# **Context-Free Grammar**

- ✤ Is a specification for the syntax of a programming language
- ✤ Is a set of rewriting rules or productions of the form:

 $A \to X_1 X_2 \dots X_n$ 

- \* A production has exactly one symbol *A* on the left-hand side (LHS)
- \* Can have zero, one, or more symbols  $X_i$  on the right-hand side (RHS)
- ✤ For example, a while statement is syntactically defined as: *while-stmt* → while *expr* do *stmt-list* end;
- Two kinds of symbols may appear in a context-free grammar:
  - \* Nonterminals appear in *italic*
  - **\*** Terminals appear in **bold**
- \* A **nonterminal** is a place holder
  - \* Is rewritten by the RHS of a production where it appears on the LHS
- Terminals represent the tokens of a language

Context-Free Grammars – 1

## Language of a Context-Free Grammar

- ✤ A sequence of tokens is syntactically legal if
  - \* It can be **derived** by applying the productions of the CFG
- ✤ A context-free grammar defines a language
  - \* This language is a set of strings (sequences) of tokens (terminals)
  - \* Each string of tokens is **derivable** from the production rules of the CFG
- Consider the following simplified grammar for expressions *expr* → *expr* op *expr* | (*expr*) | **id** | **num** *op* → + | | \* | /
  - \* The string: (id+num)\*id is syntactically legal and part of the language
    \* Similarly: id\*(num-id) is also part of the language
    \* However: (id+num is NOT part of the language
    \* Similarly: id\*-num+ is NOT part of the language

#### **Derivations**

- ✤ To check whether a sequence of tokens is legal or not:
  - \* We start with a nonterminal called the **start** symbol
  - \* We apply productions, rewriting nonterminals, until only terminals remain
  - \* A derivation replaces a nonterminal on LHS of a production with RHS
  - \* The  $\Rightarrow$  symbol denotes a derivation step
- For example, a derivation for (id + num)\*id is given below:

$$expr \Rightarrow expr op expr \Rightarrow (expr) op expr \Rightarrow (expr op expr) op expr$$

$$\Rightarrow$$
 (expr + expr) op expr  $\Rightarrow$  (expr + expr) \* expr

 $\Rightarrow (id + expr) * expr \Rightarrow (id + num) * expr \Rightarrow (id + num) * id$ 

Similarly, a derivation for id\*(num - id) is given below:

$$expr \Rightarrow expr op expr \Rightarrow expr op (expr) \Rightarrow expr op (expr op expr)$$
  
$$\Rightarrow expr * (expr op expr) \Rightarrow expr * (expr - expr)$$
  
$$\Rightarrow id * (expr - expr) \Rightarrow id * (num - expr) \Rightarrow id * (num - id)$$

## Formal Definition of a Context-Free Grammar

- ✤ A Context-Free Grammar consists of
  - \* A finite set of terminals *T*
  - \* A finite set of nonterminals *N* (disjoint from *T*)
  - \* A start symbol  $S \in N$
  - \* A set of productions or grammar rules *P*

♦ A production rule is of the form:  $A \rightarrow X_1 X_2 \dots X_n$ , where  $A \in N$  and  $X_i \in N \cup T$ 

♦ A production with zero symbols on the RHS (n = 0) is of the form:  $A \rightarrow ε$ 

 $\diamond$  A production is also written as:  $A \rightarrow \alpha$ , where  $\alpha \in (N \cup T)^*$ 

- The following notation is used
  - \* a, b, c, ... denote terminal symbols in T
  - \* A, B, C, ... denote nonterminal symbols in N
  - \* *X* denotes a grammar symbol in  $N \cup T$
  - \*  $\alpha$ ,  $\beta$ ,  $\gamma$ , ... denote strings of grammar symbols in ( $N \cup T$ )\* including  $\varepsilon$
  - \* x denotes a string of terminals in  $T^*$  including  $\varepsilon$

#### **More Formal Definitions**

- ★ If *A* → α is a production then  $βAγ \Rightarrow βαγ$  is a derivation step
  - \* The nonterminal A is replaced with  $\alpha$  using the production  $A \rightarrow \alpha$
- ✤ The derivation symbol  $\Rightarrow$  can be extended to
  - $\Rightarrow^+$  derived in one or more steps
  - $\Rightarrow^*$  derived in zero or more steps
- ★ If the start symbol *S* ⇒\*  $\beta$  then  $\beta$  is called a **sentential form**
- ★ The **language of a grammar** G is  $L(G) = \{x \in T^* | S \Rightarrow^+ x\}$
- ♦ Often more than one production share the same LHS  $A \rightarrow \alpha | β | ... | ζ \text{ is an abbreviation for}$

 $A \to \alpha \quad A \to \beta \quad \dots \quad A \to \zeta$ 

#### Leftmost and Rightmost Derivations

- ✤ When deriving a sequence of tokens ...
  - \* More than one nonterminal may be present and can be expanded
  - \* A leftmost derivation chooses the leftmost nonterminal to expand
  - \* A leftmost derivation is denoted by  $\Rightarrow_{lm}$
  - \* A **rightmost derivation** chooses the rightmost nonterminal to expand
  - \* A rightmost derivation is denoted by  $\Rightarrow_{rm}$
- ♦ A leftmost derivation for (id + num)\*id

$$expr \Rightarrow_{lm} expr op expr \Rightarrow_{lm} (expr) op expr \Rightarrow_{lm} (expr op expr) op expr \Rightarrow_{lm} (id op expr) op expr \Rightarrow_{lm} (id + expr) op expr \Rightarrow_{lm} (id + num) op expr \Rightarrow_{lm} (id + num) * expr \Rightarrow_{lm} (id + num) * id$$

✤ A rightmost derivation for (id + num)\*id

$$expr \Rightarrow_{rm} expr op expr \Rightarrow_{rm} expr op id \Rightarrow_{rm} expr * id \Rightarrow_{rm} (expr) * id \Rightarrow_{rm} (expr op expr) * id \Rightarrow_{rm} (expr op num) * id \Rightarrow_{rm} (expr + num) * id \Rightarrow_{rm} (id + num) * id$$

### Parse Tree

- ✤ Is a graphical representation for a derivation
  - \* Filters out choice regarding replacement order
  - \* Rooted by the start symbol S
  - \* Interior nodes represent nonterminals in N
  - \* Leaf nodes are terminals in T or  $\varepsilon$
  - \* Node A can have children  $X_1 X_2 \dots X_n$  if a rule  $A \to X_1 X_2 \dots X_n$  exists
- The following is a parse tree for ( id + num ) \* id



Context-Free Grammars – 7

#### **Preorder and Postorder Traversal**

- ✤ A parse tree has a unique leftmost and rightmost derivation
- ✤ Leftmost derivation is a Preorder traversal of a parse tree
- The reverse of a rightmost derivation is Postorder traversal
- Preorder traversal corresponds to top-down parsing
- Postorder traversal corresponds to bottom-up parsing



*Context-Free Grammars* – 8

# **Ambiguous Grammars**

- ✤ A grammar is called **ambiguous** if
  - \* It permits a terminal string to have more than one parse tree
  - \* This means also more than one leftmost derivation for a given string
  - \* Also, more than one rightmost derivation for same string
- The grammar for expressions used so far is ambiguous



- Ambiguous grammars should be avoided
  - \* Do not guarantee unique parsing and translation
  - \* Expression evaluation is not clearly defined in the above grammar

## Eliminating Ambiguity in Expressions

- To guarantee unique translation, ambiguity should be eliminated
  - \* Unfortunately, there is NO algorithm that detects ambiguity in any CFG
  - \* However, some classes of grammars can be shown to be unambiguous
- ✤ To handle ambiguity in expressions ...
  - \* The **precedence** and **associativity** of operators specify order of evaluation
  - \* Higher precedence operators are evaluated first
  - ★ Equal precedence operators are evaluated according to associativity
     ◇ Left-to-right or Right-to-left
- ✤ To handle precedence of operators ...
  - \* We divide operators into groups of equal precedence
  - \* For each precedence level, we introduce a nonterminal and grammar rules
- ✤ To handle associativity of operators ...
  - \* We design grammar rules to be either left or right recursive

## Eliminating Ambiguity in Expressions – cont'd

Ambiguous Grammar for Expressions:



*Context-Free Grammars* – 11

### Ambiguity of Else in If Statements

- \* Consider the following grammar for **if** statements:
  - $stmt \rightarrow if expr then stmt$
  - $stmt \rightarrow if expr$  then stmt else stmt
  - $stmt \rightarrow other-stmt$
- ✤ There are two parse trees for: if E1 then if E2 then S1 else S2
  - \* The two parse trees translate differently the **else** part
  - \* The else part can be attached to inner if (should be the case) or to outer if



Context-Free Grammars – 12

## Eliminating Ambiguity of Else in If Statements

- \* To eliminate ambiguity of else in if statements ...
  - \* We distinguish **matched if** statements from **unmatched** ones
  - \* We insist on having a **matched statement between then and else**
- ✤ Unambiguous grammar for if statements is given below
  - stmt  $\rightarrow$  matched | unmatched
  - matched  $\rightarrow$  if expr then matched else matched | other-stmt
  - unmatched  $\rightarrow$  if expr then stmt
  - unmatched  $\rightarrow$  if expr then matched else unmatched



*Context-Free Grammars* – 13

 $Compiler \ Design - @ \ Muhammed \ Mudawwar$ 

## **Extended BNF Notation**

- ✤ A context free grammar is also called a BNF notation
  - \* BNF is the Backus-Naur Form (named after its inventors)
- Repetitive and optional sequences are common in grammars
  - \* An optional sequence is enclosed in brackets [ and ]
  - \* An optional and repetitive sequence is enclosed in braces { and }
- ★ For example, a statement sequence can be defined in many ways stmt-seq → stmt-seq ; stmt | stmt
   BNF Left Recursive
   BNF Right Recursive
   Stmt-seq → stmt { ; stmt }
   BNF Notation
- ★ An optional else part in an if statement terminated with end if-stmt → if expr then stmt-seq [ else stmt-seq ] end
- EBNF has the same definitional capability of ordinary BNF
  Advantage of EBNF grammars is that they are more compact and readable

## The Chomsky Hierarchy

- The form of productions has a profound effect on grammar
- \* In **unrestricted grammars**, a production is of the form  $\alpha \rightarrow \beta$ 
  - \* There is no restriction on  $\alpha$  except that it should be different from  $\epsilon$
- ★ In **context-sensitive grammars**, a production is βAγ → βαγ
  - \* Context-sensitive grammars are more powerful than context-free grammars
  - \* However, context-sensitive grammars are more difficult to parse
- ★ In context-free grammars, a production is of the form  $A \rightarrow \alpha$ 
  - \* There is no context for A; A may be replaced by  $\alpha$  anywhere we like
- ★ In regular grammars, a production is  $A \rightarrow c B$ ,  $A \rightarrow c$ , or  $A \rightarrow ε$ 
  - \* The language generated by a regular grammar is a **regular language**
  - \* Regular grammars are equivalent to regular expressions
  - \* For example, the regular expression **ab**\***c** can be described as:
    - $\diamond A \to \mathbf{a} B \qquad B \to \mathbf{b} B \mid \mathbf{c}$

# Syntax of TINY Language

✤ The syntax of TINY language is given below:

| program  | $\rightarrow$ | stmt-seq                                                                    |
|----------|---------------|-----------------------------------------------------------------------------|
| stmt-seq | $\rightarrow$ | <i>stmt-seq stmt</i> ; <i>stmt</i> ; <b>semicolons terminate statements</b> |
| stmt     | $\rightarrow$ | if expr then stmt-seq end                                                   |
| stmt     | $\rightarrow$ | if expr then stmt-seq else stmt-seq end                                     |
| stmt     | $\rightarrow$ | while expr do stmt-seq end                                                  |
| stmt     | $\rightarrow$ | id := expr                                                                  |
| stmt     | $\rightarrow$ | read <i>id-seq</i>                                                          |
| stmt     | $\rightarrow$ | write expr-seq                                                              |
| id-seq   | $\rightarrow$ | id-seq, id   id                                                             |
| expr-seq | $\rightarrow$ | expr-seq, expr   expr                                                       |
| expr     | $\rightarrow$ | expr <b>relop</b> addexpr   addexpr                                         |
| addexpr  | $\rightarrow$ | addexpr addop mulexpr   mulexpr                                             |
| mulexpr  | $\rightarrow$ | mulexpr <b>mulop</b> primary   primary                                      |
| primary  | $\rightarrow$ | ( expr )   id   intliteral   strliteral                                     |

*Context-Free Grammars* – 16

## Syntax Trees

- ✤ A parse tree captures the derivation steps of a parser
- However, a parse tree is NOT useful to represent computation
   Contains a lot more information than needed for translation
- \* A syntax tree is a more compact representation of a computation
  - \* Useful to generate, by a parser, as a first step in the translation process
  - \* Nonterminals and some tokens are unnecessary and hence removed
- Consider the expression: a < b \* 3



Context-Free Grammars - 17

#### Syntax Trees – cont'd

- Syntax trees are also appropriate to represent statements
  - \* A statement sequence can be represented either as a tree or as a linked list
- Syntax trees are also called abstract syntax trees
  - \* They represent the **abstract structure** of programs
  - \* Parse trees, however, represent the **concrete structure** of programs



Context-Free Grammars – 18