise, we do not have a valid sequence

## Deterministic Finite Automata (DFA)

- ✤ Has a unique transition for every state and input character
- ✤ Can be represented by a transition table T
  - \* Table **T** is indexed by state s and input character c
  - \*  $\mathbf{T}[s][c]$  is the next state to visit from state *s* if the input character is *c*
  - **\* T** can also be described as a **transition function**
  - \* **T**:  $S \times \Sigma \rightarrow S$  maps the pair (*s*, *c*) to *next\_s*
- ✤ DFA and transition table for a C comment are show below
  - \* Blank entries in the table represent an **error state**
  - \* A full transition table will contain one column for each character (may waste space)
  - \* Characters are combined into **character classes** when treated identically in a DFA



# Combining DFAs

- ✤ In a programming language there are many tokens
- Each token is recognized by its own DFA
- ✤ We need to combine DFAs together into one large DFA
  - \* Unite the starting states of various DFAs into one starting state
  - \* Simple if each token begins with a different character
  - \* Becomes more complex if some tokens have a common prefix
- ✤ Consider the DFAs for <, <=, and <>
  - \* They share a common prefix <
  - \* They are combined into one DFA as shown on the right



### Algorithmic Aspects of a DFA

- ✤ A DFA diagram is just an **outline** of a scanning algorithm
- ✤ A DFA does NOT describe every aspect of the algorithm
- ✤ What happens when making a transition? A typical action is to
  - \* Save the character read in a string buffer belonging to a single token
  - \* The string value is the lexeme of the token
- ✤ What happens when we reach an accepting state?
  - \* If no further transition is possible, we return the token recognized
  - \* If further transitions are possible, we continue to **match the longest string**
- ✤ What happens when no transition exist from an non-accepting state?
  - \* We can **backtrack to the last accepting state**, if we visited one
    - ♦ The extra characters read, called lookahead characters, are returned back to input
  - \* We can return an **error token** if no accepting state is visited



### Converting a DFA into an Algorithm

- ✤ We can convert a DFA into an algorithm by:
  - \* Using a variable, *state*, to maintain the current state
  - \* Writing transitions as case statements inside a loop
    - ♦ The first case statement tests the current *state*
    - $\diamond\,$  The nested case statements tests the input character ch
    - $\diamond$  The *unput*(*ch*) statement returns *ch* back to input



Scanning Theory – 13

Compiler Design – © Muhammed Mudawwar

state := 1; input(ch);

end case:

2: case ch of

**'** / **'**: *state* := 2; *input*(*ch*);

**'**\*': *state* := 3; *input*(*ch*);

else exit while:

while not eof do

case *state* of 1: case *ch* of

### Table-Driven Generic Algorithm for a DFA

- ✤ A DFA can be implemented as a generic algorithm
  - \* Driven by a transition table
- Suitable for scanner generators such as Lex
- Advantages of a generic algorithm:
  - \* Size of code is reduced
  - \* Same code works with different DFAs
  - \* Transition table is only modified
  - \* Code is easier to change and maintain
- ✤ Disadvantages:
  - \* Transition table can be very large
  - \* Much of the table space is unused
  - \* Table compression is required

*state* := 1: *input(ch)*; while not eof *next\_state* := **T**[*state*][*ch*]; **if** *next\_state* = *undefined* **then** exit while; end if : *state* := *next state*; *input(ch)*; end while; if *final(state)* then unput(ch); -- extra char return token; else if previous final state backtrack to previous final state return token: else error: end if ;

#### Nondeterministic Finite Automata (NFA)

- ✤ An NFA is similar to a DFA except that:
  - \* Multiple transitions labeled by same character from same state are allowed
  - \*  $\epsilon$ -transitions are allowed
- \* ε-transitions are spontaneous. They occur without consuming any character
- ✤ An NFA can be converted to an algorithm, except that:
  - \* There can be many transitions that must be tried to match an input sequence of chars
  - \* Transitions that have not been tried must be stored to backtrack to them on failure
  - \* Resulting algorithm of NFA is slower than the one that corresponds to a DFA
- ✤ DFAs with common prefixes can be combined into one large NFA by:
  - \* Uniting their starting states as show on the left
  - \* Introducing a new start state and  $\varepsilon$ -transitions as shown on the right

![](_page_14_Figure_12.jpeg)

### From Regular Expressions to Scanner Function

- ✤ A scanner generator transforms regular expressions into a function
- First, regular expressions are transformed into NFAs
- Second, combined NFAs are converted into one large DFA
- Third, the DFA is converted into a scanner function

![](_page_15_Figure_5.jpeg)

- Thompson's construction transforms regular expressions into NFA
  Transforming regular expressions into a DFA directly is more complex
- Subset construction is used to transform an NFA into a DFA

### From a Regular Expression to an NFA

- ✤ Regular expressions are built out of:
  - **\*** Basic regular expressions **a** (where  $a \in \Sigma$ ) and  $\varepsilon$
  - \* Basic operations: concatenation  $\mathbf{r} \mathbf{s}$ , alternation  $\mathbf{r} | \mathbf{s}$ , and Kleene closure  $\mathbf{r}^*$
- \* Regular expression for **a** and  $\varepsilon$

![](_page_16_Figure_5.jpeg)

- Thompson's construction of r s, r | s, and r\*
  - \* The NFA of each regular expression  $\mathbf{r}$  has one accepting state

![](_page_16_Figure_8.jpeg)

Scanning Theory – 17

Compiler Design – © Muhammed Mudawwar

#### Alternative Construction of an NFA

- The following is a variation of Thompson's construction
  - \* Less ε-transitions
  - \* Less states
  - \* The NFA of each regular expression  $\mathbf{r}$  has one accepting state as before
- Construction of r s, r | s, and r\*

![](_page_17_Figure_6.jpeg)

### **Example on NFA Construction**

Consider the construction of (a|b)\*abb

![](_page_18_Figure_2.jpeg)

Compiler Design – © Muhammed Mudawwar

#### From an NFA to a DFA – Subset Construction

- For any NFA N, we can construct a DFA M equivalent to it
  - \* Each state of *M* corresponds to a **subset** of the states of *N*
  - \* *M* will be in state  $\{s_1, s_2, s_3\}$  after reading an input string iff *N* can be in  $s_1, s_2$ , or  $s_3$
  - \* The initial state of M is the subset of all states that N could be in initially
    - $\diamond$  This is the set of states reachable from the initial state of *N* following only  $\varepsilon$ -transitions
  - \* The set of states reachable following only  $\varepsilon$ -transitions is called the  $\varepsilon$ -closure
    - $\diamond \epsilon$ -closure(state *s*) = {*s*}  $\cup$  {all states reachable from *s* following only  $\epsilon$ -transitions}
    - ♦ Start state of M = ε-closure(start state of N)
  - \* Once the start state of M is computed, we determine the successor states
    - ♦ Take any state *S* of *M*, *S* corresponds to a subset of states of *N*. *S* = { $s_1, s_2, ...$ }
    - ♦ To compute S-successor under character c, we find the successors of  $\{s_1, s_2, ...\}$  under c
    - ♦ The successors of  $\{s_1, s_2, ...\}$  under *c* will be a new set of states  $\{t_1, t_2, ...\}$
    - ♦ We compute T = ε-closure({ $t_1, t_2, ...$ }); ε-closure(set of states T) =  $\bigcup ε$ -closure(t)
    - $\Rightarrow$  T is included in M and a transition from S to T is labeled with c
  - \* We continue adding states and transitions to M until all possible successors are added
  - \* The process of adding new states to *M* must eventually terminate. Why?

 $t \in T$ 

#### **Example on Subset Construction Algorithm**

- \* The start state of the DFA is ε-closure( $\{1\}$ ) =  $\{1, 2, 5\}$ ; Call it state A
- \* A-successor under a is  $\{3, 6\}$ ;  $\epsilon$ -closure( $\{3, 6\}$ ) =  $\{3, 6, 5, 2\}$ ; Call it state B
- ♦ A-successor under b is  $\{4\}$ ; ε-closure( $\{4\}$ ) =  $\{4, 5, 2\}$ ; Call it state C
- ★ *B*-successor under *a* is  $\{3, 6\}$ ; ε-closure( $\{3, 6\}$ ) =  $\{3, 6, 5, 2\}$ ; This is state *B*
- ★ *B*-successor under *b* is  $\{4, 7\}$ ; ε-closure( $\{4, 7\}$ ) =  $\{4, 7, 5, 2\}$ ; Call it state *D*
- ★ C-successor under a is  $\{3, 6\}$ ;  $\epsilon$ -closure( $\{3, 6\}$ ) =  $\{3, 6, 5, 2\}$ ; This is state B
- ★ C-successor under b is  $\{4\}$ ;  $\epsilon$ -closure( $\{4\}$ ) =  $\{4, 5, 2\}$ ; This is state C
- ★ *D*-successor under *a* is  $\{3, 6\}$ ;  $\epsilon$ -closure( $\{3, 6\}$ ) =  $\{3, 6, 5, 2\}$ ; This is state *B*
- ★ *D*-successor under *b* is  $\{4, 8\}$ ;  $\epsilon$ -closure( $\{4, 8\}$ ) =  $\{4, 8, 5, 2\}$ ; Call it state *E*
- ★ *E*-successor under *a* is  $\{3, 6\}$ ;  $\varepsilon$ -closure( $\{3, 6\}$ ) =  $\{3, 6, 5, 2\}$ ; This is state *B*
- ★ *E*-successor under *b* is  $\{4\}$ ;  $\epsilon$ -closure( $\{4\}$ ) =  $\{4, 5, 2\}$ ; This is state *C*

![](_page_20_Figure_12.jpeg)

Compiler Design – © Muhammed Mudawwar

## Minimizing the Number of States in a DFA

- The DFA obtained by the subset construction algorithm can be minimized
- State *s* can be **distinguished** from state *t* in a DFA when for some string *w*:
  - \* Starting at state *s* and reading string *w*, we end up in an accepting state
  - \* Starting at state t and reading string w, we end up in a non-accepting state
- ✤ An algorithm that produces a minimum-state DFA is given below:
  - 1. Construct an initial partition  $\Pi$  of the DFA set of states, *S*, with 2 groups:
    - $\diamond$  The set of final states *F*
    - ♦ The set of non-final states S F
  - 2. For each group G of  $\Pi$ :
    - $\diamond$  Partition *G* into subgroups such that 2 states *s* and *t* of *G* are in the same subgroup iff:
      - $\forall a \in \Sigma$ , states *s* and *t* have transitions on *a* to states in the same subgroup of  $\Pi$
    - ♦ Call the new partition  $\Pi_{new}$ . At worse, each state will be in a subgroup by itself
  - 3. If  $\Pi_{\text{new}} \neq \Pi$  then go back to step 2 with  $\Pi := \Pi_{\text{new}}$ ; otherwise, proceed at step 4
  - 4. Each group in the final  $\Pi$  becomes a state in the minimized DFA
    - $\diamond$  The states of a group G of  $\Pi$  cannot be distinguished and are merged into one state
    - $\diamond$  A transition from group  $G_1$  to  $G_2$  is marked with input symbol *a* when:
      - All states of  $G_1$  make transition to states in  $G_2$  on input symbol *a*

#### **Example on DFA Minimization**

- Consider the DFA for (a|b)\*abb obtained using subset construction algorithm
- Initial partition  $\Pi$  consists of 2 groups = { {A, B, C, D }, {E }
- ♦ {*A*, *B*, *C*}-succ under  $b \in \{A, B, C, D\}$ , while *D*-succ under *b* is *E*
- Therefore,  $\Pi_{\text{new}} = \{\{A, B, C\}, \{D\}, \{E\}\}\}$
- A, C succ under b is C while B succ under b is D
- Therefore,  $\Pi_{\text{new}} = \{\{A, C\}, \{B\}, \{D\}, \{E\}\}\}$
- $A, C succ under a is B, and \{A, C succ under b is C$
- A, C does not require further partitioning; states A and C can be merged
- ★ Therefore, final  $\Pi = \{\{A, C\}, \{B\}, \{D\}, \{E\}\}\}$

![](_page_22_Figure_10.jpeg)