
Page 1 of 7

CSCI 447 – Spring 2001

Recursive-Descent Parsing

Professor: Muhammed Mudawwar
Due Date: Sunday, April 29, 2001

Objectives:

1- To develop a recursive-descent parser for a given grammar.
2- To generate a syntax tree as an intermediate representation.
3- To generate symbol and literal tables
4- To handle syntax and some semantic errors.

The M Language

The language that will be used in this assignment is a small language, called the M language (where
M stands for the Mudawwar language ☺ … or perhaps the Module language). A compilation unit in
the M language is a module that consists of variable declarations and function definitions. Variables
declared outside functions have the scope of the entire module and can be used in any function, while
those declared inside functions are local variables. A special function, called main, specifies the
beginning of program execution. An example of a module written in the M-language is shown below:

module example
var x:integer; -- global var in module example
function main()
var y:real; -- local var in function main
read(x,y); -- predefined function for reading input
write(2*x+y); -- predefined function for writing output

end function main;
end module example;

The types supported in the M language are integer, real, char, boolean, and array. There is no
facility to define new types. An array type is parameterized by size and element type, where braces {
. . . } enclose the parameters of a type. For instance, array{10, char} is an array of 10 characters and
array{2, array{5, real}} is a 2D array with 2×5 real elements. Arrays begin at index 0 and they are
stored in row major order.

Functions include variable declarations and statements. A function has an optional result type. If the
result type is not specified, the function will be a procedure. However, the keyword procedure is not
used in this language. Formal parameters have 2 modes: in parameters are input parameters to a
function, while out parameters are output or result parameters. An in parameter should be read only.
An out parameter should be written only. If the mode of a formal parameter is not specified, it
defaults to in. The result of a function is specified using the result keyword. A function result is
equivalent to an out parameter. Function overloading is NOT allowed. The following is an example
of a function:

function f(in x,y: real; out sum:real):real
sum := x+y;
result := x*y;

end function f;

Grammar Rules:

The following is the grammar of the M language. Terminal symbols (tokens) are in bold. Non-
terminal symbols appear in italic. Optional symbols are enclosed in [and]. They may or may not
appear in a program. Repetitive sequences are enclosed in { and }. Repetitive sequences may be
repeated zero, one, or more times. For example, a ModuleUnit begins with module keyword,
followed by an identifier, followed by a list of variable declarations, {VarDecl}, followed by a list

Page 2 of 7

of function definitions, {FuncDefn}. It is terminated with the end keyword, followed by the
optional module keyword, [module], followed by an optional identifier, [id], followed by
semicolon. The optional identifier name appearing at the end of a module must match the identifier
name appearing in the module header.

ModuleUnit → module id {VarDecl} {FuncDefn} end [module] [id] ;

VarDecl → var id { , id } : TypeExpr ;

TypeExpr → integer
→ real
→ char

 → boolean
 → array { intconst , TypeExpr }

FuncDefn → function id ([FormalList]) [: TypeExpr]
{VarDecl} {Stmt} end [function] [id] ;

FormalList → Formal { ; Formal }

Formal → [Mode] id { , id } : TypeExpr

Mode → in
→ out

Stmt → Object := Expr ;
→ if Expr then {Stmt} end [if] ;
→ if Expr then {Stmt} else {Stmt} end [if] ;
→ while Expr do {Stmt} end [while] ;
→ FuncCall ;

FuncCall → id ()
→ id (Expr { , Expr })

Object → id {Suffix}
→ result {Suffix}

Suffix → [Expr]

Expr → AndExpr { or AndExpr }
AndExpr → RelExpr { and RelExpr }
RelExpr → AddExpr [relop AddExpr]
AddExpr → MulExpr { addop MulExpr }
MulExpr → UnaryExpr { mulop UnaryExpr }
UnaryExpr → { UnaryOp } Primary

Primary → Object
→ intconst
→ realconst
→ charconst
→ boolconst
→ strconst
→ FuncCall
→ (Expr)

UnaryOp → addop
→ not

Page 3 of 7

Lex Specification:

The M language is not case sensitive. Identifiers and keywords can appear in lower or uppercase. Do
the necessary modifications to your lex specification so that it can now be used with the new
grammar.

Syntax Error Handling:

If a syntax error occurs while parsing, an error message should be reported specifying the line
number, the lookahead token that caused the error, and the expected token(s). Compilation can
terminate at the first syntax error. Error recovery is not required. However, you are invited to recover
from syntax errors if you have time.

Symbol Tables:

All declared identifiers should be entered in symbol tables. Multiple symbol tables should be used
for a given module. One symbol table is dedicated for all global identifiers. Symbol entries are either
global variables or functions. A symbol entry for a global variable should store its kind as GVAR, its
name, and its declaration line number in the source file. A symbol entry for a function should store
its kind as FUNC, its name, its line number where it is defined, and a pointer to a symbol table for
that function. Each function should have its own symbol table. Symbol entries in function symbol
tables are formal parameters, local variables, and function results. A symbol entry for a formal
parameter stores its kind as IN or OUT, its name, and its line number. A symbol entry for a function
result stores its kind as OUT, its name as result, and its line number where the result type appears in
the source file. A local variable symbol entry stores its kind as LVAR, its name, and its line number.
Hashing techniques should be used to speed up the insert and lookup functions.

The type attribute of each global variable, local variable, formal parameter, or function result is NOT
required in this assignment because no type checking is necessary at this time.

Literal Table:

One literal table should be used for all literal constants in a program, regardless of where they
appear. A constant value should appear exactly once in a literal table. Look up the literal table before
inserting a new literal constant. Hashing techniques should be used to improve the speed of insert
and lookup functions. There are five kinds of entries in the literal table. INT is used for integer
literals, REAL is used for real literals, BOOL is used for Boolean literals, CHAR is used for
character literals, and STR is used for string literals. In addition to its kind, the value of a literal
constant should also be stored.

Static Semantics Checking:

The following static semantic rules should be checked. Error messages should be reported when
these rules are violated, but parsing and translation should continue. Error message should specify
the line number and describe the error that occurred.

1 An optional identifier appearing at the end of a module (or function definition) must match the
name of module (or function).

2 All variables must be declared before they can be used. Functions should be defined before they
can be called.

3 Identifiers cannot be declared more than once within the same scope. However, they can be re-
declared in different scopes (for example, within two different functions, or as global in a module
and local to a function). Function names cannot be overloaded.

4 The number of actual parameters should match the number of formal parameters. Formal
parameters of mode in can be read only inside a function. They cannot appear on the left hand
side of an assignment statement and cannot be passed to formal parameters of mode out. Formal
parameters of mode out can be written only. They cannot appear on the right-hand side of an

Page 4 of 7

assignment statement and cannot be passed to parameters of mode in. The result of a function
should be treated exactly like an out parameter.

There are many other semantic rules that need to be checked. However, they are not part of this
assignment.

Translation into a Syntax Tree:

A syntax tree is the intermediate representation for the M language. Expressions and statements
should be translated into a syntax tree.

1 An operator node stores the kind of operator: +, –, *, /, mod, and, or, not, <, <=, etc. It should
have a left and a right pointer, and should also contain the line number at which the operator
appears. Unary operators use only the left pointer, while binary operators use both pointers. Type
information is not necessary at this stage, but will be added later.

2- Variables and literal constants in a syntax tree are entries in symbol and literal tables.

3- Expressions are translated into syntax trees as shown below. The following is the translation of
two expressions, where c is a local variable, d is a global variable, and x and y are in parameters.

x + y * 3

+

*IN x

IN y INT 3

c > 'A' and d < 'Z'

and

>

CHAR 'A'LVAR c

<

GVAR d CHAR 'Z'

The following is a list of operators that can appear in a source file:

+ – * / mod or and not
< <= > >= = <>

4- For indexing, the [] operator is used, The left child points to the object to the left of the []
operator, while the right child points to the index expression. The result of the [] operator is an
address. An assignment statement is translated into an assignment operator node. The left child
points to the object on the left hand side of the assignment operator. The right child points to the
expression on the right hand side. The following are examples on the indexing and assignment
operators:

c := b[i][j];

[]

IN b

:=

LVAR c []

LVAR j

LVAR i

a[i] := d; :=

[]

OUT a

LVAR d

LVAR i

5 The if and while statements are translated into IF and WHILE nodes. The IF node uses three
pointers, a pointer to a Boolean expression, a pointer to the statement list of then-part, and a
pointer to the statement list of else-part. The WHILE node uses two pointers, a pointer to a
Boolean expression and a pointer to a statement list. Statement lists are implemented as linked
lists. A sibling pointer links all statement trees together. The following examples show the syntax
trees of if statement and while loop.

Page 5 of 7

if x >= y then max := x; else max := y; end if;

>=

IF

:=

LVAR xLVAR maxLVAR yLVAR x

:=

LVAR yLVAR max

while i <= n do sum := sum+i; i := i+1; end while;

<=

LVAR nLVAR i

WHILE

:=

+

:=

+

INT 1LVAR i

LVAR sum LVAR i

LVAR iLVAR sum

6 To translate functions and function calls, we need a FUNCDEF node and a CALL node. A
FUNCDEF node has a left pointer pointing to a FUNC symbol in the global symbol table, a
right pointer pointing to a statement list, and a sibling pointer for linking function definitions in a
module. A CALL node has a left pointer pointing to a FUNC symbol, a right pointer pointing to
an actual parameter list, and a sibling pointer in case the function call is a statement. An actual
PARAM node has a pointer pointing to an expression tree and a sibling pointer for linking
PARAM nodes.

Consider the following recursive function f with one in parameter n. The result of this function
is of type integer. This function definition is translated into the following syntax tree:

IF

<=

INT 0IN n

:=

OUT result INT 1

CALLLVAR k

FUNC f

:=

PARAM

–

IN m INT 1

PARAM

/

IN n INT 2

CALLOUT result

FUNC f

:=

PARAM

LVAR k

PARAM

/

IN m INT 2

FUNC f

FUNCDEF

The function result is represented as an OUT node in the syntax tree. A function result should be
entered in a function symbol table as an OUT symbol. Since result is a reserved word, it will not
conflict with other identifiers.

Symbols may be referenced multiple times in a syntax tree. For example, FUNC f appears 3 times in
the above tree. IN n, IN m, OUT result, LVAR k, INT 1, and INT 2 appear twice. Although the
same symbol appears multiple times in the above tree to simplify the drawing, each symbol exists

function f(m,n:integer):integer
var k:integer;
if n <= 0 then
result := 1;

else
k := f(m-1,n/2);
result := f(k,m/2);

end if;
end function f;

Page 6 of 7

once in the corresponding symbol or literal table. Therefore, a syntax tree is not really a tree but
rather a directed acyclic graph (DAG) in the formal sense.

Output the Syntax Tree:

Output the syntax tree of each function in a parenthesized prefix notation, which corresponds to the
preorder traversal. For example, the syntax tree of the function f is displayed as shown below
(assuming that function f starts at line 10). Indentation helps visualizing the structure of the syntax
tree. @n indicates a line number and -> indicates a sibling link.

(FUNCDEF @10
(FUNC f @10)
(IF @12
(<= @12
(IN n @10)
(INT 0)

)<=
(:= @13
(OUT result @10)
(INT 1)

):=
(:= @15
(LVAR k @11)
(CALL @15
(FUNC f @10)
(PARAM @15
(- @15
(IN m @10)
(INT 1)

)-
)PARAM

->(PARAM @15
(/ @15
(IN n @10)
(INT 2)

)/
)PARAM

)CALL
):=

->(:= @16
(OUT result @10)
(CALL @16
(FUNC f @10)
(PARAM @16
(LVAR k @11)

)PARAM
->(PARAM @16

(/ @16
(IN m @10)
(INT 2)

)/
)PARAM

)CALL
):=

)IF
)FUNCDEF

function f(m,n:integer):integer
var k:integer;
if n <= 0 then
result := 1;

else
k := f(m-1,n/2);
result := f(k,m/2);

end if;
end function f;

Page 7 of 7

Output the Symbol Tables:

1 For each global variable: output its name and its line number.

2 For each function: output its name, its line number, and the function symbol table containing
formal parameters, result, and local variables.

3 For each formal parameter and function result: output its mode, its name, and line number.

4 For each local variable: output its name and its line number.

Report:

A detailed report should be written explaining your design and implementation. Specifically, you
need to discuss the parsing functions and what they do (parameters used if any and result returned),
the implementation of the syntax tree (tree node structure and functions that allocate tree nodes), the
symbol structure, symbol and literal tables, the handling of syntax and semantic errors.

To Submit:

1 The report document.

2 Place all your files (lex files, C/C++ files, executable program, test inputs and outputs) in one
directory. Name this directory according to your user name. Tar this directory into a file,
uuencode the tar file, and mail it to cs447. To do this, execute the following command sequence:

mv your_assignment_directory username

tar cvf username.tar username

uuencode username.tar username.tar > username.uu

mail –s "parser from your full name" cs447 < username.uu

Grading

Your grade will be divided into the following components:

1 Correctness and output
2 Parsing functions, implementation details, and documentation
3 Syntax tree, implementation details, and documentation
4 Symbol structure, symbol and literal tables, implementation details and documentation
5 Handling syntax and semantic errors, error reporting
6 Report Document

