Compiler Design — Spring 2002

Professor : Muhammed F. Mudawwar
Office : Room 733 Falaki Academic Center, x5305
Office Hours : UMW 10 - 12 or by appointment

Email : mudawwar@aucegypt.edu
Web: http://www.cs.aucegypt.edu/~mudawwar/csci447/
Textbook: Kenneth Louden, Compiler Construction: Principles and Practice,
PWS publishing company, 1997
Reference: Aho, Sethi, and Ullman, Compilers: Principles, Technigues, and
Tools, Addison Wesley, 1988.
Objectives
This course presents a practical approach to the subject of compiler
construction. It is intended not only to cover the components of a compiler,
but also how they actually fit together. The use of compiler tools, such as
Lex and Yacc, are emphasized to automate the generation of compiler
components, wherever applicable.
Subjects

Introduction to Compiling, the translation process, major data structures in
a compiler, programs related to compilers.

Scanning theory, regular expressions, finite automata, from regular
expressions to finite automata.

Using the Lex Scanner Generator, a TINY language and scanner.
Hashing, hash tables and symbol tables.

Context-free grammars, derivations and parse trees, abstract syntax trees,
ambiguous grammars, extended BNF notations, Syntax of TINY.

Recursive-Descent parsing, Syntax tree construction, LL(1) Parsing, First
and Follow sets, Predict function, LL(1) parse table.

Bottom-up parsing, LR parsers, LR(0) items and parsing, SLR(1) parsing.

Using the Yacc parser generator, eliminating ambiguity and conflicts, error
recovery, Yacc parser generation for TINY.

Semantic Processing: attribute grammars, syntax-directed translation,
semantic processing techniques.

Processing declarations, symbol attributes, dealing with scope, fields and
records.

Data Types and type checking.

Intermediate code, data structures for code generation, basic code
generation techniques.

Assighments

Assignments can be done in groups of 2 or at most 3 students.

Scanner generation with Lex, symbol table for identifiers and literals.
Recursive descent parsing, generating a syntax tree.
Yacc specification, type checking, intermediate code generation.

Grading

Written assignments and quizzes: 15%
Programming Assignments: 30%
Midterm Exam: 20% or 25%

Final Exam: 35% or 30%



