
Compiler Design – Spring 2002

Professor : Muhammed F. Mudawwar
Office : Room 733 Falaki Academic Center, x5305
Office Hours : UMW 10 - 12 or by appointment
Email : mudawwar@aucegypt.edu
Web: http://www.cs.aucegypt.edu/~mudawwar/csci447/
Textbook: Kenneth Louden, Compiler Construction: Principles and Practice,

PWS publishing company, 1997
Reference: Aho, Sethi, and Ullman, Compilers: Principles, Techniques, and

Tools, Addison Wesley, 1988.

Objectives

This course presents a practical approach to the subject of compiler
construction. It is intended not only to cover the components of a compiler,
but also how they actually fit together. The use of compiler tools, such as
Lex and Yacc, are emphasized to automate the generation of compiler
components, wherever applicable.

Subjects
• Introduction to Compiling, the translation process, major data structures in

a compiler, programs related to compilers.
• Scanning theory, regular expressions, finite automata, from regular

expressions to finite automata.
• Using the Lex Scanner Generator, a TINY language and scanner.
• Hashing, hash tables and symbol tables.
• Context-free grammars, derivations and parse trees, abstract syntax trees,

ambiguous grammars, extended BNF notations, Syntax of TINY.
• Recursive-Descent parsing, Syntax tree construction, LL(1) Parsing, First

and Follow sets, Predict function, LL(1) parse table.
• Bottom-up parsing, LR parsers, LR(0) items and parsing, SLR(1) parsing.
• Using the Yacc parser generator, eliminating ambiguity and conflicts, error

recovery, Yacc parser generation for TINY.
• Semantic Processing: attribute grammars, syntax-directed translation,

semantic processing techniques.
• Processing declarations, symbol attributes, dealing with scope, fields and

records.
• Data Types and type checking.
• Intermediate code, data structures for code generation, basic code

generation techniques.

Assignments

Assignments can be done in groups of 2 or at most 3 students.
• Scanner generation with Lex, symbol table for identifiers and literals.
• Recursive descent parsing, generating a syntax tree.
• Yacc specification, type checking, intermediate code generation.

Grading
Written assignments and quizzes: 15%
Programming Assignments: 30%
Midterm Exam: 20% or 25%
Final Exam: 35% or 30%


