
Context-Free Grammars – 1 Compiler Design – © Muhammed Mudawwar

Context-Free Grammar
� Is a specification for the syntax of a programming language

� Is a set of rewriting rules or productions of the form:
A � X1 X2 ... Xn

� A production has exactly one symbol A on the left-hand side (LHS)
� Can have zero, one, or more symbols Xi on the right-hand side (RHS)

� For example, a while statement is syntactically defined as:
while-stmt � while expr do stmt-list end ;

� Two kinds of symbols may appear in a context-free grammar:
� Nonterminals appear in italic
� Terminals appear in bold

� A nonterminal is a place holder
� Is rewritten by the RHS of a production where it appears on the LHS

� Terminals represent the tokens of a language

Context-Free Grammars – 2 Compiler Design – © Muhammed Mudawwar

Language of a Context-Free Grammar
� A sequence of tokens is syntactically legal if

� It can be derived by applying the productions of the CFG

� A context-free grammar defines a language
� This language is a set of strings (sequences) of tokens (terminals)

� Each string of tokens is derivable from the production rules of the CFG

� Consider the following simplified grammar for expressions
expr � expr op expr | (expr) | id | num
op � + | – | * | /

� The string:(id+num)*id is syntactically legal and part of the language

� Similarly: id*(num-id) is also part of the language

� However: (id+num is NOT part of the language

� Similarly: id*-num+ is NOT part of the language

Context-Free Grammars – 3 Compiler Design – © Muhammed Mudawwar

Derivations
� To check whether a sequence of tokens is legal or not:

� We start with a nonterminal called the start symbol

� We apply productions, rewriting nonterminals, until only terminals remain

� A derivation replaces a nonterminal on LHS of a production with RHS

� The � symbol denotes a derivation step

� For example, a derivation for (id + num)*id is given below:
expr � expr op expr � (expr) op expr � (expr op expr) op expr

� (expr + expr) op expr � (expr + expr) * expr

� (id + expr) * expr � (id + num) * expr � (id + num) * id

� Similarly, a derivation for id*(num - id) is given below:
expr � expr op expr � expr op (expr) � expr op (expr op expr)

� expr * (expr op expr) � expr * (expr – expr)
� id * (expr – expr) � id * (num – expr) � id * (num – id)

Context-Free Grammars – 4 Compiler Design – © Muhammed Mudawwar

Formal Definition of a Context-Free Grammar
� A Context-Free Grammar consists of

� A finite set of terminals T

� A finite set of nonterminals N (disjoint from T)

� A start symbol S � N

� A set of productions or grammar rules P

� A production rule is of the form: A � X1 X2 ... Xn , where A � N and Xi � N � T

� A production with zero symbols on the RHS (n = 0) is of the form: A � �
� A production is also written as: A � ��, where � � (N � T)*

� The following notation is used

� a, b, c, ... denote terminal symbols in T
� A, B, C, ... denote nonterminal symbols in N
� X denotes a grammar symbol in N � T
� �, �, 	, ... denote strings of grammar symbols in (N � T)* including �
� x denotes a string of terminals in T* including �

Context-Free Grammars – 5 Compiler Design – © Muhammed Mudawwar

More Formal Definitions
� If A � � is a production then �A	 � ��	 is a derivation step

� The nonterminal A is replaced with � using the production A � �

� The derivation symbol � can be extended to
�+ derived in one or more steps

�* derived in zero or more steps

� If the start symbol S �* � then � is called a sentential form
� The language of a grammar G is L(G) = {x � T* | S �+ x}

� Often more than one production share the same LHS
A � � | � | . . . |
 is an abbreviation for

A � ��� A � ��� . . . A �

Context-Free Grammars – 6 Compiler Design – © Muhammed Mudawwar

Leftmost and Rightmost Derivations
� When deriving a sequence of tokens ...

� More than one nonterminal may be present and can be expanded
� A leftmost derivation chooses the leftmost nonterminal to expand
� A leftmost derivation is denoted by �lm

� A rightmost derivation chooses the rightmost nonterminal to expand
� A rightmost derivation is denoted by �rm

� A leftmost derivation for (id + num)*id

expr �lm expr op expr �lm (expr) op expr �lm (expr op expr) op expr

�lm (id op expr) op expr �lm (id + expr) op expr

�lm (id + num) op expr �lm (id + num) * expr �lm (id + num) * id

� A rightmost derivation for (id + num)*id

expr �rm expr op expr �rm expr op id �rm expr * id �rm (expr) * id
�rm (expr op expr) * id �rm (expr op num) * id
�rm (expr + num) * id �rm (id + num) * id

Context-Free Grammars – 7 Compiler Design – © Muhammed Mudawwar

Parse Tree
� Is a graphical representation for a derivation

� Filters out choice regarding replacement order
� Rooted by the start symbol S
� Interior nodes represent nonterminals in N
� Leaf nodes are terminals in T or �
� Node A can have children X1 X2 ... Xn if a rule A � X1 X2 ... Xn exists

� The following is a parse tree for (id + num) * id

expr � expr op expr

expr � (expr)
expr � id
expr � num
op � + | – | * | /

expr

expr op expr

expr() * id

expr exprop

id + num

Context-Free Grammars – 8 Compiler Design – © Muhammed Mudawwar

Preorder and Postorder Traversal
� A parse tree has a unique leftmost and rightmost derivation

� Leftmost derivation is a Preorder traversal of a parse tree

� The reverse of a rightmost derivation is Postorder traversal
� Preorder traversal corresponds to top-down parsing
� Postorder traversal corresponds to bottom-up parsing

1 expr

2 expr 7 op 8 expr

3 expr() * id

4 expr 6 expr5 op

id + num

Preorder Traversal of Internal Nodes

8 expr

5 expr 6 op 7 expr

4 expr() * id

1 expr 3 expr2 op

id + num

Postorder Traversal

Context-Free Grammars – 9 Compiler Design – © Muhammed Mudawwar

Ambiguous Grammars
� A grammar is called ambiguous if

� It permits a terminal string to have more than one parse tree
� This means also more than one leftmost derivation for a given string
� Also, more than one rightmost derivation for same string

� The grammar for expressions used so far is ambiguous
� Two parse trees for id + id * id

expr � expr op expr
expr � (expr)
expr � id
expr � num
op � + | – | * | /

� Ambiguous grammars should be avoided
� Do not guarantee unique parsing and translation

� Expression evaluation is not clearly defined in the above grammar

expr

op expr

* id

expr

expr exprop

id + id

expr

op

+

expr

id expr

expr

exprop

id * id

Context-Free Grammars – 10 Compiler Design – © Muhammed Mudawwar

Eliminating Ambiguity in Expressions
� To guarantee unique translation, ambiguity should be eliminated

� Unfortunately, there is NO algorithm that detects ambiguity in any CFG

� However, some classes of grammars can be shown to be unambiguous

� To handle ambiguity in expressions …
� The precedence and associativity of operators specify order of evaluation

� Higher precedence operators are evaluated first

� Equal precedence operators are evaluated according to associativity
� Left-to-right or Right-to-left

� To handle precedence of operators …
� We divide operators into groups of equal precedence

� For each precedence level, we introduce a nonterminal and grammar rules

� To handle associativity of operators …
� We design grammar rules to be either left or right recursive

Context-Free Grammars – 11 Compiler Design – © Muhammed Mudawwar

Eliminating Ambiguity in Expressions – cont'd
� Ambiguous Grammar for Expressions:

expr � expr op expr Left and Right Recursive => Ambiguous
expr � (expr)
expr � id
expr � num
op � + | – | * | /

� Unambiguous Grammar:
expr � expr addop term
expr � term
term � term mulop factor
term � factor
factor � (expr)
factor � id
factor � num
addop � + | –
mulop � * | /

One parse tree for
id + id * id

expr

addop term

+

id

expr

term factormulop

*

term

factor id

id

factor

One parse tree for
id – id + id

expr

addop term

– id

expr

factorexpr termaddop +

term

id

factor id

factor

Context-Free Grammars – 12 Compiler Design – © Muhammed Mudawwar

Ambiguity of Else in If Statements
� Consider the following grammar for if statements:

stmt � if expr then stmt

stmt � if expr then stmt else stmt

stmt � other-stmt

� There are two parse trees for: if E1 then if E2 then S1 else S2
� The two parse trees translate differently the else part

� The else part can be attached to inner if (should be the case) or to outer if

if expr then stmt else stmt

E2 S1 S2

stmt

expr stmtif then

E1

expr stmtif then

E2

if expr then stmt else stmt

E1 S2

S1

stmt

Context-Free Grammars – 13 Compiler Design – © Muhammed Mudawwar

Eliminating Ambiguity of Else in If Statements
� To eliminate ambiguity of else in if statements ...

� We distinguish matched if statements from unmatched ones

� We insist on having a matched statement between then and else

� Unambiguous grammar for if statements is given below
stmt � matched | unmatched
matched � if expr then matched else matched | other-stmt
unmatched � if expr then stmt
unmatched � if expr then matched else unmatched

One parse tree for:

if E1 then if E2 then S1 else S2
if expr then matched else

E2 S1 S2

stmt

expr stmtif then

E1

unmatched

matched

matched

Context-Free Grammars – 14 Compiler Design – © Muhammed Mudawwar

Extended BNF Notation
� A context free grammar is also called a BNF notation

� BNF is the Backus-Naur Form (named after its inventors)

� Repetitive and optional sequences are common in grammars
� An optional sequence is enclosed in brackets [and]

� An optional and repetitive sequence is enclosed in braces { and }

� For example, a statement sequence can be defined in many ways
stmt-seq � stmt-seq ; stmt | stmt BNF Left Recursive
stmt-seq � stmt ; stmt-seq | stmt BNF Right Recursive
stmt-seq � stmt { ; stmt } EBNF Notation

� An optional else part in an if statement terminated with end
if-stmt � if expr then stmt-seq [else stmt-seq] end

� EBNF has the same definitional capability of ordinary BNF
� Advantage of EBNF grammars is that they are more compact and readable

Context-Free Grammars – 15 Compiler Design – © Muhammed Mudawwar

The Chomsky Hierarchy
� The form of productions has a profound effect on grammar

� In unrestricted grammars, a production is of the form � � �
� There is no restriction on � except that it should be different from �

� In context-sensitive grammars, a production is �A	 � ��	
� Context-sensitive grammars are more powerful than context-free grammars

� However, context-sensitive grammars are more difficult to parse

� In context-free grammars, a production is of the form A � �
� There is no context for A; A may be replaced by � anywhere we like

� In regular grammars, a production is A � c B, A � c, or A � �
� The language generated by a regular grammar is a regular language
� Regular grammars are equivalent to regular expressions

� For example, the regular expression ab*c can be described as:
� A � a B B � b B | c

Context-Free Grammars – 16 Compiler Design – © Muhammed Mudawwar

Syntax of TINY Language
� The syntax of TINY language is given below:

program � stmt-seq
stmt-seq � stmt-seq stmt ; | stmt ; semicolons terminate statements
stmt � if expr then stmt-seq end
stmt � if expr then stmt-seq else stmt-seq end
stmt � while expr do stmt-seq end
stmt � id := expr
stmt � read id-seq
stmt � write expr-seq
id-seq � id-seq , id | id
expr-seq � expr-seq , expr | expr
expr � expr relop addexpr | addexpr
addexpr � addexpr addop mulexpr | mulexpr
mulexpr � mulexpr mulop primary | primary
primary � (expr) | id | intliteral | strliteral

Context-Free Grammars – 17 Compiler Design – © Muhammed Mudawwar

Syntax Trees
� A parse tree captures the derivation steps of a parser

� However, a parse tree is NOT useful to represent computation
� Contains a lot more information than needed for translation

� A syntax tree is a more compact representation of a computation
� Useful to generate, by a parser, as a first step in the translation process

� Nonterminals and some tokens are unnecessary and hence removed

� Consider the expression: a < b * 3
expr

relop <expr

id b

addexpr

mulexpr

primarymulop *mulexpr

primary intlit 3

addexpr

mulexpr

id a

primary

Parse
Tree

op <

id a op *

id b intlit 3

Syntax Tree

Context-Free Grammars – 18 Compiler Design – © Muhammed Mudawwar

Syntax Trees – cont'd
� Syntax trees are also appropriate to represent statements

� A statement sequence can be represented either as a tree or as a linked list

� Syntax trees are also called abstract syntax trees
� They represent the abstract structure of programs

� Parse trees, however, represent the concrete structure of programs

expr then-part else-part

if

expr body

while

id name expr

:=

stmt

seq

stmt
seq

stmt
seq

stmt

stmt stmt stmt stmt

Linked list representation of
a statement sequence

Tree
representation
of a statement

sequence

