
Page 1 of 9

CSCI 447 – Spring 2002

Recursive-Descent Parsing

Professor: Muhammed Mudawwar
Due Date: Monday, April 22, 2002

Objectives:

1- To develop a recursive-descent parser for a given grammar.
2- To generate a syntax tree as an intermediate representation.
3- To generate symbol and literal tables.
4- To handle syntax and some semantic errors.

The M Language

The language that will be used in this assignment is a small language, called the M language (where M
stands for the Mudawwar language ☺). A program is a collection of functions. A special function, called
main, specifies the beginning of program execution. A predefined function input is used for reading
input, and a function output is used for writing output. Input and output can take an arbitrary number of
parameters. The parameters of input must be variables, while the parameters of output can be variables,
constants, or expressions. A simple program written in the M-language is shown below:

const pi:real := 3.14159; -- global constant
function main() {
var r:real; -- local var in function main
output("Enter circle radius: "); -- for writing output
input (r); -- for reading input
output("Area = ", pi*r*r, '\n');

}

Types

The types supported in the M language are int, real, char, bool, arrays, and records. Arrays begin at
index 0 and are stored in row major order. For example, int[10] is an integer array of 10 elements, and
real[5][7] is 2D array with 5×7 real elements. The sizes of dimensions must be integer literal constants.

Records can be also defined in the M language. Records are defined outside functions. The following are
examples of record definitions:

Functions and Parameters

A function has an optional list of parameter and an optional result type. There are two modes of formal
parameters: const parameters are input parameters to a function, while var parameters are output
parameters. A const parameter is a read-only parameter that cannot be modified. A var parameter can be
read and written. If the mode of a formal parameter is not specified, it defaults to const.

Const and var parameters are passed by reference. Const parameters are passed by reference for
efficiency purposes to avoid the copying of arrays and records. The only exception is for const scalar
parameters of type int, real, char, and bool, which are passed by value. The return statement specifies
the result of a function. Function overloading is NOT allowed in this limited version of the M language.
The following are examples of function definitions:

record person {
first : char[15];
last : char[15];
birth : date;

}

record people {
count : int;
list : person[100];

}

record date {
day : int;
month : int;
year : int;

}

Page 2 of 9

function power(x:real, const n:int):real {
-- x and n are const parameters
-- const keyword is optional for parameters
if n = 0 { return 1; }
else if n = 1 { return x; }
else if n < 0 { return 1/power(x,-n); } -- recursive call
else {
var p:real := power(x,n/2); -- recursive call
if n mod 2 = 0 { return p*p; }
else { return p*p*x; }

}
}

function swap(var x,y:real) {
-- x and y are var parameters
var temp:real := x;
x := y
y := temp

}

Blocks and Statements

A block is a sequence of zero or more statements surrounded by curly braces { }. For example, the body
of a function is a block. Constants and variables can be declared inside a block and will have the scope of
the block. The bodies of if and while statements are also blocks, even when one statement is enclosed.
The M language supports an assignment statement for copying, an if statement for selection, a while
statement for repetition, a return statement for returning function results, and a function call statement
for calling functions.

Operators and Expressions

The M language supports a number of operators. The logical operators are: or, and, and not. The
relational operators are: <, <=, >, >=, =, and <>. The addition operators are + and –. The multiplication
operators are *, /, and mod. An expression may include variables, constants, function calls, parentheses,
as well as all the above operators. The or operator has the least precedence. The and operator has the
next precedence, then the relational operators, then the addition operators, then the multiplication
operators, then the unary operators. The unary operators are +, –, and not. Parentheses are given the
highest precedence.

Operators of the same precedence are evaluated from left to right (left associative). However, unary
operators are evaluated from right to left (right associative), and relational operators can't be evaluated
left-to-right or right-to-left (non-associative). For example, the expression a < b < c should cause a
syntax error at the second <. The proper expression should be a < b and b < c.

Arrays can be assigned and can be indexed. Array assignment will copy the whole array element by
element. The square brackets [] are used for accessing array elements. Similarly, record variables can be
assigned. The dot operator is used for accessing record elements.

Page 3 of 9

Grammar Rules

The following is the grammar of the M language. Extended BNF notation is used. Terminal symbols
(tokens) are in bold. Non-terminal symbols appear in italic. Optional sequences are enclosed in brackets
[]. Repetitive sequences are enclosed in curly braces { }. Alternative sequences are separated by vertical
bars |. For example, a Program consists of an arbitrary number (including zero) of constant declarations,
variable declarations, record definitions, and function definitions, according to the first production.

Program → { ConstDecl | VarDecl | RecordDef | FuncDef }

ConstDecl → const Decl ':=' Expr ';'

VarDecl → var Decl [':=' Expr] ';'

Decl → idList ':' TypeExpr

idList → id {',' id}

TypeExpr → int | real | char | bool | id
 | TypeExpr '[' intconst ']'

RecordDef → record id '{' Decl ';' {Decl ';'} '}'

FuncDef → function id '(' [FormalList] ')' [':' TypeExpr] Block

FormalList → Formal {',' Formal}

Formal → [const] Decl | var Decl

Block → '{' {stmt} '}'

Stmt → ConstDecl
| VarDecl
| Object ':=' Expr ';'
| if Expr Block {else if Expr Block} [else Block]
| while Expr Block
| return Expr ';'
| FuncCall ';'

FuncCall → id '(' [ExprList] ')'

ExprList → Expr {',' Expr}

Object → id {Suffix}

Suffix → '[' Expr ']' | '.' id

Expr → AndExpr { or AndExpr }
AndExpr → RelExpr { and RelExpr }
RelExpr → AddExpr [relop AddExpr]
AddExpr → MulExpr { addop MulExpr }
MulExpr → UnaryExpr { mulop UnaryExpr }
UnaryExpr → { UnaryOp } Primary

Primary → Object
| Literal
| FuncCall
| '(' Expr ')'

Literal → boolconst | intconst | realconst | charconst | strconst

UnaryOp → addop | not

Page 4 of 9

Lex Specification:

The M language is not case sensitive. Identifiers and keywords can appear in lowercase or uppercase. Do
the necessary modifications to your lex specification so that it can now be used with the new grammar.
Take into account the changes of keywords that exist in the grammar.

Here is the new list of keywords: and, bool, char, const, else, false, function, if, int, mod, not, or,
real, record, return, true, var, while. The other tokens are the same, except that the scanner
should recognize and return one additional token, which is the dot operator.

Symbols and Symbol Tables:

There are different categories of symbols. A name symbol is a symbol that holds only the name of an
identifier. A literal symbol is a symbol that holds the value and the type of a literal constant. A type
symbol is a symbol that holds a type name and its attributes. An identifier symbol holds a const or a var
identifier and its attributes, a function symbol is a symbol that holds a function name and its attributes,
and a field symbol holds a field name and its attributes. There are also many instances of symbol tables
as discussed below. Hashing techniques should be used to speed up the lookup and insertion of symbols.

Name Table:

One table should be used for all identifier names, regardless of where these names appear. The scanner
should enter an identifier name and return a pointer to its entry. There should be a unique entry for each
name no matter in how many scopes it appears.

Literal Table:

One table should be used for all literal constants, regardless of where they appear. A literal constant
should appear exactly once. A literal symbol should store the value and type of each literal constant. The
type of a literal is a pointer to a type symbol. The type of an integer literal is "int", the type of real literal
is "real", the type of a char literal is "char", the type of a bool literal is "bool", and the type of a string
literal is "char[n]", where n is the length of the string literal. The length of a string literal does NOT
include the extra surrounding quotes and backslashes in escape sequences.

Type Table:

One type table should be used for all types. A type should appear once in a type table no matter how
many times it is used. Each type symbol has a type operator, a type name, a type size, a type alignment,
and a pointer to another type. A type operator can be INT, REAL, BOOL, CHAR, ARRAY, and
RECORD. The built-in types INT, REAL, BOOL, and CHAR, should be initially entered in the type
table. The parser is responsible of entering new types as they are encountered. For example, real[10][5]
can be represented by the following list of type symbols.

Field Table:

For records, the record name, size and alignment are entered into a type symbol in the type table.
However, the field names and their types are entered into a field table. One table is used for all record
fields. To have a unique name for a record field, the name of the record type and the field name are
combined. A FIELD symbol should contain the field name, the field type, and the field offset (byte
offset within its record).

op: ARRAY
name: "real[10][5]"
size: 400
align: 8 type:

op: ARRAY
name: "real[5]"
size: 40
align: 8 type:

op: REAL
name: "real"
size: 8
align: 8

Page 5 of 9

For example, the record person and its fields are represented as shown below:

record person {
name: char[20];
id: int;

}

Identifier Table:

One table is used for all const and var identifiers as well as functions. This includes global and local
variables, named constants, functions, and parameters. An identifier symbol includes the name, the type
and the scope of an identifier. The scope distinguishes between identifiers having the same name and
appearing in outer scopes. Identifier symbols at a given scope are removed from the buckets of the hash
table upon exit from that scope. However, these symbols are kept linked, using a list pointer. The list
pointer serves to build a linked list of all symbols entered in a given table according to their insertion
order. This is not restricted to identifier symbols in the identifier table, but applies to other symbols in
other tables as well.

For example, given function f(x:int, var y:real):char, the function type is the function
result type. This type should exist or entered into the type table along with the parameter types. The
function symbol and parameter symbols are entered into the identifier table.

Syntax Error Handling:

If a syntax error occurs while parsing, an error message should be reported specifying the line and
position number, the lookahead token that caused the error, and the expected token(s). Compilation can
terminate at the first syntax error. Error recovery is not required. However, you are invited to recover
from syntax errors if you have time.

Static Semantics Checking:

The following static semantic rules should be checked. Error messages should be reported when these
rules are violated, but parsing and translation should continue. An error message should specify the token
line and position number and describe the error that occurred.

1 All variables must be declared before they can be used. Functions should be defined before they can
be called. Record types must be defined before they can be used. The input and output function
symbols should be initially inserted into the identifier table to locate them when they are called.
Similarly, the built-in types int, real, char, and bool should be initially inserted into the type table.

op: CHAR
name: "char"
size: 1
align: 1

op: FUNC
name: "f"
scope: GLOBAL
type:
list:

op: CONST
name: "x"
scope: PARAM
type:
list:

op: VAR
name: "y"
scope: PARAM
type:
list:

op: INT
name: "int"
size: 4
align: 4

op: REAL
name: "real"
size: 8
align: 8

Entered in Identifier Table

Entered in Type Table

Entered in Type Table

op: RECORD
name: "person"
size: 24
align: 4

op: ARRAY
name: "char[20]"
size: 20
align: 1 type:

op: CHAR
name: "char"
size: 1
align: 1

op: INT
name: "int"
size: 4
align: 4

op: FIELD
name: "person.name"
offset: 0
type:
list:

op: FIELD
name: "person.id"
offset: 20
type:
list:

Entered in Field Table

Page 6 of 9

2 Identifiers cannot be declared more than once within the same scope. However, the same identifier
name can appear in different scopes. Function names cannot be overloaded (with the exception of the
predefined input and output functions, which can accept an arbitrary number and types of
parameters).

3 Formal const parameters can be read only inside a function. They cannot appear on the left hand side
of an assignment statement. Furthermore, const parameters, const identifiers, and literals cannot be
passed to var parameters. Formal var parameters must receive var identifiers as their actual
parameters. Var parameters can be read and written and can be passed as actuals to formal const
parameters.

4 It is illegal to index non-array identifiers. Only arrays can be indexed.

5 It is illegal to use the dot operator with non-record identifiers. Only record fields can be accessed
using the dot operator.

Type checking for expressions and function calls is not required in this assignment, but you are
invited to do type checking if you have time.

Translation into a Syntax Tree:

A syntax tree is used as an intermediate representation. Expressions and statements should be translated
into a syntax tree. There are different categories of nodes:

1 An operator node stores the operator: ADD, SUB, MUL, DIV, MOD, ... etc. It should have two pointers.
Unary operators use only one pointer, while binary operators use two pointers. To check the types of
expressions, you need to add type information to each node (optional).

2- A symbol node is an identifier symbol or a literal symbol in a symbol table.

Expressions are translated into syntax trees as shown below. The following is the translation of an
expression, where c is a global var, x is a const parameter, and y is a local var nested at some level
2. The variables, parameters and their types should have been entered in symbol tables. Observe that
scope is an integer number, where GLOBAL can be given the value 1, PARAM can be given the value
2, and LOCAL can be given the value 3. Therefore, LOCAL+2 is a nested scope with integer value 5.
The scope number is incremented upon entry of a new scope and decremented upon exit.

The following is a list of operators that can appear in a source file:

+ – * / mod or and not
< <= > >= = <> [] .

For indexing, the INDEX operator is used. The left pointer points at the array object, while the right
pointer points at the index expression between brackets. The following is an example on the INDEX
operator, where a is assumed to be of type real[5][8].

c > 'A' and x+y < 3

op: VAR
name: "c"
scope: GLOBAL
type:

op: AND

op: GT op: LT

op: CHAR
name: "char"
size: 1
align: 1

op: LIT
value: 'A'
type:

op: ADD

op: CONST
name: "x"
scope: PARAM
type:

op: VAR
name: "y"
scope: LOCAL+2
type:

op: LIT
value: 3
type:

op: INT
name: "int"
size: 4
align: 4

Page 7 of 9

For field access, the DOT operator is used. The following is an example on the DOT operator, were p
is a record variable of type person:

3 For statements, we need statement nodes. Statement nodes have a sibling pointer for sequencing. An
assignment statement is translated into an ASGN node. The left pointer points at the object on the left
hand side of the assignment operator, and the right pointer points at the expression on the right hand
side. The while statement is translated into a WHILE node is used. The left pointer points at a
Boolean expression, and the right pointer points at a statement sequence. Statement sequences are
implemented using the sibling pointer. The following is a syntax tree of a while statement.

The if statement is translated into an IF node. The IF node requires three child pointers, in addition
to a sibling pointer (for sequencing). The left pointer points at the Boolean expression, the middle
pointer points at then-part, and the right pointer points at the else-part. The following example shows
the syntax tree of an if statement. The same VAR symbol appears twice for clarity.

a[i][j+1]

op: VAR
name: "a"
scope: PARAM
type:

op: INDEX

op: ARRAY
name: "real[5][8]"
size: 320
align: 8 type:

op: ADD

op: LIT
value:1
type:

op: INT
name: "int"
size: 4
align: 4

op: VAR
name: "i"
scope: LOCAL
type:

op: ARRAY
name: "real[8]"
size: 64
align: 8 type:

op: REAL
name: "real"
size: 8
align: 8

op: VAR
name: "j"
scope: LOCAL
type:

op: INDEX

record date {
day: int;
month:int;
year: int;

}

record person {
name: char[20];
birth:date;

}

var p:person;

op: VAR
name: "p"
scope: GLOBAL
type:

op: DOT

op: RECORD
name: "person"
size: 32
align: 4

op: INT
name: "int"
size: 4
align: 4

op: FIELD
name: "person.birth"
offset: 20
type:

op: DOTp.birth.year

op: RECORD
name: "date"
size: 12
align: 4

op: FIELD
name: "date.year"
offset: 8
type:

(sibling pointer)

while i <= n {sum := sum+i; i := i+1;}

VAR "i"

LE

VAR "n"

WHILE

ASGN

ADD ADD

LIT 1VAR "sum"

ASGN

Page 8 of 9

4 To translate function definitions, a FUNCDEF node is used. The left pointer points at a FUNC
(function) symbol and the right pointer points at a statement sequence. To translate a function call, a
CALL node is used. The CALL node has a left pointer pointing at a FUNC symbol and a right pointer
pointing at an actual ARG (argument) list. Each ARG node points at an actual argument or parameter.
The return statement is translated into a RET node.

The following recursive function f illustrates the translation of functions, function calls, and return
statements.

Output the Syntax Tree:

Output the syntax tree of each function in a parenthesized prefix notation, which corresponds to the
preorder traversal. For example, the syntax tree of the above function f is displayed below. Indentation
helps visualizing the structure of the syntax tree. Use curly braces for sequencing, when sibling pointer is
not NULL.

(FUNCDEF
(FUNC f int GLOBAL)
(IF
(LE
(CONST n int PARAM)
(LIT 0 int)

)
(RET
(LIT 1 int)

)
{ (ASGN

(VAR k int LOCAL+1)
(DIV
(CONST m int PARAM)
(LIT 2 int)

)
)

function f(m,n:int):int {
if n <= 0 { return 1; }
else {

var k:int := m/2;
k := f(n,k);
return k;

}
}

VAR "max"

if x >= y {max := x;} else {max := y;}

GE

IF

VAR "max"VAR "x" VAR "y"

ASGNASGN

VAR "x" VAR "y"

CONST "m"

DIV

LIT 2

RET

IF

LE

LIT 0CONST "n" LIT 1 VAR "k"

RET

CONST "n"

ASGN

VAR "k" CALL

FUNC "f" ARG ARG

VAR "k"

ASGN

VAR "k"

FUNCDEF

FUNC "f"

Page 9 of 9

(ASGN
(VAR k int LOCAL+1)
(CALL
(FUNC f int GLOBAL)
{ (ARG

(CONST n int PARAM)
)
(ARG
(VAR k int LOCAL+1)

)
}

)
)
(RET
(VAR k int LOCAL+1)

)
}

)
)

Output the Symbol Tables:

1 Output the list of names in the name table, each name on a separate line.

2 Output the list of literal symbols in the literal table. For each literal symbol, output its value and its
type name on a separate line.

3 Output the list of type symbols in the type table. For each type symbol, output its name, its size, its
alignment, and the name of its element type (when the type link is not NULL).

4 Output the list of field symbols in the field table. For each field symbol, output its name, its offset,
and its type.

5 Output the list of identifier symbols in the identifier table. For each identifier symbol, output its class
(CONST, VAR, or FUNC), its name, its type name, and its scope.

Report:

A detailed report should be written explaining your design and implementation. Specifically, you need to
discuss the parsing functions and what they do, the implementation of the syntax tree, the symbol
structures for various symbols, symbol tables, the handling of syntax and semantic errors.

To Submit:

1 The report document.

2 A floppy disk containing all your files (lex files, C/C++ files, executable program, test inputs and
outputs).

Grading:

Your grade will be divided into the following components:

1 Correctness and output
2 Parsing functions, implementation details, and documentation
3 Syntax tree, implementation details, and documentation
4 Symbols, symbol tables, implementation details and documentation
5 Handling syntax and semantic errors, error reporting
6 Report Document

