Using the Lex Scanner Generator

< Lex isapopular scanner (lexical analyzer) generator
#* Developed by M.E. Lesk and E. Schmidt of AT& T Bell Labs
#* Other versions of Lex exist, most notably flex (for Fast Lex)

< Input to Lex is called Lex specification or Lex program
* Lex generates a scanner module in C from a Lex specification file
#* Scanner module can be compiled and linked with other C/C++ modules

lex file scanner module C object module . scan program
——» lex > : » Linker
filename.| lex.yy.c compiler lex.yy.o

* Commands: object modules containing

] main and other functions
| ex fil enane. |

cc —Cc lex.yy.c
cc lex.yy.o other.o —o scan
scan infile outfile

Sourcefile R scan Seguence of .
program tokens

Using the Lex Scanner Generator, a TINY Language and Scanner — 1 Compiler Design — © Muhammed Mudawwar

A TINY Language

0

< A TINY program is a sequence of statements terminated by semicolons
There are no procedures and no declarations

All variables are of integer type; V ariables need not be declared

There are two control statements:

* Anif statement has an optional else part and is terminated with end

* A while statement is terminated with end
< An arbitrary number of statements can be nested inside an if or while statement

» Thereisaread and awrite statement that perform input/output
* read inputs integer variables only; variables are separated by commas
* Write outputs integer variables and string literals, separated by commas
»* String literals are enclosed in double quotes
Comments are enclosed in curly brackets { and } and cannot be nested
Expressions are limited to Boolean and integer arithmetic expressions
»* Boolean expressions can be used only as testsin control statements
Relational operatorsare: < <= > >= = <>

Arithmetic expressions involve integer constants, variables, (), +, -, *, and/

L/ J
0’0 0’0

J
0’0

4

L/
0‘0

L/
0‘0

L/
0‘0

@,
0‘0

Using the Lex Scanner Generator, a TINY Language and Scanner — 2 Compiler Design — © Muhammed Mudawwar

A Sample TINY Program

< TheTINY language lacks many of the essential programming features
» No functions or procedures
#* NoO arrays or records
» No floating-point, string, or character computation
It is designed to illustrate the different phases of compilation
Thefollowing isasample TINY program:
{Sanpl e programin TINY | anguage — Factori al }

wite "Enter an integer value: ";

L/
0‘0

L/
0‘0

read X;
factorial := 1;
count : = X;
while count > 1 do
factorial := factorial * count;
count := count-1;
end;
wite "factorial of ", x, " =", factorial;

Using the Lex Scanner Generator, a TINY Language and Scanner —3 Compiler Design — © Muhammed Mudawwar

Lex Specification

’0

A Lex specification file consists of three sections:

definition section
%0

rul es section

%0

auxiliary functions

< Thedefinition section contains aliteral block and regular definitions
< Theliteral block is C code delimited by ¢4 and %
» Contains variable declarations and function prototypes

» A regular definition gives a name to aregular expression
* A regular definition hastheform: nane expression
#* A regular definition can be used by writing its name in braces: { nane}

» Therules section contains regular expressions and C code; it has the form:

:1 th: 221 e r, isaregular expression and act i on; is C code fragment
2_ o ? * Whenr; matchesaninput string, act i on, isexecuted
r, action, e action; shouldbein{} if morethan one statement exists

Using the Lex Scanner Generator, a TINY Language and Scanner — 4 Compiler Design — © Muhammed Mudawwar

Lex Operators (Meta-characters)

\ C escape sequence: \ nisnewling, \ t istab,\ \ isbackslash,\ " isdouble quote, etc.
* Matches zero or more of the preceding expression; x* matchese, x, XX, ...

+ Matches one or more of the preceding expression; (ab) + matches ab, abab, ...

? Matches zero or one occurrence of the preceding expression; (ab) ? matchese or ab
I

Matches either the preceding or the subsequent expression; a| b matchesa or b
Matches any single character except the newline character

() Usedfor grouping sub-expressionsin aregular expression

[]

Matches any one of the characters within brackets

A range of charactersis indicated with the — (dash operator)

[0- 9] matches any decimal digit; [xyz] means(X| y| z)

If first character after [is”, it complements the character class

[*A- Za- z] matchesall characters which are NOT letters

M eta-characters other than C escape sequences loose their meaning inside|]

" " Matches everything within the quotation marks literally; " x* " matches only x*
M eta-characters other than C escape sequences loose their meaning inside” "

{ } {nane} referstoaregular definition from the first section
[A- Z] { 3} matches strings of exactly 3 capital letters
[A-Z] {1, 3} matchesstringsof 1, 2, or 3 capital letters

/ The lookahead operator; matches the left regular expression but only if followed by the right regular expression
0/ 1 matches0 in 01, but not in 02 ; Only one slash is permitted per regular expression

A Asthefirst character of aregular expression, matches the beginning of aline
$ Asthelast character of aregular expression, $ matchesthe end of aline; Sameas/ \ n

Using the Lex Scanner Generator, a TINY Language and Scanner —5 Compiler Design — © Muhammed Mudawwar

Lex Specification of a TINY Scanner

%

#i ncl ude "scan. h"
int [ineno = 1;
TokAttr tokval;

void |l ex _err(char*sl, char*s2);

%
letter [A-Za-z]
digit [0- 9]

%0

[Hnh] [Ee] [Nn]
[LI][Ss]|[Ee]

[Nn] [Dd]
[Hh][Ii][LI][Ee]
[o]

[Ee] [Aa] [Dd]
[ROI[1i][Tt][Ee]
t

er}({letter}|{digit}|)*

/*
/*
/*
/*
/*

/*

[t N et Vot Vet W et Wt Wt Wt Wt W s Yt |

Literal C bl ock */
Scanner header file */
Current |ine nunber */
Token attri bute value */
Reports | exical errors */

Regul ar definitions */

| i neno++; }
/* skip spaces and tabs */ }

return I F;, }
return THEN;, }
return ELSE; }
return END;, }
return VH LE; }
return DO }
return READ;, }
return WRI TE; }

tokval . str = yytext; return ID;, }

Using the Lex Scanner Generator, a TINY Language and Scanner — 6

Compiler Design — © Muhammed Mudawwar

More Regular Expressions and Actions

({letter}|{digit}])* {lex_err(yytext,"is not a valid identifier");
tokval . str = yytext; return ID;}

{digit}+ {tokval .num = atoi (yytext); return |INTLIT,}
\"([AN"AN]) *\ " {tokval .str = yytext; return STRLIT;}
\"([M\"\n])*$ {lex err(yytext,"is not term nated");
tokval .str = yytext; return STRLIT,;}
" { tokval.op = PLUS; return ADDOP; }
- { tokval.op = MNUS; return ADDOP; }
"ok { tokval.op = MJULT; return MILOP; }
" { tokval .op = DV, return MIULOP; }
" { tokval.op = EQ return RELOP; }
<> { tokval.op = NE return RELOP; }
"t { tokval.op = LT; return RELOP; }
"<=" { tokval .op = LE; return RELOP; }
"> { tokval .op = GI; return RELOP; }
" >= { tokval.op = GE return RELOP; }
, { return COWA; }
" { return SEM COL; }

Using the Lex Scanner Generator, a TINY Language and Scanner —7 Compiler Design — © Muhammed Mudawwar

Auxiliary Functions

"= { return ASSIGN;, }
(" { return LP; }
") { return RP; }
" { char c; char coment][40];

sprintf(coment, " Comment starting at |ine %", |ineno),;

for (c =input(); c!'=0&% c !="}"; ¢ = input())

if (c =="'"\n") lineno++;
if (¢c == 0) lex_err(coment,"is not termnated"); }
{ lex_ err(yytext,"is not recognized"); }

%®0

/1l To report an error nessage
void lex _err(char *sl1l, char *s2) {
fprintf(stderr,"Error at line %d: % %\n", lineno, sl1, s2);

}

/1l To finish scanning at end of file

int yywap() {
return 1;
}

Using the Lex Scanner Generator, a TINY Language and Scanner —8 Compiler Design — © Muhammed Mudawwar

Lex Output File and yylex()

» Lex generates a C file containing the scanner function: i nt yyl ex()
»* Tokens arereturned by yyl ex() asinteger values
» Theliteral C block is copied verbatim to the output file
» Theliteral block appears near the beginning before theyyl ex() function
< Thethird section with auxiliary functionsis aso copied to the output file
<+ When called, yyl ex() matches input characters against regular expressions
* |f amatch occurs, the action associated with the matched expression is executed
* |f the action specifiesareturn value then it will be the value returned by yyl ex()
» Otherwise, scanning continues until an action with areturn statement is executed
* |nput characters not matched by any expression are copied to output file
Regular expressions are allowed to overlap — match same input sequence

* |n case of an overlap, two or more regular expressions apply
»* First, the longest possible match is performed
#* Second, if two expressions match the same string, the first expression listed is used

>

Using the Lex Scanner Generator, a TINY Language and Scanner —9 Compiler Design — © Muhammed Mudawwar

Internal Names Generated in Lex Output File

< Aninput sequence matched by aregular expression is stored in:

»* String yyt ext whose length isyyl eng

* String yyt ext changes value every timeyyl ex() iscalled

yyl ex() callsthree user-defined routines to handle character input/output:
* i nput () retrieves a single character, 0 on end of file

* out put (¢) writesasingle character c to the output

* unput (c) puts a single character ¢ back to input, to be re-read

i nput , out put , and unput can be called also in the user-defined actions

i nput readsinput characters fromyyi n and out put writesto yyout
* yyi n isby default st di n, and yyout isby default st dout
* yyi n can be associated with ainput file: yyin = fopen(infile,"r");
* yyout can be associated with aoutput file: yyout = fopen(outfile,"w');
When yyl ex encounters end of file, it calls a user-supplied function yywr ap
* |f yywr ap returns 1, yyl ex returns the token O to report the end of file
»* |f yywr ap returns O, it indicates more input; yyi n must associate with another file

’0

0’0

*

X

Using the Lex Scanner Generator, a TINY Language and Scanner — 10 Compiler Design — © Muhammed Mudawwar

Scanner Header File

>

< Header file" scan. h" hasthe following definitions and function prototypes:

typedef enum { |IF = 300, THEN, ELSE, END, VWH LE, DO, READ,
VWRITE, ID, INTLIT, STRLIT, COMVA, SEM CO.,
ADDOP, MJLOP, RELOP, ASSIGN, LP, RP } TokenType;

< Thel F token has value 300, THEN will be 301, and so on

* We could have chosen different values as long as the 0 token (EOF) is not used
#* We can aso define the token values as constants or as #def i ne macros

typedef enum { PLUS = 1, M NUS, MILLT, DV,
EQ NE, LT, LE, GI, Gt} pType;

L)

t ypedef union {

QpType op; /| Operator val ue

I nt num /'l Integer literal value

char * str; /[l Points to yytext for I Ds and Strings
} TokAttr;
extern int |ineno; [l Current |ine nunber
extern TokAttr tokval; // Attribute value of current token
extern int yylex(); /| Scanner function

Using the Lex Scanner Generator, a TINY Language and Scanner — 11 Compiler Design — © Muhammed Mudawwar

Main Function

< The main function can be supplied in a separate file
* |nitializes yyin to read from an input file
* |nitializes yyout to write to an output file
» Callsthe yylex function repeatedly until yylex returns O (end-of-file token)

#i ncl ude "scan. h"
#i ncl ude <stdi o. h>
#i ncl ude <string. h>

extern FILE *yyin, *yyout; /1 Defined in lex.yy.c
void main(int argc, char *argv[]){
i nt token;
if (argc <2) { ... } /1 I nput/Qutput filenanmes NOT gi ven
if (argc <3) { ... } /1 Qutput filenanme is NOT given
yyin = fopen(argv[1],"r"); /[l Initialize yyin
yyout = fopen(argv[2],"w'); /[l Initialize yyout
if (yyin==0) { ... } /1 Unable to open input file
if (yyout == 0) { ... } /1 Unable to open output file

t oken = yylex();
whil e (token) {
- /Il Wite tokens to output file
t oken = yyl ex();
}
}

Using the Lex Scanner Generator, a TINY Language and Scanner — 12 Compiler Design — © Muhammed Mudawwar

Practical Considerations — Reserved Words

< Virtually all programming languages have special words called keywor ds
#* Keywords are normally reserved — cannot be used as identifiers
< We can write aregular expression for each keyword in the lex specification
* A general expression for identifiers must be placed after the keyword expressions
»* A keyword will be matched by a keyword expression becauseit islisted first
» Lex handles exceptions by placing specialized rules before a general one
#* This approach is simple and effective for a small number of reserved words
»* The DFA size is huge when the number of reserved wordsislarge
< An aternative solution is to treat keywords as identifiers
#* One general regular expression is used to match keywords and identifiers

#* A separate lookup table is searched to detect keywords
< A sorted list of keywords can be used with binary search
<> A better approach isto use a hash table with a perfect hash function (no collisions)
<> A perfect hash function can be designed because keywords are known

* The DFA sizeistremendously reduced

Using the Lex Scanner Generator, a TINY Language and Scanner — 13 Compiler Design — © Muhammed Mudawwar

Lexical Error Recovery

< Occasionally, a scanner will detect alexical error
* |t Isunreasonable to stop compilation because of such aminor error
» Typically, alexical error is caused by the appearance of an illegal character
»* Anillegal character cannot be matched by any regular expression
»* By default, Lex writes unmatched characters to yyout
* The . (dot) asalast regular expression can match all illegal characters

< Certain lexical errors can be repaired

#* Special regular expressions can be written to match illegal char sequences
< Error messages and flags are generated
< Valid tokens are returned for normal parsing
»* For example, runaway strings can be repaired
< A runaway string is detected by reaching the end of line
< An error message is generated, but a correct token can be returned
#* Multi-line comments should be given special attention
< A runaway comment is not detected until the end of file isreached

Using the Lex Scanner Generator, a TINY Language and Scanner — 14 Compiler Design — © Muhammed Mudawwar

