
Using the Lex Scanner Generator, a TINY Language and Scanner – 1 Compiler Design – © Muhammed Mudawwar

Using the Lex Scanner Generator

� Lex is a popular scanner (lexical analyzer) generator
� Developed by M.E. Lesk and E. Schmidt of AT&T Bell Labs

� Other versions of Lex exist, most notably flex (for Fast Lex)

� Input to Lex is called Lex specification or Lex program
� Lex generates a scanner module in C from a Lex specification file

� Scanner module can be compiled and linked with other C/C++ modules

� Commands:
lex filename.l

cc –c lex.yy.c

cc lex.yy.o other.o –o scan

scan infile outfile

scan programlex file

filename.l

scanner module

lex.yy.c
lex C

compiler
object module

lex.yy.o
Linker

object modules containing
main and other functions

scan
program

Source file Sequence of

tokens

Using the Lex Scanner Generator, a TINY Language and Scanner – 2 Compiler Design – © Muhammed Mudawwar

A TINY Language
� A TINY program is a sequence of statements terminated by semicolons
� There are no procedures and no declarations
� All variables are of integer type; Variables need not be declared
� There are two control statements:

� An if statement has an optional else part and is terminated with end
� A while statement is terminated with end

� An arbitrary number of statements can be nested inside an if or while statement

� There is a read and a write statement that perform input/output
� read inputs integer variables only; variables are separated by commas
� write outputs integer variables and string literals, separated by commas
� String literals are enclosed in double quotes

� Comments are enclosed in curly brackets { and } and cannot be nested
� Expressions are limited to Boolean and integer arithmetic expressions

� Boolean expressions can be used only as tests in control statements

� Relational operators are: < <= > >= = <>
� Arithmetic expressions involve integer constants, variables, (), +, -, *, and /

Using the Lex Scanner Generator, a TINY Language and Scanner – 3 Compiler Design – © Muhammed Mudawwar

A Sample TINY Program

� The TINY language lacks many of the essential programming features
� No functions or procedures
� No arrays or records
� No floating-point, string, or character computation

� It is designed to illustrate the different phases of compilation
� The following is a sample TINY program:

{Sample program in TINY language – Factorial}
write "Enter an integer value: ";

read x;

factorial := 1;

count := x;

while count > 1 do

factorial := factorial * count;

count := count-1;

end;

write "factorial of " , x , " = " , factorial;

Using the Lex Scanner Generator, a TINY Language and Scanner – 4 Compiler Design – © Muhammed Mudawwar

Lex Specification

� A Lex specification file consists of three sections:
definition section
%%
rules section
%%
auxiliary functions

� The definition section contains a literal block and regular definitions
� The literal block is C code delimited by %{ and %}

� Contains variable declarations and function prototypes

� A regular definition gives a name to a regular expression
� A regular definition has the form: name expression

� A regular definition can be used by writing its name in braces: {name}

� The rules section contains regular expressions and C code; it has the form:
r1 action1
r2 action2
. . .

rn actionn

• ri is a regular expression and actioni is C code fragment

• When ri matches an input string, actioni is executed

• actioni should be in {} if more than one statement exists

Using the Lex Scanner Generator, a TINY Language and Scanner – 5 Compiler Design – © Muhammed Mudawwar

Lex Operators (Meta-characters)
\ C escape sequence: \n is newline, \t is tab, \\ is backslash, \" is double quote, etc.

* Matches zero or more of the preceding expression; x* matches ε, x, xx, ...

+ Matches one or more of the preceding expression; (ab)+ matches ab, abab, ...

? Matches zero or one occurrence of the preceding expression; (ab)? matches ε or ab

| Matches either the preceding or the subsequent expression; a|b matches a or b

. Matches any single character except the newline character

() Used for grouping sub-expressions in a regular expression

[] Matches any one of the characters within brackets
A range of characters is indicated with the – (dash operator)
[0-9] matches any decimal digit; [xyz] means (x|y|z)
If first character after [is ^, it complements the character class
[^A-Za-z] matches all characters which are NOT letters
Meta-characters other than C escape sequences loose their meaning inside []

" " Matches everything within the quotation marks literally; "x*" matches only x*
Meta-characters other than C escape sequences loose their meaning inside " "

{ } {name} refers to a regular definition from the first section
[A-Z]{3} matches strings of exactly 3 capital letters
[A-Z]{1,3} matches strings of 1, 2, or 3 capital letters

/ The lookahead operator; matches the left regular expression but only if followed by the right regular expression
0/1 matches 0 in 01, but not in 02 ; Only one slash is permitted per regular expression

^ As the first character of a regular expression, ^ matches the beginning of a line

$ As the last character of a regular expression, $ matches the end of a line; Same as /\n

Using the Lex Scanner Generator, a TINY Language and Scanner – 6 Compiler Design – © Muhammed Mudawwar

Lex Specification of a TINY Scanner
%{ /* Literal C block */
#include "scan.h" /* Scanner header file */
int lineno = 1; /* Current line number */
TokAttr tokval; /* Token attribute value */
void lex_err(char*s1,char*s2); /* Reports lexical errors */
%}

letter [A-Za-z] /* Regular definitions */
digit [0-9]

%%

\n { lineno++; }
[\t]+ { /* skip spaces and tabs */ }

[Ii][Ff] { return IF; }
[Tt][Hh][Ee][Nn] { return THEN; }
[Ee][Ll][Ss][Ee] { return ELSE; }
[Ee][Nn][Dd] { return END; }
[Ww][Hh][Ii][Ll][Ee] { return WHILE; }
[Dd][Oo] { return DO; }
[Rr][Ee][Aa][Dd] { return READ; }
[Ww][Rr][Ii][Tt][Ee] { return WRITE; }

{letter}({letter}|{digit}|_)* { tokval.str = yytext; return ID; }

Using the Lex Scanner Generator, a TINY Language and Scanner – 7 Compiler Design – © Muhammed Mudawwar

More Regular Expressions and Actions
({letter}|{digit}|)* {lex_err(yytext,"is not a valid identifier");

tokval.str = yytext; return ID;}

{digit}+ {tokval.num = atoi(yytext); return INTLIT;}

\"([^\"\n])*\" {tokval.str = yytext; return STRLIT;}

\"([^\"\n])*$ {lex_err(yytext,"is not terminated");
tokval.str = yytext; return STRLIT;}

"+" { tokval.op = PLUS; return ADDOP; }
"-" { tokval.op = MINUS; return ADDOP; }
"*" { tokval.op = MULT; return MULOP; }
"/" { tokval.op = DIV; return MULOP; }
"=" { tokval.op = EQ; return RELOP; }
"<>" { tokval.op = NE; return RELOP; }
"<" { tokval.op = LT; return RELOP; }
"<=" { tokval.op = LE; return RELOP; }
">" { tokval.op = GT; return RELOP; }
">=" { tokval.op = GE; return RELOP; }

"," { return COMMA; }
";" { return SEMICOL; }

Using the Lex Scanner Generator, a TINY Language and Scanner – 8 Compiler Design – © Muhammed Mudawwar

Auxiliary Functions
":=" { return ASSIGN; }
"(" { return LP; }
")" { return RP; }

"{" { char c; char comment[40];
sprintf(comment,"Comment starting at line %d",lineno);
for (c = input(); c != 0 && c != '}'; c = input())

if (c == '\n') lineno++;
if (c == 0) lex_err(comment,"is not terminated"); }

. { lex_err(yytext,"is not recognized"); }

%%

// To report an error message
void lex_err(char *s1, char *s2) {

fprintf(stderr,"Error at line %d: %s %s\n", lineno, s1, s2);
}

// To finish scanning at end of file
int yywrap() {

return 1;
}

Using the Lex Scanner Generator, a TINY Language and Scanner – 9 Compiler Design – © Muhammed Mudawwar

Lex Output File and yylex()

� Lex generates a C file containing the scanner function: int yylex()
� Tokens are returned by yylex() as integer values

� The literal C block is copied verbatim to the output file
� The literal block appears near the beginning before the yylex() function

� The third section with auxiliary functions is also copied to the output file

� When called, yylex() matches input characters against regular expressions
� If a match occurs, the action associated with the matched expression is executed

� If the action specifies a return value then it will be the value returned by yylex()

� Otherwise, scanning continues until an action with a return statement is executed

� Input characters not matched by any expression are copied to output file

� Regular expressions are allowed to overlap – match same input sequence
� In case of an overlap, two or more regular expressions apply

� First, the longest possible match is performed

� Second, if two expressions match the same string, the first expression listed is used

Using the Lex Scanner Generator, a TINY Language and Scanner – 10 Compiler Design – © Muhammed Mudawwar

Internal Names Generated in Lex Output File
� An input sequence matched by a regular expression is stored in:

� String yytext whose length is yyleng

� String yytext changes value every time yylex() is called

� yylex() calls three user-defined routines to handle character input/output:
� input() retrieves a single character, 0 on end of file

� output(c) writes a single character c to the output

� unput(c) puts a single character c back to input, to be re-read

� input, output, and unput can be called also in the user-defined actions

� input reads input characters from yyin and output writes to yyout
� yyin is by default stdin, and yyout is by default stdout

� yyin can be associated with a input file: yyin = fopen(infile,"r");

� yyout can be associated with a output file: yyout = fopen(outfile,"w");

� When yylex encounters end of file, it calls a user-supplied function yywrap
� If yywrap returns 1, yylex returns the token 0 to report the end of file

� If yywrap returns 0, it indicates more input; yyin must associate with another file

Using the Lex Scanner Generator, a TINY Language and Scanner – 11 Compiler Design – © Muhammed Mudawwar

Scanner Header File
� Header file "scan.h" has the following definitions and function prototypes:

typedef enum { IF = 300, THEN, ELSE, END, WHILE, DO, READ,
WRITE, ID, INTLIT, STRLIT, COMMA, SEMICOL,
ADDOP, MULOP, RELOP, ASSIGN, LP, RP } TokenType;

� The IF token has value 300, THEN will be 301, and so on
� We could have chosen different values as long as the 0 token (EOF) is not used
� We can also define the token values as constants or as #define macros

typedef enum { PLUS = 1, MINUS, MULT, DIV,
EQ, NE, LT, LE, GT, GE } OpType;

typedef union {
OpType op; // Operator value
int num; // Integer literal value
char * str; // Points to yytext for IDs and Strings

} TokAttr;

extern int lineno; // Current line number
extern TokAttr tokval; // Attribute value of current token
extern int yylex(); // Scanner function

Using the Lex Scanner Generator, a TINY Language and Scanner – 12 Compiler Design – © Muhammed Mudawwar

Main Function

� The main function can be supplied in a separate file
� Initializes yyin to read from an input file
� Initializes yyout to write to an output file
� Calls the yylex function repeatedly until yylex returns 0 (end-of-file token)

#include "scan.h"
#include <stdio.h>
#include <string.h>

extern FILE *yyin, *yyout; // Defined in lex.yy.c

void main(int argc, char *argv[]){
int token;

if (argc < 2) { ... } // Input/Output filenames NOT given
if (argc < 3) { ... } // Output filename is NOT given
yyin = fopen(argv[1],"r"); // Initialize yyin
yyout = fopen(argv[2],"w"); // Initialize yyout
if (yyin == 0) { ... } // Unable to open input file
if (yyout == 0) { ... } // Unable to open output file
token = yylex();
while (token) {
... // Write tokens to output file
token = yylex();

}
}

Using the Lex Scanner Generator, a TINY Language and Scanner – 13 Compiler Design – © Muhammed Mudawwar

Practical Considerations – Reserved Words

� Virtually all programming languages have special words called keywords
� Keywords are normally reserved – cannot be used as identifiers

� We can write a regular expression for each keyword in the lex specification
� A general expression for identifiers must be placed after the keyword expressions

� A keyword will be matched by a keyword expression because it is listed first

� Lex handles exceptions by placing specialized rules before a general one

� This approach is simple and effective for a small number of reserved words

� The DFA size is huge when the number of reserved words is large

� An alternative solution is to treat keywords as identifiers
� One general regular expression is used to match keywords and identifiers

� A separate lookup table is searched to detect keywords
� A sorted list of keywords can be used with binary search

� A better approach is to use a hash table with a perfect hash function (no collisions)

� A perfect hash function can be designed because keywords are known

� The DFA size is tremendously reduced

Using the Lex Scanner Generator, a TINY Language and Scanner – 14 Compiler Design – © Muhammed Mudawwar

Lexical Error Recovery

� Occasionally, a scanner will detect a lexical error
� It is unreasonable to stop compilation because of such a minor error
� Typically, a lexical error is caused by the appearance of an illegal character
� An illegal character cannot be matched by any regular expression
� By default, Lex writes unmatched characters to yyout
� The . (dot) as a last regular expression can match all illegal characters

� Certain lexical errors can be repaired
� Special regular expressions can be written to match illegal char sequences

� Error messages and flags are generated
� Valid tokens are returned for normal parsing

� For example, runaway strings can be repaired
� A runaway string is detected by reaching the end of line
� An error message is generated, but a correct token can be returned

� Multi-line comments should be given special attention
� A runaway comment is not detected until the end of file is reached

