Context-Free Grammar

< |saspecification for the syntax of a programming language
<+ Isaset of rewriting rulesor productions of the form:
A—> X X ... X,
#* A production has exactly one symbol A on the left-hand side (LHS)
* Can have zero, one, or more symbols X; on the right-hand side (RHS)

< For example, awhile statement is syntactically defined as:
while-stmt — while expr do stmt-list end ;

< Two kinds of symbols may appear in a context-free grammar:
#* Nonterminals appear in italic
#* Terminals appear in bold

< A nonterminal isaplace holder
* |s rewritten by the RHS of a production where it appears on the LHS

< Terminals represent the tokens of alanguage

Context-Free Grammars—1 Compiler Design — © Muhammed Mudawwar

Language of a Context-Free Grammar

< A seguence of tokensis syntactically legal if
* |t can be derived by applying the productions of the CFG
< A context-free grammar defines alanguage

»* Thislanguage is a set of strings (sequences) of tokens (terminals)
» Each string of tokensis derivable from the production rules of the CFG

< Consider the following simplified grammar for expressions
expr — expr op expr | (expr) | id | num
op—>+[—|*]/
* Thestring: (i d+num *id issyntactically legal and part of the language
* Similarly: i d*(numid) Isalso part of the language
»* However: (i d+num ISNOT part of the language
* Similarly: i d*- num+ ISNOT part of the language

Context-Free Grammars— 2 Compiler Design — © Muhammed Mudawwar

Derivations

< To check whether a sequence of tokensislegal or not:
»* \We start with anonterminal called the start symbol
»* \We apply productions, rewriting nonterminals, until only terminals remain
»* A derivation replaces a nonterminal on LHS of a production with RHS
* The = symbol denotes aderivation step
< For example, aderivationfor (id + num*id isgiven below:
expr = expr opexpr = (expr)opexpr = (expr op expr) op expr
= (expr + expr) op expr = (expr + expr)* expr
= (id+expr)*expr = (id+num)*expr = (id+num) *id
< Similarly, aderivation for i d*(num - id) isgiven below:
expr = expr op expr = expr op (expr) = expr op (expr op expr)
= expr* (expropexpr) = expr* (expr—expr)
= d* (expr—expr) = id* (num—expr) = id* (num—id)

Context-Free Grammars— 3 Compiler Design — © Muhammed Mudawwar

Formal Definition of a Context-Free Grammar

< A Context-Free Grammar consists of
* A finite set of terminalsT
#* A finite set of nonterminals N (digoint from T)
* A start symbol Se N
#* A set of productions or grammar rulesP

<- A productionruleisof theform: A— X, X, ... X_ ,whereAe Nand X, e NU T
< A production with zero symbols on the RHS (n = 0) isof theform: A — ¢
<> A productionisasowrittenas. A— o ,wherea € (NU T)*

< Thefollowing notation is used

*a, b, C, .. denoteterminal symbolsinT
* A B, C, ... denote nonterminal symbolsin N

#* X denotes agrammar symbol iInNuU T
* o, B,7, ... denote stringsof grammar symbolsin(Nw T)* including €
»* X denotes a string of terminalsin T* including €

Context-Free Grammars—4 Compiler Design — © Muhammed Mudawwar

More Formal Definitions

<+ If A— o Isaproduction then Ay = Boy isaderivation step
»* The nonterminal A isreplaced with a using the production A — a
< The derivation symbol = can be extended to

=" derived in one or more steps
=* derived in zero or more steps

< If the start symbol S=* 3 then 3 iIscalled asentential form

< Thelanguage of agrammar GisL(G)={xe T* |S=" x}

< Often more than one production share the same LHS
A—>al|B]|...|L isanabbreviationfor

A->a A->pB ... A->(

Context-Free Grammars—5 Compiler Design — © Muhammed Mudawwar

Leftmost and Rightmost Derivations

< When deriving a sequence of tokens...

» More than one nonterminal may be present and can be expanded

* A leftmost derivation chooses the leftmost nonterminal to expand

»* A leftmost derivation is denoted by =,

#* A rightmost derivation chooses the rightmost nonterminal to expand
* A rightmost derivation is denoted by =

<+ A leftmost derivationfor (id + num *id
expr =, expropexpr =, (expr)opexpr =, (expr opexpr) opexpr
=, (1dopexpr)opexpr =, (id+ expr) op expr
=, (id+num)opexpr =, (id+num)* expr =, (id+num)* id
< A rightmost derivation for (id + nun *id
expr =, expropexpr = expropid = expr*id = _ (expr)*id
=, (expropexpr)*id =, (expropnum)*id
=, (expr+num)*id =, (id+num)*id

Context-Free Grammars— 6 Compiler Design — © Muhammed Mudawwar

Parse Tree

< |sagraphical representation for aderivation
* Filters out choice regarding replacement order
#* Rooted by the start symbol S
* |nterior nodes represent nonterminalsin N
»* Leaf nodesareterminasinT or €
* Node A can have children X, X, ... X_ if arule A— X; X, ... X, exists

< Thefollowingisaparsetreefor (id + num) * id

expr — expr op expr =

expr — (expr) expr/ o|p \expr
expr — id /1N | |

expr — num Cepr) 7 d
op—>+|—[*]/ expr/o|p\expr

| | |
id + num

Context-Free Grammars—7 Compiler Design — © Muhammed Mudawwar

Preorder and Postorder Traversal

< A parse tree has a unique leftmost and rightmost derivation

< Leftmost derivation isaPreorder traversal of aparsetree
Thereverse of arightmost derivation is Postorder traver sal
Preorder traversal corresponds to top-down parsing

Postorder traversal corresponds to bottom-up parsing

>

»
*%

>

o
*%

*

o
*%

*

Preorder Traversal of Internal Nodes Postorder Traversal
1 expr 8 expr
_— | T _— | T
2 expr 70p 8 expr S expr 6 op 7 expr
SN | SN |
(3expr) * id (dexpr) * id
dexpr 5op 6expr lexpr 20p 3expr
| | | | | |
id + num id + num

Context-Free Grammars— 8 Compiler Design — © Muhammed Mudawwar

Ambiguous Grammars

< A grammar is called ambiguousif

* |t permits aterminal string to have more than one parse tree
* This means also more than one leftmost derivation for a given string
#* Also, more than one rightmost derivation for same string

< The grammar for expressions used so far is ambiguous
#* Two parsetreesforid +id * id

expr expr
expr — expr op expr e N i
expr — (expr) /e><|pr\ 0|p e><|pr e><|pf °|P /ex|pr\
expr — id expr Op expr id id L expr op expr
expr — num o I N
id + id id * id

op—>+|[—|*]/
< Ambiguous grammars should be avoided

* Do not guarantee unigue parsing and trand ation
»* Expression evaluation is not clearly defined in the above grammar

Context-Free Grammars—9 Compiler Design — © Muhammed Mudawwar

Eliminating Ambiguity in Expressions

< To guarantee unique trand ation, ambiguity should be eliminated
» Unfortunately, there is NO algorithm that detects ambiguity in any CFG
»* However, some classes of grammars can be shown to be unambiguous
< To handle ambiguity in expressions...
#* The precedence and associativity of operators specify order of evaluation
#* Higher precedence operators are evaluated first
» Equal precedence operators are evaluated according to associativity
< Left-to-right or Right-to-left
< To handle precedence of operators...
» \We divide operators into groups of equal precedence
»* For each precedence level, we introduce a nonterminal and grammar rules

< To handle associativity of operators...
»* \We design grammar rules to be either |eft or right recursive

Context-Free Grammars— 10 Compiler Design — © Muhammed Mudawwar

Eliminating Ambiguity in Expressions — cont'd

< Ambiguous Grammar for Expressions:.

expr — expr op expr Left and Right Recursive => Ambiguous
expr — (expr)

) expr
expr — id O”eigirisjirieffor — dé \t
expr — num expr addop erm
P . | | | T~
op—>+|—-|*|/ term + term mulop factor
| | | |
< Unambiguous Grammar: faC|t0r fac|t0r * id
expr — expr addop term id id
expr — term
expr
term — term mulop factor e
term — factor expr addop term
— | T | |
factor — (expr) expr addop term + factor
factor — id | | | |
Oneparsetreefor term — factor id
factor — num d_id+id | |
addop —» + | — factor id
|
mulop —»> * |/ id

Context-Free Grammars—11 Compiler Design — © Muhammed Mudawwar

Ambiguity of Else In If Statements

< Consider the following grammar for if statements:
simt — if expr then stmt
ssimt — If expr then stmt else stmt
stmt — other-stmt

<+ There aretwo parsetreesfor: if E1 then if E2 then S1 else S2
* The two parse trees trandlate differently the else part
* Theelse part can be attached to inner if (should be the case) or to outer if

///\\\ p//\\

expr then stmt else stmt expr then
E2 Sl

Context-Free Grammars— 12 Compiler Design — © Muhammed Mudawwar

Eliminating Ambiguity of Else In If Statements

< To eliminate ambiguity of elseinif statements...
»* \We distinguish matched if statements from unmatched ones
* Weinsist on having a matched statement between then and else

< Unambiguous grammar for if statementsis given below
stmt — matched | unmatched
matched — if expr then matched else matched | other-stmt

unmatched — if expr then stmt
unmatched — if expr then matched else unmatched

stmt
|
unmatched
 epr then §
One parse tree for: ! ex|pr then st
matched
If E1 then if E2 then S1 else S2 M <
if expr then matched else matched
| | |
E2 S1 S2

Context-Free Grammars — 13 Compiler Design — © Muhammed Mudawwar

Extended BNF Notation

< A context free grammar is aso called a BNF notation
#* BNF isthe Backus-Naur Form (named after its inventors)

< Repetitive and optional sequences are common in grammars
#* An optional sequenceisenclosed in brackets[and |
»* An optional and repetitive sequence is enclosed in braces{ and }

+ For example, a statement sequence can be defined in many ways

*%

*

stmt-seq — stmt-seq ; stmt | stmt BNF L eft Recursive
stmt-seq — stmt ; stmt-seq | st BNF Right Recursive
stmt-seq — stmt { ; stmt } EBNF Notation

L)

*

An optional else part in an if statement terminated with end
if-ssmt — If expr then stmt-seq [else stmt-seq | end

EBNF has the same definitional capability of ordinary BNF
»* Advantage of EBNF grammarsis that they are more compact and readable

L)

L)

*%

Context-Free Grammars— 14 Compiler Design — © Muhammed Mudawwar

The Chomsky Hierarchy

< Theform of productions has a profound effect on grammar

’0

» Inunrestricted grammars, aproduction is of theformo — 8
* Thereisno restriction on o except that it should be different from ¢

L)

» In context-sensitive grammars, a production is BAy — Bay
#* Context-sensitive grammars are more powerful than context-free grammars
»* However, context-sensitive grammars are more difficult to parse

In context-free grammars, aproduction is of theform A — o
* Thereisno context for A; A may be replaced by a anywhere we like

Inregular grammars, aproductionisA—>cB,A—>c,or A— ¢
* The language generated by aregular grammar isaregular language
#* Regular grammars are equivalent to regular expressions
»* For example, the regular expression ab* ¢ can be described as:
<~A—>abB B>bB]|c

L)

L)

*

L)

%

Context-Free Grammars— 15 Compiler Design — © Muhammed Mudawwar

Syntax of TINY Language

<+ The syntax of TINY language is given below:

program — stmt-seq
stmt-seq — stmt-seq stmt ; | stmt semicolons ter minate statements

stmt — If expr then stmt-seq end

stmt — If expr then stmt-seq else stmt-seq end
stmt — while expr do stmt-seq end

stmt — 1d = expr

stmt — read id-seq

stmt — write expr-seq

id-seq — id-seq, id | id

expr-seq — expr-seq , expr | expr

expr — expr relop addexpr | addexpr

addexpr — addexpr addop mulexpr | mulexpr
mulexpr — mulexpr mulop primary | primary
primary — (expr) | id | intliteral | strliteral

Context-Free Grammars— 16 Compiler Design — © Muhammed Mudawwar

Syntax Trees

< A parse tree captures the derivation steps of a parser

<+ However, aparsetree isNOT useful to represent computation
»* Contains alot more information than needed for tranglation

< A syntax treeisamore compact representation of a computation
» Useful to generate, by aparser, as afirst step in the translation process
#* Nonterminals and some tokens are unnecessary and hence removed

< Consider the expression: a<b* 3

expr
T — Syntax Tree
Parse expr relop < addexpr op <
Tree | |
addexpr mulexpr
| e | N
mulexpr mulexpr mulop * primary id a op *
| | |
primary primary intlit 3 N
N N idb intlit 3
id a idb

Context-Free Grammars— 17 Compiler Design — © Muhammed Mudawwar

Syntax Trees — cont'd

< Syntax trees are also appropriate to represent statements
* A statement sequence can be represented either asatree or asalinked list

< Syntax trees are also called abstract syntax trees
* They represent the abstract structure of programs
»* Parse trees, however, represent the concrete structur e of programs

' = Tree
! - ' A representation

) of a statement

St S sequence
expr then-part else-part id name expr
Seq
stmt
while Linked list representation of

a statement sequence stmt stmt
L] L] L] L]

expr body stmt stmt stmt stmt

Context-Free Grammars— 18 Compiler Design — © Muhammed Mudawwar

