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What is a Compiler?

� Is a program that translates one language to another

� Takes as input a source program typically written in a high-level language

� Produces an equivalent target program typically in assembly or machine language

� Reports error messages as part of the translation process

Target program

Assembly or machine language

Source program

High-level language
Compiler

Error messages

� First computers of late 1940s were programmed in machine language
� Machine language was soon replaced by assembly language

� Instructions and memory locations are given symbolic names
� An assembler translates the symbolic assembly code into equivalent machine code
� Assembly language improved programming, but is still machine dependent
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Brief History

� The term “compiler” was coined in the early 1950s by Grace Murray Hopper
� Translation was then viewed as the “compilation” of a sequence of routines selected 

from a library

� The first compiler of the high-level language FORTRAN was developed 
between 1954 and 1957 at IBM by a group led by John Backus
� Proved the viability of high-level and thus less machine dependent languages

� The study of the scanning and parsing problems were pursued in the 1960s and 
1970s and led fairly to a complete solution
� Became standard part of compiler theory

� Resulted in scanner and parser generators that automate part of compiler development

� The development of methods for generating efficient target code, known as 
optimization techniques, is still an ongoing research

� Compiler technology was also applied in rather unexpected areas:
� Text-formatting languages

� Hardware description languages for the automatic creation of VLSI circuits
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The Translation Process

� A compiler performs two major tasks:
� Analysis of the source program

� Synthesis of the target-language instructions

� Phases of a compiler:
� Scanning

� Parsing

� Semantic Analysis

� Intermediate Code Generation

� Intermediate Code Optimizer

� Target Code Generator

� Target Code Optimizer
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The Translation Process – Cont'd

� Three auxiliary components 
interact with some or all phases:
� Literal Table

� Symbol Table

� Error Handler
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Intermediate Code 
Generator

Intermediate Code 
Optimizer

Syntax Tree

Target Code 
Generator

Target Code 
Optimizer

Target Code

Target Code

Intermediate Code

Intermediate Code

Annotated Tree

Annotated Tree

Tokens

Source Code
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Symbol
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Error
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Scanner

� The scanner begins the analysis of the source program by:
� Reading file character by character

� Grouping characters into tokens

� Eliminating unneeded information (comments and white space)

� Entering preliminary information into literal or symbol tables

� Processing compiler directives by setting flags

� Tokens represent basic program entities such as:
� Identifiers, Literals, Reserved Words, Operators, Delimiters, etc.

� Example:   a := x + y * 2.5 ; is scanned as
a identifier y identifier 

:= assignment operator * multiplication operator 

x identifier 2.5 real literal

+ plus operator ; semicolon
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Parser

� Receives tokens from the scanner
� Recognizes the structure of the program as a parse tree

� Parse tree is recognized according to a context-free grammar
� Syntax errors are reported if the program is syntactically incorrect

� A parse tree is inefficient to represent the structure of a program
� A syntax tree is a more condensed version of the parse tree
� A syntax tree is usually generated as output by the parser

a := x + y * 2.5 ;assign-stmt

:= exprid  a

+expr expr

id  x

Parse 
Tree

;

*expr expr

id  y literal  2.5

:=

+id  a

id  x

literal  2.5
Syntax 
Tree

*

id  y
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Semantic Analyzer

� The semantics of a program are its meaning as opposed to syntax or structure

� The semantics consist of:
� Runtime semantics – behavior of program at runtime

� Static semantics – checked by the compiler

� Static semantics include:
� Declarations of variables and constants before use

� Calling functions that exist (predefined in a library or defined by the user)

� Passing parameters properly

� Type checking.

� Static semantics are difficult to check by the parser

� The semantic analyzer does the following:
� Checks the static semantics of the language

� Annotates the syntax tree with type information Annotated 
Syntax Tree

:=

+id  a

id  x

literal  2.5

*

id  y

real
real

real

real

real

real

integer

int2real
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Intermediate Code Generator

� Comes after syntax and semantic analysis

� Separates the compiler front end from its backend 

� Intermediate representation should have 2 important properties:
� Should be easy to produce

� Should be easy to translate into the target program

� Intermediate representation can have a variety of forms:
� Three-address code, P-code for an abstract machine, Tree or DAG representation

Annotated 
Syntax Tree

:=

+id  a

id  x

literal  2.5

*

id  y

real
real

real

real

real

real

integer

int2real

Three-address code

temp1 := int2real(y)
temp2 := temp1  real* 2.5
temp3 := x  real+ temp2
a := temp3
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Code Generator

� Generates code for the target machine, typically:
� Assembly code, or

� Relocatable machine code

� Properties of the target machine become a major factor

� Code generator selects appropriate machine instructions

� Allocates memory locations for variables

� Allocates registers for intermediate computations

Three-address code

temp1 := int2real(y)
temp2 := temp1 * 2.5
temp3 := x + temp2
a := temp3

Assembly code (Hypothetical)

LOADI R1, y ;; R1 ← y
MOVF F1, R1 ;; F1 ← int2real(R1)
MULF F2, F1, 2.5 ;; F2 ← F1 * 2.5
LOADF F3, x ;; F3 ← x
ADDF F4, F3, F2 ;; F4 ← F3 + F2
STORF a, F4 ;; a ← F4
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Code Improvement

� Code improvement techniques can be applied to:
� Intermediate code – independent of the target machine

� Target code – dependent on the target machine

� Intermediate code improvement include:
� Constant folding

� Elimination of common sub-expressions

� Identification and elimination of unreachable code (called dead code)

� Improving loops

� Improving function calls

� Target code improvement include:
� Allocation and use of registers

� Selection of better (faster) instructions and addressing modes
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Interpreter
� Is a program that reads a source program and executes it

� Works by analyzing and executing the source program commands one at a time

� Does not translate the source program into object code

� Interpretation is sensible when:
� Programmer is working in interactive mode and needs to view and update variables

� Running speed is not important

� Commands have simple formats, and thus can be quickly analyzed and executed

� Modification or addition to user programs is required as execution proceeds

� Well-known examples of interpreters:
� Basic interpreter, Lisp interpreter, UNIX shell command interpreter, SQL interpreter

� In principle, any programming language can be either interpreted or compiled
� Some languages are designed to be interpreted, others are designed to be compiled

� Interpreters involve large overheads
� Execution speed degradation can vary from 10:1 to 100:1

� Substantial space overhead may be involved
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Programs Related to Compilers
� Preprocessor

� Produces input to a compiler
� Performs the following:

� Macro processing (substitutions)
� File inclusion

� Assembler
� Translator for the assembly language
� Two-Pass Assembly:

� All variables are allocated storage locations
� Assembler code is translated into machine code

� Output is relocatable machine code.

� Linkers
� Links object files separately compiled or assembled
� Links object files to standard library functions
� Generates a file that can be loaded and executed

� Debuggers
� Editors

Preprocessor

C or C++ Program

C or C++ Program
with macro substitutions
and file inclusions

Compiler

Assembly code

Assembler

Relocatable object
module

Executable code

Other object
modules or
library modules

Linker



Introduction to Compiling – 13 Compiler Design – © Muhammed Mudawwar

Major Data and Structures in a Compiler
� Token

� Represented by an integer value or an enumeration literal
� Sometimes, it is necessary to preserve the string of characters that was scanned

� For example, name of an identifiers or value of a literal

� Syntax Tree
� Constructed as a pointer-based structure
� Dynamically allocated as parsing proceeds
� Nodes have fields containing information collected by the parser and semantic analyzer

� Symbol Table
� Keeps information associated with all kinds of identifiers:

� Constants, variables, functions, parameters, types, fields, etc.

� Identifiers are entered by the scanner, parser, or semantic analyzer
� Semantic analyzer adds type information and other attributes
� Code generation and optimization phases use the information in the symbol table
� Insertion, deletion, and search operations need to efficient because they are frequent
� Hash table with constant-time operations is usually the preferred choice
� More than one symbol table may be used
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Major Data and Structures in a Compiler

� Literal Table
� Stores constant values and string literals in a program.

� One literal table applies globally to the entire program.

� Used by the code generator to:
� Assign addresses for literals.

� Enter data definitions in the target code file.

� Avoids the replication of constants and strings.

� Quick insertion and lookup are essential. Deletion is not necessary.

� Temporary Files
� Used historically by old compilers due to memory constraints

� Hold the data of various stages


