What is a Compiler?

/ L/ L/
0‘0 0’0 0’0

/
0‘0

Source program

High-level language

L/
0’0

/
0‘0

Compiler

|s aprogram that translates one language to another

Takes as input a source program typically written in a high-level language
Produces an equivalent target program typically in assembly or machine language
Reports error messages as part of the trandation process

Target program

'

Error messages

Assembly or machine language

First computers of late 1940s were programmed in machine language
Machine language was soon replaced by assembly language

* |nstructions and memory locations are given symbolic names
* An assembler trandlates the symbolic assembly code into equivalent machine code
»* Assembly language improved programming, but is still machine dependent

Introduction to Compiling — 1

Compiler Design — © Muhammed Mudawwar

Brief History

>

< Theterm “compiler” was coined in the early 1950s by Grace Murray Hopper

* Trangdlation was then viewed as the “compilation” of a sequence of routines selected
from alibrary

» Thefirst compiler of the high-level language FORTRAN was developed
between 1954 and 1957 at IBM by a group led by John Backus

* Proved the viability of high-level and thus less machine dependent languages

» The study of the scanning and parsing problems were pursued in the 1960s and
1970s and led fairly to a complete solution

» Became standard part of compiler theory

»* Resulted in scanner and parser generators that automate part of compiler development

» The development of methods for generating efficient target code, known as
optimization techniques, is still an ongoing research

» Compiler technology was also applied in rather unexpected areas:

» Text-formatting languages

» Hardware description languages for the automatic creation of VL SI circuits

Introduction to Compiling — 2 Compiler Design — © Muhammed Mudawwar

The Translation Process

< A compiler performs two major tasks:
#* Analysis of the source program
» Synthesis of the target-language instructions

< Phases of acompiler:
* Scanning
»* Parsing
»* Semantic Analysis
»* |ntermediate Code Generation
»* |ntermediate Code Optimizer
»* Target Code Generator
» Target Code Optimizer

Introduction to Compiling — 3 Compiler Design — © Muhammed Mudawwar

The Translation Process — Cont'd

< Three auxiliary components

Interact with some or all phases:

#* Literal Table
» Symbol Table
* Error Handler

Source Code

!

L Annotated Tree

Literal
Table

Scanner

| ntermediate Code
Generator

Tokens

v

l Intermediate Code

Symbol
Table

Parser

|
Syntax Tree

v

|ntermediate Code
Optimizer

l Intermediate Code

Error

Handler

Semantic
Analyzer

Target Code
Generator

|
Annotated Tree

l Target Code

Target Code
Optimizer

L Target Code

Introduction to Compiling — 4

Compiler Design — © Muhammed Mudawwar

Scanner

< The scanner begins the analysis of the source program by:
»* Reading file character by character
» Grouping characters into tokens
» Eliminating unneeded information (comments and white space)
»* Entering preliminary information into literal or symbol tables
#* Processing compiler directives by setting flags
< Tokens represent basic program entities such as:
* |dentifiers, Literals, Reserved Words, Operators, Delimiters, etc.

o Example. a := x + y * 2.5 ; Isscanned as

a Identifier y Identifier

L= assignment operator * multiplication operator
X identifier 2.5 rea literal

+ plus operator ; semicolon

Introduction to Compiling — 5 Compiler Design — © Muhammed Mudawwar

Parser

< Recalves tokens from the scanner

< Recognizes the structure of the program asaparsetree
»* Parse tree Is recognized according to a context-free grammar
»* Syntax errors are reported if the program is syntactically incorrect

<+ A parsetreeisinefficient to represent the structure of a program
< A syntax treeisamore condensed version of the parse tree
< A syntax tree is usually generated as output by the parser

assign-stmt a:=x+y* 25;
—— N T
id a .= expr ; - = —
5 expr/ J|r \expr id a PVARN
Tree id x expr * expr Syntax /N
| | Tree id y literal 2.5

id y literal 2.5

Introduction to Compiling — 6 Compiler Design — © Muhammed Mudawwar

Semantic Analyzer

X4

X4

The semantics consist of:

The semantics of a program are its meaning as opposed to syntax or structure

* Runtime semantics — behavior of program at runtime

»* Static semantics — checked by the compiler

Static semantics include:
#* Declarations of variables and constants before use

X4

» Calling functionsthat exist (predefined in alibrary or defined by the user)

#* Passing parameters properly

* Type checking.
Static semantics are difficult to check by the parser
The semantic analyzer does the following:

#* Checks the static semantics of the language

#* Annotates the syntax tree with type information

0‘0

0‘0

- = real
/ \
id a + real
real N
id X * real
real /7 N\
int2real literal 2.5
Annotated 'o|| real
a'y
Syntax Tree integer

Introduction to Compiling — 7

Compiler Design — © Muhammed Mudawwar

Intermediate Code Generator

» Comes after syntax and semantic analysis
» Separates the compiler front end from its backend
» Intermediate representation should have 2 important properties:

% Should be easy to produce
#* Should be easy to trandate into the target program

» Intermediate representation can have avariety of forms:
#* Three-address code, P-code for an abstract machine, Tree or DAG representation

= real
id a/ \+ real Three-address code
real id x -~ * real templ := int2real(y)
real VRN I::> temp2 :=templ real* 2.5
int2real literal 2.5 temp3 := x real+ temp2
Annotated d| real a := temp3
1ay
Syntax Tree integer

Introduction to Compiling — 8 Compiler Design — © Muhammed Mudawwar

Code Generator

< Generates code for the target machine, typically:
#* Assembly code, or
#* Relocatable machine code

< Properties of the target machine become a major factor
< Code generator selects appropriate machine instructions
< Allocates memory locations for variables

< Allocates registers for intermediate computations

Assembly code (Hypothetical)
Three-address code LOAD| R1, Yy “R1 Cy
— MOVF F1, R1 ;; F1 « int2real(R1
emp? = nterealy) MULF F2.FL25 ~F2 . F1+ 25()
temp2 :=templ * 2.5 OADE F3’ y y £ L A :
temp3 = X + temp2 , ' -
a: = temp3 ADDF F4, F3, F2 . F4 -« F3+F2
STORF a,F4 ,a « F4

Introduction to Compiling — 9 Compiler Design — © Muhammed Mudawwar

Code Improvement

3

» Code improvement techniques can be applied to:

Intermediate code — independent of the target machine

#* Target code — dependent on the target machine

3

L O S

L)

L)

» Intermediate code improvement include:

Constant folding

Elimination of common sub-expressions

|dentification and elimination of unreachable code (called dead code)
|mproving loops

Improving function calls

» Target code improvement include:

#* Allocation and use of registers
#* Selection of better (faster) instructions and addressing modes

Introduction to Compiling — 10 Compiler Design — © Muhammed Mudawwar

Interpreter

» |saprogram that reads a source program and executes it
» Works by analyzing and executing the source program commands one at a time
» Does not trandate the source program into object code
> Interpretation is sensible when:
»* Programmer isworking in interactive mode and needs to view and update variables
»* Running speed is not important
#* Commands have ssimple formats, and thus can be quickly analyzed and executed
» Modification or addition to user programs is required as execution proceeds
> Well-known examples of interpreters:
» Basic interpreter, Lisp interpreter, UNIX shell command interpreter, SQL interpreter
> In principle, any programming language can be either interpreted or compiled
* Some languages are designed to be interpreted, others are designed to be compiled
» Interpreters involve large overheads
» Execution speed degradation can vary from 10:1 to 100:1
#* Substantial space overhead may be involved

Introduction to Compiling — 11 Compiler Design — © Muhammed Mudawwar

Programs Related to Compilers

< Preprocessor
»* Produces input to acompiler l C or C++ Program
* Performs the following: Preprocessor
<> Macro processing (substitutions)
% Fileinclusion C or C++ Program
. with macro substitutions
< Assembler and file inclusions
» Trangdlator for the assembly language _
: Compiler
#* Two-Pass Assembly:
<> All variables are allocated storage locations l Assembly code
< Assembler codeis trandated into machine code
* Output is relocatable machine code. Assembler
< Linkers Relocatable object
* Links object files separately compiled or assembled module
. i : . : Other object
#* Links object flles to standard library functions Linker < modules or
#* Generates afilethat can be loaded and executed library modules
< Debuggers i Executable code
< Editors

Introduction to Compiling — 12 Compiler Design — © Muhammed Mudawwar

Major Data and Structures in a Compiler

< Token
»* Represented by an integer value or an enumeration literal
#* Sometimes, it is necessary to preserve the string of characters that was scanned
<> For example, name of an identifiers or value of aliteral
< Syntax Tree
% Constructed as a pointer-based structure
» Dynamically allocated as parsing proceeds
#* Nodes have fields containing information collected by the parser and semantic analyzer

< Symbol Table
» Keeps information associated with all kinds of identifiers:
< Constants, variables, functions, parameters, types, fields, etc.
» |dentifiers are entered by the scanner, parser, or semantic analyzer
* Semantic analyzer adds type information and other attributes
#* Code generation and optimization phases use the information in the symbol table
* |nsertion, deletion, and search operations need to efficient because they are frequent
» Hash table with constant-time operationsis usually the preferred choice
* More than one symbol table may be used

Introduction to Compiling — 13 Compiler Design — © Muhammed Mudawwar

Major Data and Structures in a Compiler

< Literal Table
»* Stores constant values and string literals in a program.
»* One literal table applies globally to the entire program.

» Used by the code generator to:
< Assign addresses for literals.
< Enter data definitions in the target code file.

»* Avoids the replication of constants and strings.

»* Quick insertion and lookup are essential. Deletion is not necessary.
< Temporary Files

» Used historically by old compilers due to memory constraints

» Hold the data of various stages

Introduction to Compiling — 14 Compiler Design — © Muhammed Mudawwar

