
Introduction to Compiling – 1 Compiler Design – © Muhammed Mudawwar

What is a Compiler?

� Is a program that translates one language to another

� Takes as input a source program typically written in a high-level language

� Produces an equivalent target program typically in assembly or machine language

� Reports error messages as part of the translation process

Target program

Assembly or machine language

Source program

High-level language
Compiler

Error messages

� First computers of late 1940s were programmed in machine language
� Machine language was soon replaced by assembly language

� Instructions and memory locations are given symbolic names
� An assembler translates the symbolic assembly code into equivalent machine code
� Assembly language improved programming, but is still machine dependent

Introduction to Compiling – 2 Compiler Design – © Muhammed Mudawwar

Brief History

� The term “compiler” was coined in the early 1950s by Grace Murray Hopper
� Translation was then viewed as the “compilation” of a sequence of routines selected

from a library

� The first compiler of the high-level language FORTRAN was developed
between 1954 and 1957 at IBM by a group led by John Backus
� Proved the viability of high-level and thus less machine dependent languages

� The study of the scanning and parsing problems were pursued in the 1960s and
1970s and led fairly to a complete solution
� Became standard part of compiler theory

� Resulted in scanner and parser generators that automate part of compiler development

� The development of methods for generating efficient target code, known as
optimization techniques, is still an ongoing research

� Compiler technology was also applied in rather unexpected areas:
� Text-formatting languages

� Hardware description languages for the automatic creation of VLSI circuits

Introduction to Compiling – 3 Compiler Design – © Muhammed Mudawwar

The Translation Process

� A compiler performs two major tasks:
� Analysis of the source program

� Synthesis of the target-language instructions

� Phases of a compiler:
� Scanning

� Parsing

� Semantic Analysis

� Intermediate Code Generation

� Intermediate Code Optimizer

� Target Code Generator

� Target Code Optimizer

Introduction to Compiling – 4 Compiler Design – © Muhammed Mudawwar

The Translation Process – Cont'd

� Three auxiliary components
interact with some or all phases:
� Literal Table

� Symbol Table

� Error Handler

Scanner

Parser

Semantic
Analyzer

Intermediate Code
Generator

Intermediate Code
Optimizer

Syntax Tree

Target Code
Generator

Target Code
Optimizer

Target Code

Target Code

Intermediate Code

Intermediate Code

Annotated Tree

Annotated Tree

Tokens

Source Code

Literal

Table

Symbol

Table

Error

Handler

Introduction to Compiling – 5 Compiler Design – © Muhammed Mudawwar

Scanner

� The scanner begins the analysis of the source program by:
� Reading file character by character

� Grouping characters into tokens

� Eliminating unneeded information (comments and white space)

� Entering preliminary information into literal or symbol tables

� Processing compiler directives by setting flags

� Tokens represent basic program entities such as:
� Identifiers, Literals, Reserved Words, Operators, Delimiters, etc.

� Example: a := x + y * 2.5 ; is scanned as
a identifier y identifier

:= assignment operator * multiplication operator

x identifier 2.5 real literal

+ plus operator ; semicolon

Introduction to Compiling – 6 Compiler Design – © Muhammed Mudawwar

Parser

� Receives tokens from the scanner
� Recognizes the structure of the program as a parse tree

� Parse tree is recognized according to a context-free grammar
� Syntax errors are reported if the program is syntactically incorrect

� A parse tree is inefficient to represent the structure of a program
� A syntax tree is a more condensed version of the parse tree
� A syntax tree is usually generated as output by the parser

a := x + y * 2.5 ;assign-stmt

:= exprid a

+expr expr

id x

Parse
Tree

;

*expr expr

id y literal 2.5

:=

+id a

id x

literal 2.5
Syntax
Tree

*

id y

Introduction to Compiling – 7 Compiler Design – © Muhammed Mudawwar

Semantic Analyzer

� The semantics of a program are its meaning as opposed to syntax or structure

� The semantics consist of:
� Runtime semantics – behavior of program at runtime

� Static semantics – checked by the compiler

� Static semantics include:
� Declarations of variables and constants before use

� Calling functions that exist (predefined in a library or defined by the user)

� Passing parameters properly

� Type checking.

� Static semantics are difficult to check by the parser

� The semantic analyzer does the following:
� Checks the static semantics of the language

� Annotates the syntax tree with type information Annotated
Syntax Tree

:=

+id a

id x

literal 2.5

*

id y

real
real

real

real

real

real

integer

int2real

Introduction to Compiling – 8 Compiler Design – © Muhammed Mudawwar

Intermediate Code Generator

� Comes after syntax and semantic analysis

� Separates the compiler front end from its backend

� Intermediate representation should have 2 important properties:
� Should be easy to produce

� Should be easy to translate into the target program

� Intermediate representation can have a variety of forms:
� Three-address code, P-code for an abstract machine, Tree or DAG representation

Annotated
Syntax Tree

:=

+id a

id x

literal 2.5

*

id y

real
real

real

real

real

real

integer

int2real

Three-address code

temp1 := int2real(y)
temp2 := temp1 real* 2.5
temp3 := x real+ temp2
a := temp3

Introduction to Compiling – 9 Compiler Design – © Muhammed Mudawwar

Code Generator

� Generates code for the target machine, typically:
� Assembly code, or

� Relocatable machine code

� Properties of the target machine become a major factor

� Code generator selects appropriate machine instructions

� Allocates memory locations for variables

� Allocates registers for intermediate computations

Three-address code

temp1 := int2real(y)
temp2 := temp1 * 2.5
temp3 := x + temp2
a := temp3

Assembly code (Hypothetical)

LOADI R1, y ;; R1 ← y
MOVF F1, R1 ;; F1 ← int2real(R1)
MULF F2, F1, 2.5 ;; F2 ← F1 * 2.5
LOADF F3, x ;; F3 ← x
ADDF F4, F3, F2 ;; F4 ← F3 + F2
STORF a, F4 ;; a ← F4

Introduction to Compiling – 10 Compiler Design – © Muhammed Mudawwar

Code Improvement

� Code improvement techniques can be applied to:
� Intermediate code – independent of the target machine

� Target code – dependent on the target machine

� Intermediate code improvement include:
� Constant folding

� Elimination of common sub-expressions

� Identification and elimination of unreachable code (called dead code)

� Improving loops

� Improving function calls

� Target code improvement include:
� Allocation and use of registers

� Selection of better (faster) instructions and addressing modes

Introduction to Compiling – 11 Compiler Design – © Muhammed Mudawwar

Interpreter
� Is a program that reads a source program and executes it

� Works by analyzing and executing the source program commands one at a time

� Does not translate the source program into object code

� Interpretation is sensible when:
� Programmer is working in interactive mode and needs to view and update variables

� Running speed is not important

� Commands have simple formats, and thus can be quickly analyzed and executed

� Modification or addition to user programs is required as execution proceeds

� Well-known examples of interpreters:
� Basic interpreter, Lisp interpreter, UNIX shell command interpreter, SQL interpreter

� In principle, any programming language can be either interpreted or compiled
� Some languages are designed to be interpreted, others are designed to be compiled

� Interpreters involve large overheads
� Execution speed degradation can vary from 10:1 to 100:1

� Substantial space overhead may be involved

Introduction to Compiling – 12 Compiler Design – © Muhammed Mudawwar

Programs Related to Compilers
� Preprocessor

� Produces input to a compiler
� Performs the following:

� Macro processing (substitutions)
� File inclusion

� Assembler
� Translator for the assembly language
� Two-Pass Assembly:

� All variables are allocated storage locations
� Assembler code is translated into machine code

� Output is relocatable machine code.

� Linkers
� Links object files separately compiled or assembled
� Links object files to standard library functions
� Generates a file that can be loaded and executed

� Debuggers
� Editors

Preprocessor

C or C++ Program

C or C++ Program
with macro substitutions
and file inclusions

Compiler

Assembly code

Assembler

Relocatable object
module

Executable code

Other object
modules or
library modules

Linker

Introduction to Compiling – 13 Compiler Design – © Muhammed Mudawwar

Major Data and Structures in a Compiler
� Token

� Represented by an integer value or an enumeration literal
� Sometimes, it is necessary to preserve the string of characters that was scanned

� For example, name of an identifiers or value of a literal

� Syntax Tree
� Constructed as a pointer-based structure
� Dynamically allocated as parsing proceeds
� Nodes have fields containing information collected by the parser and semantic analyzer

� Symbol Table
� Keeps information associated with all kinds of identifiers:

� Constants, variables, functions, parameters, types, fields, etc.

� Identifiers are entered by the scanner, parser, or semantic analyzer
� Semantic analyzer adds type information and other attributes
� Code generation and optimization phases use the information in the symbol table
� Insertion, deletion, and search operations need to efficient because they are frequent
� Hash table with constant-time operations is usually the preferred choice
� More than one symbol table may be used

Introduction to Compiling – 14 Compiler Design – © Muhammed Mudawwar

Major Data and Structures in a Compiler

� Literal Table
� Stores constant values and string literals in a program.

� One literal table applies globally to the entire program.

� Used by the code generator to:
� Assign addresses for literals.

� Enter data definitions in the target code file.

� Avoids the replication of constants and strings.

� Quick insertion and lookup are essential. Deletion is not necessary.

� Temporary Files
� Used historically by old compilers due to memory constraints

� Hold the data of various stages

